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The z-transform is an essential tool for the analysis of stochastic as
well as deterministic signals and systems. Our intent here is to first pro-
vide just enough of the theory of complex functions to give the reader a
clear understanding of the mathematical basis of the transform. With this
as background, we proceed to define the z-transform, discuss its region of
convergence, and its inversion by integration in the complex plane.

1 Review of Calculus for Complex Variables

In this section we review areas of complex variable calculus that are perti-
nent to the study of the z-transform. The intent here is to summarize the
important results in a way that appeals to intuition. Absolutely no attempt
is made to be mathematically rigorous and some results are presented with-
out proof. Several very readable texts [1, 2, 3, 4] are listed in the references
that develop the results in more detail and provide formal proofs.

1.1 Analytic Functions

Let z denote a complex variable. A complex-valued function g(z) is said to
be analytic at a point zo if its derivative exists for every point in a neigh-
borhood around zo. The derivative of a function of a complex variable is
defined as

gI(z) =
dg(z)

dz
= lim
∆z→0

g(z +∆z)− g(z)
∆z

(1)

The definition of the derivative looks exactly like that for a function
of a real variable. However there is a significant difference. In order for
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the derivative of a real function to exist, one must have the same result
regardless if the limit is approached from the right or the left (i.e. ∆z
is positive or negative). Likewise for the derivative of a complex function
to exist the limit (1) must be the same regardless of the direction of ∆z.
However for a complex function ∆z can be taken in an infinite number of
possible directions (see Fig. 1). Therefore the conditions for existence of

Im [z]

z0

∆z

Re [z]

Figure 1: Displacement
for defining the deriva-
tive at a point zo.

the derivative for a complex function are much more stringent than those
for the existence of the derivative of a real function.

Fortunately a simple set of conditions exists to test if the derivative can
be defined at a given point zo. These are the Cauchy-Riemann conditions.
Let the complex variable z be represented as

z = zr + jzi

and the function g(·) be represented by its real and imaginary parts
g(z) = gr(zr, zi) + jgi(zr, zi)

Then the derivative of the complex function exists at a point zo if the
Cauchy-Riemann equations are satisfied:

∂gr(zr, zi)

∂zr
=
∂gi(zr, zi)

∂zi
(a)

∂gr(zr, zi)

∂zi
= −∂gi(zr, zi)

∂zr
(b) (2)

(It is assumed that these partial derivatives exist and are continuous.)
It is easy to see that these conditions are necessary because if the dis-

placement ∆z is taken along the real axis (∆z = ∆zr) then
1

dg(z)

dz
=
∂gr(zr, zi)

∂zr
+ j

∂gi(zr, zi)

∂zr
1The reader may want to express the derivatives as a limit as in (1) to see that the

following two expressions hold.
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while if the displacement is taken along the imaginary axis (∆z = j∆zi)
then

dg(z)

dz
= −j∂gr(zr, zi)

∂zi
+
∂gi(zr, zi)

∂zi

Since the two expressions for the derivative must be the same, the Cauchy-
Riemann conditions (2) must hold. The sufficiency of the conditions is more
difficult to show but nevertheless obtains [see e.g. [2]].

Frequently a function of a complex variable fails to be analytic at only
one or more isolated points in the plane but remains analytic in at least
small regions surrounding those points. Such points will be referred to as
isolated singularities or poles of the function. It will be seen that these points
play an important role in integration of functions of complex variables.

1.2 Series Expansions

If a function is analytic in a region around and including zo, then it can be
expanded in a Taylor series

g(z) = g(zo)+g
I(zo)(z−zo)+ 1

2!
gII(zo)(z−zo)2+· · ·+ 1

n!
g(n)(zo)(z−zo)n+· · ·

(3)
If a function is not analytic at zo but is analytic on and between two circular
contours surrounding zo (see Fig. 2), then it can be expanded in a Laurent

Im [z]

C0

Re [z]

C1z0 Figure 2: Region for ex-
pansion of a function in
a Laurent series.

series

g(z) = · · ·+ a−n
(z − zo)n +

a−n+1
(z − zo)n−1 + · · ·+

a−1
(z − zo)

+ a0 + a1(z − zo) + a2(z − zo)2 + · · · (4)
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where the upper and lower limits of the series may be finite or infinite. This
series representation is fundamental to the properties of contour integration
that follow.

