

CHAPTER�tc "<>CHAPTER"�

 3�tc "<> 3"�

System Life Cycle and Methodologies�tc "<>System Life Cycle and Methodologies"�

EDITOR’S NOTE: Graphics quality will improve when printed.

CHAPTER OVERVIEW�tc "<Head 3 (14)>CHAPTER OVERVIEW"�

When accused of making snap decisions, General George S. Patton, Jr. (known as Old Blood and Guts) firmly proclaimed,

I’ve been studying the art of war for forty-odd years. When a surgeon decides in the course of an operation to change its objective...he is not making a snap decision but one based on knowledge, experience, and training. So am I. [PATTON47]

The life cycle process was developed so managers of major defense acquisition programs are not forced into making snap decisions. Rather, a structured process, replete with controls, reviews, and key decision points, provides the basis for sound-decision making based on knowledge, experience, and training. In this chapter you will learn that the life cycle process is a logical flow of activity representing an orderly progression from the identification of a mission need to final operational deployment and support.

As a program manager, you must be prepared to develop a tailored management approach that will achieve an operational capability with the most effective use of resources and time available. Choosing the right life cycle management methodology for your program depends on the nature of its operational environment, stability of requirements and technology, your software domain, the methods and tools used, and the controls and deliverables required. If appropriate, life cycle phases can be combined or omitted. Some programs [especially in the case of MIS where technology is well-developed, purchased as commercial-off-the-shelf (COTS), or government-off-the-shelf (GOTS)] may enter the life cycle midstream. Each life cycle phase is designed to develop a level of confidence in the solution(s) offered and to reduce the risks involved in making a decision to proceed to the next phase. Outputs of each phase constitute a definitive, documented baseline for entry into subsequent phases.

�

CHAPTER�tc "<>CHAPTER"�

 3�tc "<> 3"�

System Life Cycle and Methodologies�tc "<>System Life Cycle and Methodologies"�

LIFE CYCLE PROCESS RAISES CURTAIN ON DECISION MAKING�tc "<Head 2 (14)>LIFE CYCLE PROCESS RAISES CURTAIN ON DECISION MAKING"�

Prior to the early 1970s, defense acquisition decision making was often similar to how military historian and analyst, Brigadier General Samuel L.A. Marshall, described decision making during combat:

In war, much of what is most pertinent lies behind a drawn curtain. The officer is therefore badly advised who would believe that a hunch is without value, or that there is something unmilitary about the simple decision to take some positive action, even though he is working in the dark. [MARSHALL51]

Making decisions behind a drawn curtain might well be a necessity of battle, but it can prove costly in terms of quality, safety, and performance when procuring weapons to go to war. �xe "Office of Management and Budget (OMB):Circular A-109"�Office of Management and Budget Circular A-109 was published in 1976 to throw light on the acquisition process and to define a decision mechanism based on quantitative assessments, reviews, and audits of the life cycle process. It established policies, methods, procedures, a life cycle, and milestone decision process to increase effectiveness in decision making for all major system acquisitions. For weapon systems, C2, and MIS programs, milestone decision points mark the completion of one phase of the life cycle and entry into the next. Peer reviews, completion of measured process activities, the production of defined work products, audits, and other evaluation procedures throughout each phase support exit and entry criteria for �xe "Milestone:Decision"�milestone decisions.

SYSTEM LIFE CYCLE�tc "<Head 2 (14)>SYSTEM LIFE CYCLE"�

To understand the system life cycle and its acquisition phases, it is important to realize how they relate to the systems engineering and software engineering processes [discussed in Chapter 4, Engineering Software-Intensive Systems]. A �xe "System"�system is defined as “an integrated composite of people, products, and processes that provide a capability to satisfy a stated need or objective.” A �xe "Computer software configuration item (CSCI)"�subsystem (e.g., the software) is “a grouping of items satisfying a logical group of functions within a particular system.” [MIL-STD-499B] Software must always interface with the other elements that make up the total (weapon or MIS) system. For example, MIS systems may have several hundred interfaces with other essentially independent MIS and C2 systems. Embedded flight control software must reflect the control surfaces and atmospheric buffeting affected by an aircraft’s physical design. In either case, this larger system-of-systems context must be taken into account. Given these relationships and interdependencies, it is vital to have a systems-view, as expressed by Field Marshall Viscount Montgomery.

