RANDOM SIGNALS/SEQUENCES

x[n]

14 0

-+, z[—1], «[0], =[1], --- are random variables

e Sequence is called a random signal or time series.

e Underlying model is a random process or stochastic process.
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NOTES ABOUT RANDOM SIGNALS

e Random signals generally have infinite energy:

E{ 3 x[nn?}: S Elaln]?) = oo

NnN—-—0oo nN——oo

e Random signals may be predictable.
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RANDOM SIGNAL EXAMPLES

NOISE




RANDOM SIGNAL EXAMPLES (cont’d.)

BINARY CODED DATA

-

x[n]

]



RANDOM SIGNAL EXAMPLES (cont’d.)

RANDOM SINUSOID

’
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x[n]

[ ]
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RANDOM SIGNAL EXAMPLES (cont’d.)

BAT TERY VOLTAGE

xin]

OQ.QOOQQOQ.Q?QCTQQQ..O?Q..QQQ.Q.QT?...
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STATISTICAL CHARACTERIZATION
OF RANDOM SIGNALS

e Random signals are characterized by the joint distribution
or joint density for the samples.

x[n]
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STATISTICAL CHARACTERIZATION (cont’d.)

e It is necessary and sufficient to consider just blocks of
contiguous samples, represented as random vectors:

x[n]

] t T * p=| “ln 1l
*0 1 2 3e ' s 6 71 & " ;
| z[n+ N —1]
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STATIONARITY (STRICT SENSE)

A random process is stationary if any joint density or distribution
function depends only on the spacing between samples and not
on where in the sequence the samples occur.

x[n]

fo[2)za)al6]2[7] = Jo[1]z(3]2[5)z[6]) = Jo[-1]a[1]z[3]z[4] = "
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STATIONARITY (cont’d.)

e Stationarity requires that all moments
E{az"[no] - 21 [n1] ... 2" [n]]
depend only on the intersample spacing.
Equivalently:

E{zko[n] - aF1ln + 1] - - 2F2[n + 1] ]

is not a function of n.
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ENSEMBLE CONCEPT

e A random variable arises as the outcome of an experiment.

Example: Roll of a die

e A random sequence is also the outcome of an experiment.

Example: Record of binary data

e [ he collection of all possible outcomes is called an ensemble.

3-11



ILLUSTRATION OF ENSEMBLE
RANDOM VARIABLE RANDOM PROCESS
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ENSEMBLE AVERAGES

RANDOM VARIABLE

00 1 K
me =E{z} = [ xfa(dx ~ 2 Y o
>0 k=1

RANDOM PROCESS

— 00

el = [ IR IR
maln) = E{alnl} = [ xu o Cn)dsn = 7 3 o®m

e As K —— oo statistical expectation is equivalent to averaging
down the ensemble.
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SIGNAL AVERAGES

e For a single experimental outcome (ensemble member):

def 1 M

nl) = im 2M—|—1n:Z_Mm[n]

e A stationary process is ergodic if signal averages are equal
to ensemble averages with probability 1:

<$ko[n] M [n 4+ 1q] - 2" [n + lL]>

= Z{azko[n] xkl[’n 4+ 11] - - a:kL['n + lL]}

3-14



BERNOULLI PROCESS

x{n]

' 1R AR N
Imll‘.”lllll IR I

Samples are independent and

n] = +1 with probability P
=Y 1 with probability 1 — P

e For P = % the process is called binary white noise.
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BERNOULLI PROCESS

PROBABILISTIC DESCRIPTION

One can write the probability of any subsequence explicitely.

Example:

Pr[az[O] =1, z[1] =1, z[2] = -1, z[3] =1, z[4] = —1}
=P.-P.-(1-P)-P-(1-P)=P3(1 —-P)?

e Since the probability of any sequence is independent of the
starting point, the process is stationary.
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MOMENTS OF THE BERNOULLI PROCESS

MEAN
E{z[n]} =P - (+1) + (1 -P)(-1) =2P -1
VARIANCE
Var|z[n]| = E{(zln])?} —(E{zln]})?

\ \
= P-(+1)°+ (1 -P)-(~1)2— (2P — 1)?
1-(2P—-1)2 = 4P(1-P)

3-17



BERNOULLI PROCESS

SUMMARY
Bernoulli Process Binary White Noise
Priz[n] = +1] = P Prlz[n] = +1] %
Distribution
Pl’[m[n] = —1] = 1-—-P Pr[m[n] — —]_] %
Mean 2P -1 0
Variance 4P(1 — P) 1
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RANDOM WALK

n
Consider z[n] = Y  £[k] where £[k] a Bernoulli process.

k=—o00

e z[n] can take on any integer values.
e By Central Limit Theorem z[n] is Gaussian (oo variance).

e z[n] has independent increments:

(z[1] = =[0]) ; (=[2] —=[1]) ; .- (x[k] — [k —1])

= Events defined on non-overlapping time intervals
are independent.

3-19



RANDOM WALK (cont’d.)

The process xp.[n] = z[n] — xz[no] ; n > no is called a
random walk:

Tnoln] = ) &[K] (no fixed)

k:’no+1
1

Usually no = 0 or no

e For P =1 (£[k] binary white noise) the random walk is called

a discrete Wiener process.
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EXAMPLE OF RANDOM WALK

BERNOULLI PROCESS
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RANDOM WALK
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RANDOM WALK

PROBABILISTIC DESCRIPTION

Define ¥ = n — no
(relative time from start)

Suppose there are q —+1's
and [—q —1's - / .

then’r:q—(l—q)zzq_l x, [n]

and r can have values:

—l, —l+2, —l+4, ...,1—-2,1 I ( T . Ir
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RANDOM WALK (cont’d.)

