Selected examples for Chapter 4.



EXAMPLE 4.101

The mean for a binary white noise process is
m,[n] = E{zln]} =0
The correlation and covariance functions are given by
Ri[ni, ngl = Cplng, nol = E{x[ni]zingl}

1 ifm:no
0 ifm;éno

which can be written as
Re[ni, no) = Cylna, nol = 6[n1 — nyg
The process is wide-sense stationary because

1) my[n| = constant

2) Ry[n1,ngl and C,[nq, ng| are functions only of the difference [ = ny — ny

[l



EXAMPLE 4.102

The mean for a general Bernoulli process is given by
m,[n] =FE{xn|} =2P —1

The covariance function is given by

Calna, ol = EA(z[na] — melm]) (z[ne] —malno));
| Var [z[n)] =4P(1 — P) if ny =nyg
o 0 if ny #£ nyg

This can be written as
Cln1,ngl = 4P(1 — P)d[ng — ny
The correlation function is thus given by
Reni, ngl = Culng, ngl + my|nq| - my|ng
= 4P(1 — P)é[ny — ol + (2P — 1)?

Since the mean is constant and R, and C, are a function of only £ = ny — ny,
this process is wide-sense stationary. O



EXAMPLE 4.103
The mean for a discrete Wiener process is given by
maln] = E{oln]} = E{ £ elil} = £ E{elil} =0

The correlation and covariance functions can be found from

Rini,ngl = Cylni, ng| = E{x[ni]zingl}

= E{( £ elhl) (£ el

min (n1,n0)
= kzll 0 E{*[k]} = min (nq, n)
=

Since R,|ny, ng) and C,|nq, no| are not a function of just the difference
¢ = n1 — ny, this process is not wide-sense stationary:.



EXAMPLE 4.1

Let v[n] be a real-valued process of independent random variables each with

mean 4 and variance o. The correlation function for this random process is
2

Rul, ol = E{elmloingl} =y |, W17
This can be written as
Ry[ni, nol = 0%6[n1 — ng| + 1
Since the mean is constant, and the correlation function is a function only of
the difference n; — ng, this random process is wide-sense stationary:.

Now consider the process x|n| defined by
x|n] = novn — 1]
[ts correlation function is
Rzn1, no] = E{xni|xngl} = E{niv[ni — 1lngv|ng — 1]}
= nngE {v[ny — 1Jv[ng — 1]} = ning (%801 — nel + 1°)

Since this is not purely a function of n; — ng, this random process is not wide-
sense stationary. [



EXAMPLE 4.2

Let x|n] be a random process defined by

1
x[n] = v[n] + §v[n — 1]
where v[n| is the process defined in Example 4.1. Assume for simplicity that

1 =0 and o? = 1. The correlation function of this process is

Relni, nol = E{z[na]z(no]}

= E{ [l gotma 1) [of] + 50t 1)

= EA{v[ni]vngl} + %E {v[n, — 1vne]} + %E {v[ni]vlng — 1]}

+i£ {ving — 1vng — 1]}

5 1 1

— 15[77,1 — n()] + 56[%1 — Ny — 1] + 55[77,1 — Ny + 1]

Since R, is a function of just the difference ny — ng, the random process is
stationary. Further, it is easy to see that since p = 0, the covariance function
and the correlation function are identical. O



EXAMPLE 4.3

Consider the complex random process defined by
z[n] = x:[n] + jxiln]

where x,[n] and x;[n| are real stationary random processes with mean zero and
autocorrelation functions

R [l] = R.[l] = a*4]l]
[t is further assumed that the components x, and x; are orthogonal, that is
E{xe|nixingl} =0
for all values of n; and ny.

Since the weighted sum of two stationary random processes is stationary,
the correlation function can be computed using the definition for a stationary
random process



R,[l] = E{xln]z"n — 1]}
= E{(@[n] + gain])(z:|n = 1] = jxiln — 1))}

= E{x,[n|x[n — |} + E{xin|xin — |} — JE{x.[n]zi[n — ]|}
+JEzi[nlzn — 1}
— 2026]]]

Since the means are zero, the covariance function is identical. O

Ex.4.3(2)



EXAMPLE 4.4

The correlation function for a certain random process has the exponential form

R[] = 4(—0.5)l
The correlation matrix for N = 3 is
4 =2 1
—2 4 =2
1 =2 4

which is clearly Toeplitz. The eigenvalues of this matrix are found to be
A = 7.4, Ay = 3.0, and A3 = 1.6. Since the eigenvalues are all positive, the
correlation matrix is positive definite.