It is absolutely vital that a senior commander should keep himself from becoming immersed in details, and I always did so...In battle a commander has got to think how he will defeat the enemy. If he gets involved in details he cannot do this since he will lose sight of the essentials which really matter; he will then be led off on side issues which will have little influence on the battle, and he will fail to be that solid rock on which his staff can lean. Details are their province. No commander whose daily life is spent in the consideration of details…can make sound plan of battle on a high level or conduct large-scale operations efficiently. [MONTGOMERY58]

The elements making up a system are illustrated in Figure 3-1. Hardware, software, and documentation are explained in Chapter 2, DoD Software Acquisition Environment. Two additional elements included in a system, database and procedures, are defined as:

•	A �xe "Database"�database is a large, organized collection of information accessed by software that is an integral part of the system’s function. 	

•	�xe "Procedures"�Procedures are the steps defining the specific use of each system element or the procedural context in which the system resides. [PRESSMAN92]

�

Figure 3-1 Software-Intensive System

The life cycle phases for weapon systems and MISs are quite similar. Aside from assembling/integrating components, the hardware [computer(s) and operating system(s)] is not usually specifically manufactured for MISs. However, never lose sight of the fact that hardware and software development are intimately related. Although they are often developed independently, concurrently, and/or purchased separately, software is almost always on the critical path of a software-intensive system. Therefore, it is important to consider early how the software is to work within the system and what software interfaces are necessary to achieve the benefits of cohesive, interoperable components. Proper integration of the hardware and software can be assured through carefully identified interface requirements, prudently planned demonstrations, and system/subsystem tests and evaluations. Such techniques improve accuracy, currency, and quality of information.

NOTE:	The international standard �xe "International Standards Organization (ISO):ISO/IEC 12207"�ISO/IEC 12207, Information Technology — Life Cycle Processes, was published in 1995. This standard establishes a common framework for software life cycle processes. It contains processes, activities, and tasks that are to be applied during the acquisition of a system containing software, a stand alone software product and service, and during the supply, development, operation, and maintenance of software products. This standard will be used to implement and replace �xe "MIL-STD-498"�MIL-STD-498.

Life Cycle Phases, Milestone Decisions, and Activities�tc "<Head 3 (14)>Life Cycle Phases, Milestone Decisions, and Activities"�

�xe "AFI 10-601"�Air Force Instruction (AFI) 10-601, Mission Needs and Operational Requirements Guidance and Procedures, describes the earliest activities of the system life cycle. The services are continuously performing and updating �xe "Mission Area Assessment (MAA)"�Mission Area Assessments (MAAs) to identify mission needs using a strategy-to-task process which links the need for military capabilities to the strategy provided by the Chairman of the Joint Chiefs of Staff (CJCS). The ability to accomplish the tasks from the strategy-to-task process, using current and programmed systems, is then evaluated in a �xe "Mission Need Analysis (MNA)"�Mission Need Analysis (MNA). This process is called “task-to-need.” The products of MAAs and MNAs are used to construct a �xe "Mission Area Plan (MAP)"�Mission Area Plan (MAP). The MAP is a strategic planning document that covers approximately 25 years and records the proposed plan for correcting mission capability deficiencies. It expresses nonmateriel solutions, including changes in force structure, system modifications or upgrades, science and technology applications, and new acquisition programs.

Upgrade, modification, and new acquisition programs are established when nonmateriel solutions do not provide adequate fulfillment of an identified task deficiency. The needed capability is documented in a �xe "Mission Need Statement (MNS)"�Mission Need Statement (MNS). The MNS is a brief statement (no more than 5 typed pages) identifying and documenting mission deficiencies requiring materiel and/or software solutions:

•	To define an operational need,

•	To officially validate an operational need, and

•	To furnish implementation and support to OT&E activities. [AFI 10-601]

As capability(ies) become better defined, specific requirements levied on the new or modified system are stated in the �xe "Operational Requirements Document (ORD)"�Operational Requirements Document (ORD). During the pre-Milestone 0 phase, the need for the acquisition program is studied and documented. The �xe "Concept Studies Approval"�Concept Studies Approval (Milestone 0) decision is made when the �xe "Milestone:Decision:Authority (MDA)"�Milestone Decision Authority (MDA) determines that the mission need:

•	Is based on a validated projected threat,

•	Cannot be satisfied by a nonmateriel solution, and

•	Is sufficiently important to warrant the funding of study efforts to explore and define alternative concepts to satisfying the need.