1.3 Contour Integration

A function of a complex variable may be integrated along a contour (i.e. a
curved line) in the complex plane. This integral is represented as

C
g(z)dz = lim

∆zk→0 C

g(zk)∆zk (5)

where the line is assumed to be divided into a series of very small segments,
zk is a point on the segment, and ∆zk is a small vector connecting the end
points of the kth segment (see Fig. 3).

Im [z]

z0

∆zk

Re [z]

zn

z1

zk

...

Figure 3: Small seg-
ments involved in inte-
gration along a line in
the complex plane.

The contour integral can be written in terms of real and imaginary parts
as

C
g(z)dz =

C
(gr(zr, zi) + jgi(zr, zi)) (dzr + jdzi)

=
C
(gr(zr, zi)dzr − gi(zr, zi)dzi)

+ j
C
(gr(zr, zi)dzi + gi(zr, zi)dzr) (6)

If the contour is closed, i.e. the beginning and end points are the same, the
integral is written as
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g(z)dz = (gr(zr, zi)dzr − gi(zr, zi)dzi) + j (gi(zr, zi)dzr + gr(zr, zi)dzi)

(7)
where by convention the direction of integration is taken to be counter-
clockwise on the contour.

If g(·) is analytic everywhere on and inside the contour then we can show
that

g(z)dz = 0 (8)

This result is known as the Cauchy-Goursat Theorem, and its implications
are important for the material to follow. Cauchy originally stated and proved
the result for functions with continuous partial derivatives. Goursat later
showed that continuity of the partial derivatives was not necessary and gave
an alternate proof [ see e.g. [3]]. We will give a brief sketch of the proof
here using partial derivatives. The essence of the proof is to first show that
the the line integral over a closed contour can be expressed as an integral
of the partial derivative over the enclosed area2. Once this is done, the
Cauchy-Riemann conditions can be applied to show that the integral is in
fact zero.

To begin, consider the first term on the right of (7),

gr(zr, zi)dzr (9)

and consider a small interval along the zr axis as shown in Fig. 4. The
contribution to the integral along the lower and upper parts of the contour
is

gr(zr, a)∆zr − gr(zr, b)∆zr
(The minus sign occurs because the direction of integration for the top seg-
ment is opposite to the direction of the zr axis.) Therefore the contour
integral (9) can be represented by the ordinary integral

(gr(zr, a)− gr(zr, b)) dzr

where the values a and b are of course a function of zr. Now notice that we
can write

2The result applied to real variables leads to an identity in advanced calculus known
as Green’s Theorem [see e.g. [5]].
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a

∆zr

zi = Im [z]

b

zr = Re [z]

Figure 4: Integration of
gr(zr, zi) along a closed
contour.

gr(zr, a)− gr(zr, b) = −
b

a

∂gr(zr, zi)

∂zi
dzi

where the integral is along the vertical strip shown in Fig. 4. Putting all of
this together we find

gr(zr, zi)dzr = − ∂gr
∂zi

dzidzr (10)

where the double integral on the right is over the area enclosed by the
contour. Consideration of the other terms in (7) leads to similar expressions.
The result is that the integral in (7) can be written as

g(z)dz = − ∂gr
∂zi

+
∂gi
∂zr

dzidzr+j
∂gr
∂zr

− ∂gi
∂zi

dzidzr

(11)
Since by the Cauchy-Riemann conditions (2) the integrands are zero, the
result (8) is proven.

The Cauchy-Goursat theorem can be used to develop a simple expression
for the contour integral in a region where there are isolated singularities
(poles). For this, let n be any positive or negative integer and consider the
integral

(z − zo)ndz (12)
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for an arbitrary point zo in the complex plane over a contour which is a
circle of radius r (see Fig. 5). The function to be integrated can be shown

Im [z]

Re [z]

r

z0
Figure 5: Integration of
the function 1/(z−zo)n+1
over a circular contour.

from the Cauchy-Reimann conditions to be analytic everywhere except at
the point z = zo. Since the above integral is over a circle centered at zo, it
can be written as

(z − zo)ndz =
2π

0
rnejnφ jrejφdφ

= jrn+1
2π

0
e−j(n+1)φdφ (13)

= jrn+1
2π

0
(cos(n+ 1)φ− j sin(n+ 1)φ) dφ

Since the integration is over n+ 1 complete periods of the cosine and sine,
the integral is zero unless n = −1. In that case the cosine is one and the
sine is zero so the integral is equal to 2π. Thus we have just shown the
important result:

|z−zo|=r
(z − zo)ndz = 2πj n = −1

0 otherwise
(14)