(continued on the next page)



For N = 4 the correlation matrix has the Toeplitz form

4 -2 1 -05]

—2 4 -2 1

1 -2 4 =2
05 1 -2 4

The eigenvalues of this matrix turn out to be A\ = 8.3, Ay = 4.0, A3 = 2.2,

and A4 = 1.5 which implies that the matrix is positive definite, as required.
It can be shown by direct substitution that the correlation
function given above satisfies the positive semidefinite condition

with strict inequality (see Prob. 4.4 of text). This implies that
the correlation matrix of any order is positive definite. O

Ex.4.4(2)



EXAMPLE 4.5

A real random process has the exponential correlation function
R[] = o%pl!

The complex spectral density function for the process can be computed by

00 o0 —1
Sx(z): > O_2p\l|z—l:lgoo_2plz—l+ > UQIO—ZZ—

[=—00 [=—00

[

The first term can be put in closed form by using the formula for an infinite

geometric series, namely

0.2

S o2l = o2 3 (pz ) = 2] >
> 0P o = > e

[

(The condition for convergence of the series is |pz~!| < 1 or |z| > |p].)
The second term can be written as

2
X2 k. ok 2 ] ! o pz
— — : <1
kgla Pz o pz Eo(pz) 1 pz’ |z| /|,0|




Therefore the complex power density spectrum is

o’ o’ pz

Sy(z) = 1—pz—1+1—pz
o*(1—p°)
= ; < |z| <1

The poles of this function and the region of convergence are shown below.

z-plane

o] < |2| < 1/|p]

Clearly this z-transform exists only if |p| < 1.

Ex.4.5(2)



The correlation function is recovered by integrating over a contour in the
region of convergence such as the one shown. The integral is evaluated using
residues according to the formula

R[] 2717%3 )27 'dz = ¥ Residues :Sx(z)zl_w
2 1 — AP
= Y Residues o= p)z
(z=p)(1—pz)

Note that for [ > 0 there are no poles at the origin and the only pole enclosed
by the contour is the one at z = p. Therefore the inverse transform for [ > 0 is

= es 0-2(1 _ p2)Zl al g =
P IE= R v
_ <f_<1p>_<1p_>;>'<z—ﬂ> o )

Ex.4.5(3)



Since a real correlation function is known to be an even function of [, there is
no actual need to carry out the inversion for [ < 0. However to show how we
could proceed, it is best to make the transformation of variables z = 1/w and
write the inversion formula as

Rl = — ¢ Sp(w Hw " dw

277]
The function

02(1 _ p2>w—l

(w = p)(1 = pw)

has poles only at w = p and w = 1/p for [ < 0 and converges in the annular
region in between as shown below:

Sy(w Hw 7 =

(continued on the next page)

Ex.4.5(4)
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The integration in the w plane is thus similar to the previous integral in the z
plane and yields

f— es 0-2(1 _ p2)w_l al w =

Rlll = R (w—p)(1 — pw) t _p]
ol =pw! (p — _ g2,
S o —pw) TP T

for [ < 0. The complete autocorrelation function is then

R[] = o%pl! —o0 <l < oo

Ex.4.5(6)



EXAMPLE 4.6

Suppose that the value of p in the previous example is 0.8 and the value of o
is 2. Then the complex spectral density function is

5.(2) = 0.72 B —0.9027!
ST (1-082"1)(1-082) (1 —08z71)(1—1.25271)

The function can be expanded by partial fractions to obtain

9 2
Sx — -
(&) = 081 1 1o

Now by noting the poles and the region of convergence (see Example 4.5) it
can be seen that the first term corresponds to a ‘causal’ sequence:

2
& 2-(0.8) 1>0
1 —0.8271 (08) 12
The second term corresponds to an ‘anticausal’ sequence:

—2 z .
&S 2-(1.25) =2-(08 [ <0
1 —1.25z71 ( ) ( ) <

Putting these results together yields
R =208 —o0o<l<oo O




EXAMPLE 4.104

A complex random process has the form z[n| = A e/“0" where A = |A|e/?. The
phase ¢ is uniformly distributed over |—m, 7] which implies that the complex
amplitude A has zero mean.

The average power in the signal is
Py = E{loln]l?) = £ {aln)s[n]} = E{AA"} = 7}

The correlation function is given by
Ro[n1, ng) = E{Ael0m A*emIwmo) — 53 edwolni=no)

The dependency on nqy — ng shows that the process is wide sense stationary;,
and since P, = 0% we can write

R.[0] = P,e’ wot

Since the power spectral density function is the Fourier transform of R[], we
have

Sa;(ejw) = 2P.6, (ej“’ — 6ij>



S.(e'%)

2P,
S,(e¥) = 27P 4. (ejw — ejwf’) [

Special Case
If |A| has a Rayleigh density

1
flalr) = —5re" /%

2
o

Then the real and imaginary parts of z|n| are independent zero-mean Gaussian

. . . 2P,
random variables with variance o2 = 1 . O
-

Er.4.104(2)