Value of the random walk at n=no+10 is r=2q—1

Number of 4+1’s: Number of —1's:
i+ = [l —r
1= 75 =75
DISTRIBUTION

Pr|znolno +1] = 1| = ( (ZJ ) PI(1—P)1 = ( zir ) P (1-P)7

r=—l, 142, -, -2, 1
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MOMENTS OF RANDOM WALK

MEAN
E{znoln]} = 75{ > f[k]} = > E{¢k]}
k=no+1 k=no+1
= (n—no) - E{L[k]} = (2P —1)(n — no)
VARIANCE
Var [a:no[n]} = >  Var [¢[k]]

k:no+1

= (n—mno) Var [£[k]] =4P(1 —P)(n —no)
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RANDOM WALK

SUMMARY
Random Walk Discrete Wiener Process
Distribution (i) P=55(1 — P)™5 (70) (%)”—n
Prlz[n] = r] ’ 2

|T|§n—no; n — no + r even

Mean (2P —1)(n — no)

Variance 4P(1 — P)(n — no)

n — No
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RANDOM WALK: GENERAL CHARACTER

e Tends to have long runs of positive and negative values.

e Length of runs increases with increasing time, but local
behavior remains the same.

’ .."". e ‘.-..‘ "..‘ oV
* & h' a . . A ALY
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it ] '.'c'c,z'..' ng . : .. ..'.."-l'.iA I | " I.."..'.
L) . -" ... . .l. \'. - .'-.l ..'-: : *
1000 s N 3000 4000 5000 6000
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PERIODIC RANDOM PROCESS
(STRICT SENSE)

DEFINITION

Falng) zlngl,..xlng] = Jelng+koPl, zlny +k1 P, ... xlng+kLP]

For some (3) P and for all (V) choices of the n;, k;, and L.

e If the condition is true only for kg = k1 = ... = k;, = k then
the process is called cyclostationary.
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PERIODIC RANDOM PROCESS: EXAMPLES

1. z[n] = Acos(won + @) A, ¢ are real random variables

2. z[n] =>; A;cos(w; + ¢;) A;, ¢; are real random variables

3. a:n = ZZAZ@?WZ” Az = |z4@|6*7q52 and |Az|, qbz are
real random variables (A; is a complex random variable)

e w; is assumed to be of the form

K;
w; = — 27 with K; and P; integers
i

Otherwise the process is called almost periodic.
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CONTINUOUS RANDOM PROCESS

X?)

ENVAYNVA SN

e Every sample z.(¢;) is a random variable.

e Complete statistical description requires being able to specify
every joint density.
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PROPERTIES OF CONTINUOUS RANDOM
PROCESSES

STATIONARITY

Distribution/density function depend on only spacing between
samples.

ERGODICITY
Signal (time) averages = ensemble averages.

Signal average:

1T
<we(t) > = lim /_T%(t)dt

T —o00
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CONTINUOUS WIENER PROCESS
(BROWNIAN MOTION PROCESS)

k
Define z.(kAt) = > sCli]] with s—0, At — 0, t = kAt
for &, =0 ) &[] x. (f

i=l 1234567 -

C[Zz]: a binary white noise process

s2(t — to)
At
3-55
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WIENER PROCESS (cont’d.)

s2(t — to)
At

E{zc(t)} =0 Var [zc(t)] =

g2

Let At — 0 and s — O such that ~; Vo (a constant).

Then Var [z.(t)] — vo(t — to) and by the central limit theorem:

1 X2
Sao(ty(X) = e 2vo(t—to) (ze is Gaussian)

\/QWVo(t — to)
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JOINT DENSITY (TWO SAMPLES)

k1 ko

ze(to) = > sCli] + ) sCld]
I i=ko+1 =k +1
T 1T T 0T e —
‘fo 'tl 't2 (f) \L l \L
(k) k) k) ry = 1+ .

x1 | _ |10 T . _
{332] — { 1 1] { U ] = x1, xp jointly Gaussian

e Argument extends to any number of samples.

We say the process is Gaussian.
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CONTINUOUS GAUSSIAN PROCESS

random impulsive
input process —— # () ——> Output is a Wiener

u () process (non-stationary,
variance increases

t linearly with time).

{binary wlite noise)

random umpulsive ‘
)

bi ‘hite no; -

Lbnary white noise process (stationary,

ﬂ, variance is constant)
— ¢ (see Problem 3.25)

it
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COMPLEX GAUSSIAN PROCESS

e Complex Gaussian processes occur when a random impulsive
input is applied to a bandpass filter, and the resulting output
process is represented at baseband (see text, Appendix B).

e A complex Gaussian random process has real and imaginary
parts which are

— jointly Gaussian.

— identically distributed.
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DISCRETE GAUSSIAN PROCESS

A discrete random process is Gaussian if any set of N samples
are jointly Gaussian.

* [ z[no]
[ T oo]etesn
& 1, L n,+N—1 _;E:no—|—N—1]_
Nsamples
fe(x) = Nl - ¢~3(—map) Cg' (x—mg) (real case)
(27) 2 |Ce|2
_ 1 —(x—-mg)*TC (x—mzp)
fe(x) = e x) L ) (complex case)

N [Cg|
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TRANSFORMATION BY LINEAR SYSTEMS

e A linear transformation of a Gaussian process produces

another Gaussian process.

11l
I

Linear
system

Gaussian
random
process in

Gaussian
random
process out
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