Now suppose that g(z) is a function that is analytic everywhere in the
circular region except at the point zo, and consider its integral over the
circular contour. By expanding g(z) in a Laurent series and integrating
term by term, we see from (4) and (14) that the only term that contributes
to the integral is the term

a−1
(z − zo)

The value of the integral is therefore
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|z−zo|=r
g(z)dz = 2πja−1 (15)

The term a−1 is called the residue of the pole of the function g(z) at zo.
We now come to our final result for this section. Suppose that g(z) is a

complex function that is analytic everywhere on and inside a closed contour
C except at a finite number of poles at z1, z2, . . . , zp. Then form the extended
contour shown in Fig. 6 and note that the function g(·), by assumption, is

Im [z]

zp

Re [z]

z1

z2

C.
..

Figure 6: Integration
of a function g(z) over
a contour surrounding
some of its poles.

analytic everywhere on and inside of the extended contour. The Cauchy-
Gourmat theorem then states that the integral on the extended contour is
equal to zero. Note that if the function is continuous and the paths to and
from the poles are taken sufficiently close together, their contributions to the
integral will cancel. (This follows because the integration along these paths
is taken in opposite directions.) Therefore the integral over the original
outer contour C must be equal to the integral over all of the little circles
surrounding the poles. The integral over each circle by (15) is in turn equal
to 2πj times the residue at the corresponding pole. It thus follows that

g(z)dz = 2πj Residues (at poles within the contour) (16)

Example 1 Consider the rational polynomial function

g(z) =
P (z)

Q(z)
=

P (z)

(z − z1)(z − z2)2(z − z3)
Suppose this function is integrated over a contour that encloses poles
z1 and z2 but not z3. The integral is given by

g(z)dz = 2πj {Res [g(z) at z = z1] + Res [g(z) at z = z2]}
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(Since the contour does not enclose the pole at z3 its residue is not
needed.) To find the residue at z1 first notice that the Laurent series
for g(z) must not have any negative powers beyond the a−1/(z − z1)
term. If there were any further negative powers such as a−2/(z − z1)2
in the Laurent series then the function g(z) · (z − z1) would still have
a pole at z = z1. However it is clear from the above definition of
g(z) that multiplying by (z − z1) cancels the pole at z = z1 and so
g(z) · (z − z1) is analytic at z = z1. The Laurent series for g(z) must
therefore start at the term a−1/(z − z1) and has the form

g(z) =
a−1

(z − z1) + a0 + a1(z − z1) + a2(z − z2)
2 + · · ·

If this expression is multiplied by (z − z1) and the result is evaluated
at z = z1, all that is left is the residue a−1. That is,

Res [g(z) at z = z1] = g(z)(z − z1)|z=z1
The explicit result for this example is

Res [g(z) at z = z1] =
P (z1)

(z1 − z2)2(z1 − z3)
To find the residue at z2 observe that the Laurent series there cannot
have any negative powers beyond the a−2/(z − z2)2 term. Again, if it
did, the function g(z)(z − z2)2 would not be analytic at z = z2. Thus
g(z) can be expanded in a Laurent series about z = z2 as

g(z) =
a−2

(z − z2)2 +
a−1

(z − z2) + a0 + a1(z − z2) + · · ·

To find a−1 one can multiply by (z − z2)2, which results in

f(z)(z − z2)2 = a−2 + a−1(z − z2) + a0(z − z2)2 + · · ·

then take the derivative and evaluate the result at z2. In other words,

Res [g(z) at z = z2] =
d

dz
g(z)(z − z2)2

z=z2

The explicit result for this example is

Res [g(z) at z = z2] =
(z2 − z1)(z2 − z3)P I(z2)− P (z2)(2z2 − z1 − z3)

(z2 − z1)2(z2 − z3)2

The integral of this function g(z) over the closed contour is then 2πj
times the sum of the two residues.
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2

The example shows how to evaluate the residue of a function at a first
and second order pole. In general, for a function with a kth order pole at
z = zo, the residue is given by

Res [g(z) at z = zo] =
1

(k − 1)!
dk−1

dzk−1
g(z)(z − zo)k

z=zo

(17)

The factor 1/(k − 1)! is needed to compensate for the terms that result in
taking the derivative k − 1 times.

