TRANSFORMATION BY LINEAR SYSTEMS

yln] = h[?j * x[n]
= ) hlk]lz[n — K]

k=—o00

z[n] ——  h[n] — yn]

MEAN

F{y[n]} = i RIK]E{z[n —Kk]} or... |my=my- i h[k]

k=—00 k=—00

5-1



TRANSFORMATION BY LINEAR SYSTEMS
(cont’d.)

CORRELATION AND CROSS-CORRELATION
FUNCTIONS

E{ylnly*ln =10} = > hlKIE{z[n - kly*[n -]}

k=—o0

Rylll = > h[k]Rayll— k] or... |Ry[l] = h[l] * Rayll]

k=—o00

Similarly, by multiplying by z*[n —{] and taking
the expectation . ..

Ry:c[l] = hl[l] * Rgll]
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TRANSFORMATION BY LINEAR SYSTEMS
(cont’d.)

COVARIANCE FUNCTIONS

Rylll= S hlkRuyll—k]  my=me Y hlk]

k=—00 k——0o0

N /

Cyll] = Ryll] — mymZ

Cylll = Y hIKl- (Rayll — k] = mamy) = > h[k]Cuyll — K]

k=—00 k——o0

or ... Cyll] = h[l] = Cxyll]

and similarly . .. Cyz[l] = h[l] * C¢[l]
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TRANSFORMATIONS: MNEMONIC DEVICE

z[n] ——m  h[n]

— 17

hil]
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Insert Example 5.1 here.
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COMBINED RELATIONS
Start with
Ryz[l] = h[l] * Rz[l] = sz[—l] = h*[-1] * R[]
or Rayll] = h*[—1] * Ry[!]

Then

Ry[l] = h[l] * Ryyll] = R[] * R*[—1] * Ry[l]
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LINEAR TRANSFORMATION SUMMARY

System defined by: y[n] = h[n] * x[n]

Ryz[l]=h[l]*R[l] Syz(e7¥)=H (e/*)Sz(e¥) Syz(2)=H(z)Sz(2)
Ray[l1=h* [~ 1% R [l] Spy () =H*(e7%)Sp(e?)  Spy(2)=H*(1/2*)Su(2)
Ry [l]=h[l]>|<ny [] Sy(ejw):H(ejw)Sxy(ejw) Sy(Z)ZH(Z)S:Ey(Z)

Ry[)=h{0+h* [~ Rall]  Sy(e)=|H(e)[2Sp(e®)  Sy(2)=H(2) H*(1/2")Sx()
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APPLICATION: SYSTEM IDENTIFICATION

White noise input

Rye[l] = h[l] = 6[1] = h(l]

{n]
RJ1]=6[l]

—

Unknown
linear
shift-invariant
system

ylnl Cross-
correlate Ryﬂ’[l]
T z[n]
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APPLICATION: PROOF THAT S.(el¥) > 0

z{n] ———w

h[n] ——== yin]

Sy(e) = Sa(ei) | H (1)

S (erv)

wO
\\’// w

|H(er)|2

JL | JL

—Wy Wy

1 ™
Avg. power = —/ Sy (e?*)dw
27 J—x

Sy(e7)




SYSTEM IN DIFFERENCE EQUATION FORM

LINEAR SYSTEM DESCRIPTION
y[n] +aryln — 1] +--- +apy[n — P] = bozx[n] + --- + bgz[n — Q]
Take expectation to obtain. ..

EQUATION FOR THE MEAN

my + aimy + -+ apmy = bgmg + - -+ + bgmy

Z]OJ

1+Zz 1 @5
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DIFFERENCE EQUATION FORM (cont’d.)

Starting with . ..

y[n] +aryln — 1]+ -+ apy[n — P] = box[n] + --- + bgx[n — Q]

Multiply by y*[n —1] or z*[n —[] and take expectation
to obtain ...