2 The z-Transform and its Inverse

Given a sequence {x(n)}, we define the z-transform of the sequence as

X(z) =
∞

n=−∞
x(n)z−n (18)

Consider now the convergence of this sum. The z-transform can be written
as

X(z) = X+(z) +X−(z) (19)

where

X+(z) =
∞

n=0

x(n)z−n (20)

and

X−(z) =
−1

n=−∞
x(n)z−n =

∞

k=1

x(−k)zk (21)

Consider first the convergence ofX+(z). The series can be shown to converge
uniformly (i.e., for every value of z) in a region outside of some circle if it
converges absolutely [2]; that is if

∞

n=0

|x(n)||z|−n <∞ (22)

Now suppose that the right-sided series X+(z) converges absolutely at some
point z = z1. Then it also converges at any value of z outside of a circle
defined by |z| > |z1| since
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∞

n=0

|x(n)||z|−n <
∞

n=0

|x(n)||z1|−n <∞

Let the smallest such circle have a radius rR. Then X+(z) converges uni-
formly everywhere outside of a circle defined by

|z| > rR
In a similar fashion the series X−(z), which involves only positive powers

of z, can be seen to converge everywhere inside of a circle of some radius
rL. As a result, the z-transform of a sequence will converge in general in an
annular region defined by

rR < |z| < rL (23)

and is analytic there. More specific forms for the region of convergence
obtain if the sequence has specific properties such as finite length or right-
sidedness [6].

To find the inverse z-transform it is only necessary to note that by its
definition the z-transform is a Laurent series about the point z = 0. There-
fore if the function X(z) is integrated over a closed contour surrounding the
origin in the region of convergence the result is

X(z)dz = 2πj x(1) (24)

(This follows from (18) since x(1) is the residue or the coefficient of the z−1

term.) Likewise if the modified function X(z)zn−1 is integrated over this
same closed contour, the result is 2πj times the residue of

X(z)zn−1 =
∞

k=−∞
x(k)zn−k−1

or 2πj x(n). Thus the inverse z-transform is given by

x(n) =
1

2πj
X(z)zn−1dz (25)

where the integration is over a closed contour surrounding the origin in the
region of convergence. The integration is carried out as described in the
previous section by evaluating residues of the poles enclosed by the contour.
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The following two examples show how to compute the z-transform, its
region of convergence, and the inverse z-transform for some relatively simple
sequences. Since contour integration can become difficult for more general
types of sequences, other methods such as partial fraction expansion are
frequently used to recover a sequence from its z-transform. However, even
in the use of these other methods an understanding of region of convergence
and the principles of integration in the complex plane are valuable assets
for the analysis of signals, systems, and power spectral density using the
z-transform.

Example 2 This example is adapted from [6]. A causal linear system
has a unit sample response of the form

h(n) =
αn n ≥ 0
0 n < 0

The z-transform is given by

H(z) =
∞

n=−∞
h(n)z−n =

∞

n=0

αnz−n

=
1

1− αz−1 =
z

z − α ; |z| > |α|

The condition for convergence of the series, |αz−1| < 1 or |z| > |α|
defines the region of convergence. The pole-zero plot for this function,
and the region of convergence are shown in Fig. 7.

Im [z]

Re [z]

R.O.C.

α Figure 7: Pole and zero
and region of conver-
gence for system func-
tion H(z) = z/(z − α).

To recover the sequence from the z-transform we use (25)

h(n) =
1

2πj
H(z)zn−1dz = Residues

zn

z − α
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(a)

Im [z]

Re [z]

(b)

Im [z]

Re [z]

Figure 8: Evaluation of contour integral of zn/(z−α). (a) n ≥ 0. (b) n < 0.

The contour of integration is shown in Fig. 8(a). Notice that for n ≥ 0
there is only a single pole at z = α and so

h(n) = Res
zn

(z − α) at z = α =
zn

(z − α) · (z − α) z=α
= αn

For n < 0 we have the same pole at z = α and the residue is evaluated
as above. However we also have an |n|th order pole at z = 0 (see Fig.
8(b)). For n = −1 we have

Res
1

z(z − α) at z = α =
1

z(z − α) · (z − α) z=α
=
1

α

and

Res
1

z(z − α) at z = 0 =
1

z(z − α) · z z=0
= − 1

α

Thus the sum of the residues is zero and h(−1) = 0.
For n = −2 we have

Res
1

z2(z − α) at z = α =
1

z2(z − α) · (z − α) z=α
=
1

α2

and

Res
1

z2(z − α) at z = 0 =
d

dz

1

z2(z − α) · z
2

z=0

= − 1

(z − α)2 z=0

= − 1
α2

Again the sum of the residues is zero and h(−2) = 0. For larger
negative values of n we have

Res
1

z−n(z − α) at z = α =
1

z−n(z − α) · (z − α) z=α
=

1

α−n
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and with some difficulty we find

Res
1

z−n(z − α) at z = 0 =
1

(−n− 1)!
d−n−1

dz−n−1
1

z−n(z − α) · z
−n

z=0

=
(−1)−n−1
(−n− 1)!

(−n− 1)!
(z − α)−n z=0

= − 1

α−n

Since the two residues again sum to zero we find that in general h(n) =
0 for n < 0.

The inversion of the z-transform for n < 0 using (25) directly is seen to
be rather tedious. A much easier procedure is to consider the mapping
w = 1/z. For this we have

z =
1

w
and dz = − 1

w2
dw

If these substitutions are made in (25) we find that

h(n) =
1

2πj cw
H(1/w)

1

w

n−1
− 1

w2
dw =

1

2πj
H(w−1)w−n−1dw

where the notation ‘cw’ on the first integral indicates that the contour
of integration in the w plane is originally in a clockwise direction due
to the mapping w = 1/z. In the final expression the contour is taken in
the usual counterclockwise direction. This eliminates the minus sign.

The function to be integrated is

H(w−1)w−n−1 =
w−1

w−1 − αw
−n−1 =

(1/α)w−n−1

w − (1/α)
For n ≤ −1 there are no poles at w = 0 and the region of convergence
is |w| < |1/α|. The function and a contour of integration are depicted
in Fig. 9. Since there are no poles within the contour of integration

Im [w]

Re [w]
1/a

Figure 9: Evalua-
tion of the integral of
H(1/w)w−n−1.
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we find

h(n) =
1

2πj
H(w−1)w−n−1dw = 0

for n < 0.

2

Example 3 An autocorrelation function has the form

Rx(l) = σ2ρ|l|

The complex spectral density function is given by

Sx(z) =
∞

l=−∞
σ2ρ|l|z−l =

∞

l=0

σ2ρlz−l +
−1

l=−∞
σ2ρ−lz−l

The first term yields an expression analogous to the one in the previous
example, namely

σ2z

(z − ρ) ; |z| > |ρ|

The second term can be written as

∞

k=1

σ2ρkzk = σ2ρz
∞

k=1

(ρz)k−1 =
σ2ρz

(1− ρz) ; |z| < 1/|ρ|

Therefore the complex power density spectrum is

Sx(z) =
σ2z

(z − ρ) +
σ2ρz

(1− ρz)
=

σ2(1− ρ2)z
(z − ρ)(1− ρz) ; |ρ| < |z| < 1/|ρ|

The zero and poles of this function and the region of convergence are
depicted in Fig. 10. Clearly this z-transform exists only if |ρ| < 1.
The inverse z-transform is computed from the relation

Rx(l) =
1

2πj
Sx(z)z

l−1dz = Residues
σ2(1− ρ2)zl
(z − ρ)(1− ρz)

Fig. 11 shows the contour of integration in the complex plane. Note
that for l ≥ 0 there are no poles at the origin and the only pole enclosed
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Im [z]

Re [z]1/ρρ

Figure 10: Pole-zero
plot of a complex spec-
tral density function
showing the region of
convergence.

Im [z]

Re [z]

Figure 11: Contour of
integration for complex
spectral density func-
tion.
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by the contour is the one at z = ρ. Therefore the inverse transform for
l ≥ 0 is

Rx(l) = Res
σ2(1− ρ2)zl
(z − ρ)(1− ρz) at z = ρ

=
σ2(1− ρ2)zl
(z − ρ)(1− ρz) · (z − ρ) z=ρ

= σ2ρl

Since a real correlation function is known to be an even function of l
there is no actual need to carry out the inversion for l < 0. However
to show how one could proceed, it is best to make the transformation
of variables z = 1/w and write the inversion formula as

Rx(l) =
1

2πj
Sx(w

−1)w−l−1dw

The function

Sx(w
−1)w−l−1 =

σ2(1− ρ2)w−l
(w − ρ)(1− ρw)

has poles only at w = ρ and w = 1/ρ for l < 0 and converges in the
annular region in between (see Fig. 12). The integration in the w plane

Im [w]

Re [w]

Figure 12: Contour of
integration for complex
spectral density func-
tion in the w plane.

is thus similar to the previous integral in the z plane and yields

Rx(l) = Res
σ2(1− ρ2)w−l
(w − ρ)(1− ρw) at w = ρ

=
σ2(1− ρ2)w−l
(w − ρ)(1− ρw) · (w − ρ) w=ρ

= σ2ρ−l

for l < 0. The complete autocorrelation function is then

Rx(l) = σ2ρ|l|

2
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