CORRELATION DIFFERENCE EQUATIONS
Ry[l] +a1Ry[l_ 1] +-- "I‘CLPRy[l_P] — bOny[l] +-- "|‘bQny[l_Q]

Ryz[l]+a1 Ryz[l— 1]+ - -+apRyz[l— P] = boRz[l] +- - -+ b Rz [l — Q]
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DIFFERENCE EQUATION FORM (cont’'d.)

To find equation for the covariance, begin with
y[n] +aryln — 1]+ -+ apy[n — P] = box[n] + - + bgx[n — Q]
and subtract
my + aimy + -+ apmy = bogmg + -+ + bgmy
to obtain

(y[n] —my)+a1(y[n—1]—my)+---+ap(y[n—P]—my)

= bo(z[n]—mz) + - ‘|‘bQ (z[n—Q]—mz)
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DIFFERENCE EQUATION FORM (cont’d.)

Now starting with
(y[n]—my)+a1(y[ln—1]—my)+---+ap(y[ln—P]—my)

= bo(z[n]—mzg) + --- +bQ (z[n—Q]—mz)

Multiply by (y[n—1] —my)* or (z[n—1] —mz)* and take expectation
to obtain ...

COVARIANCE DIFFERENCE EQUATIONS
Cy[l] ‘I'aflcy[l_ 1] + - -—I—apr[l—P] — bOny[l] +-- "I'bQCacy[l_Q]

Cyelll+a1Cye[l— 1]+ - -+ apCyz[l — P] = boCx[l] 4+ - - +bgoCe[l — Q]
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MINIMUM-PHASE DEFINITIONS
MINIMUM-PHASE POLYNOMIAL

Has all roots inside the unit circle.
MINIMUM-PHASE TRANSFER FUNCTION

Ratio of two minimum-phase polynomials:
B(z)
A(z)

MINIMUM-PHASE SYSTEM

with A(z) and B(z) minimum-phase

Hopin(z) =

Causal system with minimum-phase transfer function.

e It is a causal stable system with a causal stable inverse.
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MINIMUM- AND NONMINIMUM-PHASE
SYSTEMS

MINIMUM-PHASE NONMINIMUM-PHASE

N 1D
NIGZEAN
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MOVING A ZERO TO INSIDE THE UNIT
CIRCLE

Multiply H(z) by Z

N
1—252 271 —25 / 0

z—z20 1—z0z7 1 -

This does not change the Kj

magnitude of H(z).

—1 *

— W * >|<—|—w
27— 28 e JY — 28 1 — z5e™J

— —Jw
1 — zoe ¥ 1 — zoe ¥
magni{udezl

_ —1 .
1 — 202 U
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CONVERSION OF A SYSTEM TO
MINIMUM-PHASE

—e  Hz) [ G2 =

Gap(z) consists of a product of terms of the form

P 27 1 —z;z™
1 or 1 "
1l —z;2— 27—z

Since these terms have magnitude 1 for all frequencies,

1

| Hpin (e’)| = [H ()]
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PALEY-WIENER CONDITION

A complex spectral density function satisfying the Payley-Wiener
condition

/7T | In Sz(e!)]dw < oo
T

can be factored as

Sz(2) = Ko - Hea(2)Hz, (1/27)

where H.q(z) is a causal stable system with a causal stable
inverse.

e [ he Payley-Wiener condition is both necessary and sufficient.

e A process satisfying the Payley-Wiener condition is said to be
a regular process.
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PALEY-WIENER EXAMPLES

.

satisfiecs Paley-Wiener

|
T

£}

S, (e¥)

~IN

does not satisty Paley-Wiener

{0

S, (&)

[

1T (£}

does rnot satisty Paley-Wiener
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INNOVATIONS REPRESENTATION FOR A
REGULAR PROCESS

MODEL FOR THE PROCESS

White noise
win] —e= H_(2) ——® zn]
S, (&) =K, S,(2) =K, - H.(2H,(1/27)

INVERSE FILTER

White noise

—1 ‘ .
ln] ———w= H(2) (innovations process)
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Insert Example 5.5 here.
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SPECTRAL FACTORIZATION FOR RATIONAL
POLYNOMIALS

e All finite rational S;(z) satisfy Paley-Wiener and are thus
factorable:

Sz(z) = Ko - Hca(Z)H:a(l/Z*)

e The term H..(z) represents a minimum-phase system.

e By convention, the numerator and denominator of H.q.(z) are
comonic polynomials in z—1.
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SPECTRAL FACTORIZATION FOR
RATIONAL S.(2)

Since Sz(z) = Si(1/z*) poles and zeros occur in conjugate
reciprocal locations and S;(z) can be factored as:

Oz () () A—ma ) ()
S2(2) = Ko =y T CC ) ()

A g

Hea() HE,(1/2%)

e H.q(2) is the ratio of two comonic polynomials.
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SPECTRAL FACTORIZATION ILLUSTRATION
FOR RATIONAL POLYNOMIALS

1.732

_ —1222430-122"2
Sz(2) = 6224204622
0.866
S S
—1.414 \ —0.707 0.707] 1.41 o (1 4+ 0.7072-1)(1 — 0.707-1)
ca\ % =
—0.866 (1 4+ 70.8662z-1)(1 — 70.8662~1)
X _ 1-05z77
 140.3332°2
—1.732
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Insert Example 5.101 here.
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Insert Example 5.6 here.
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MATCHED FILTER

e Used for detection of signal in additive noise.
— decide: signal present or not present

— estimate the arrival time

e Applications are in radar, sonar, communications.

e Developed as a type of “optimal filtering” problem.
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SIGNAL IN ADDITIVE NOISE

x[n]

Signal duration P
P=n,—n,+1
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MATCHED FILTER RESPONSE

{n]

e 00 TTITT? ®

® 0 6 g0 ® o666
e 3T

n}] ———w=  h[n] ——e yn]

yln]

? 2990 9 fTTﬂTn
I I ST o
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PROBLEM STATEMENT

RECEIVED SIGNAL

z[n] = s[n] + nln]

PROCESSED SIGNAL

y[n] = ys[n] + yn(n]

OUTPUT SIGNAL-TO-NOISE RATIO

2
SNR def lys[np]]
E{ lynlnp] °
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FILTER EQUATIONS

P
> hlklz[np — K]

ylnp] =
k=0
= h'z
where
- h[O]
h=| ]
| h[P —1] |

- z[no]

x[no + 1]

i ;U[np]

— y[n]
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FORMULATION OF SNR
Filter output is y[np] = ys[np] + yn[npl
where ys[np] = h's = s'h ynlnp] = hTn =n'h

T hen
lysinp]|? = (W78)*(8"h) = h*"5*5"h

E{ylnpl 2} = E{(bT7)*(77h)} = h*"Rjh = h*"Ryh
therefore . ..

yslnpll>  _ h*’8*§"h
E{lyy[np]2} ~ b*"Rph

SNR =
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OPTIMIZATION PROBLEM

Maximize
SNR — h*’'s*s’h
~ h*"Rph
subject to
h*'Rph =1

Form the LaGrangian

£ =h*""s*s"h + \(1 — h*TRnh)
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OPTIMIZATION SOLUTION

To find a stationary point of

£ =h*"§"5"h + A(1 — h*"Ryh)

require

Vil =§88"h— ARph=0 = (8§ )h=ARpyh

T he solution implies that

h*75*5"h = Ah*"Ryh

h*1'§*5Th

~ h*TRph

or ... — SNR
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OPTIMIZATION SOLUTION (cont’d.)

To solve
(§*§T)h = ARnh
note that:

e There are P — 1 solutions §'h =0 vyielding X\ =0.

e The desired solution has h Rgl‘s'*:

¥ §"Ry'8* = ARpRy,'§" = X

J

scalar =\
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OPTIMAL FILTER: SOLUTION

FILTER (Normalized so hRph*! = 1)

— 1 — 1%
h = R77 S

\/S*TR,,_?lS

SIGNAL-NOISE

SNRMAX == )‘MAX == S*TR,,_?lS
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OPTIMAL FILTER: WHITE NOISE CASE
(Rn — 0(2)1)

FILTER

SIGNAL-NOISE
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Insert Example 5.4 here.
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