�xe "Concept Exploration and Definition Phase"�Concept Exploration and Definition (Phase 0). Following a successful Milestone 0 decision, this phase involves a series of studies to identify the best possible solutions to the mission need in terms of cost, risk, schedule, and readiness objectives. These various concepts are often explored through competitive, parallel, short-term contracts focused on defining and evaluating the feasibility of alternative concepts. They provide the basis for assessing the relative merits of the concepts at the Milestone I decision point. Life cycle cost estimates, logistic support analysis, and producibility engineering assessments are prepared along with the �xe "Operational Requirements Document (ORD)"�Operational Requirements Document (ORD). The ORD is solution-oriented and defines the tradeoff studies conducted during this phase. It becomes the basis for program direction, program baselines, the �xe "Integrated Master Plan (IMP)"�Integrated Master Plan (IMP) and �xe "Integrated Master Schedule (IMS)"�Integrated Master Schedule (IMS), and subsequent development of the �xe "Testing:Test and Evaluation Master Plan (TEMP)"�Test and Evaluation Master Plan (TEMP). [A list of recommended items to include in a draft ORD is found in Volume 2, Appendix N.] A product of this phase is the selection of a proposed �xe "Acquisition:Strategy"�Acquisition Strategy [discussed in Chapter 12, Planning for Success]. Demonstration program(s) are designed, coded, tested, and implemented to provide basic, or elementary, capabilities across the full range of requirements.

�xe "Demonstration and Validation (Dem/Val) Phase"�Demonstration and Validation (Dem/Val) (Phase I). Following a successful Milestone I decision to proceed, Dem/Val (Phase I) consists of activities dependent on the choice of a life cycle management methodology. When warranted, multiple design approaches and parallel technologies are pursued within the system concept. One of the most important aspects of this phase is the early integration of supportability considerations into the system design concept. As you will learn throughout these Guidelines, addressing supportability early in the life cycle precludes later costly redesign efforts. This is an important consideration, as the decisions made during this phase impact approximately 60% of the total life cycle cost (as illustrated on Figure 3-2), which will be spent later during the Operations and Support phase (as illustrated on Figure 3-3).

�

Figure 3-2 Nominal Cost Distribution of a Typical DoD Program [DSMC90]

�

Figure 3-3 Effect of Early Decisions on Life Cycle Cost [DSMC90]

As another risk and cost reduction measure, prototyping, testing, and early �xe "User:Involvement"�user involvement in operational assessments of critical components cannot be overemphasized. Cost drivers and alternatives are identified and analyzed. As a function of risk, the costs of alternative design approach(es) must be evaluated against increases in performance capabilities. [See Chapter 6, Risk Management, for further discussion of cost risk.] The ORD, TEMP, and Acquisition Strategy are updated to reflect the work performed in Phase I. The outcome of this phase is the Milestone II decision, where the affordability of the program is assessed and a decision is made on whether the activities of this phase warrant continuation to the next phase. A �xe "Baseline:Development"�Development Baseline is established reflecting cost, schedule, and performance requirements.

�xe "Engineering and Manufacturing Development Phase"�Engineering and Manufacturing Development (Phase II) (�xe "Development"�Development for MIS). Following a successful Milestone II decision, this phase may be repeated if the life cycle methods are incremental or evolutionary [discussed below]. Effective risk management [discussed in Chapter 6, Risk Management] is especially critical. Resources are only committed commensurate with the reduction and closure of identified risk items. Requirements are placed under configuration control. Configuration control is also implemented for both the design and development process. System-specific performance capabilities are developed in coordination with user approval. Assessments of performance, schedule, and cost are made throughout this phase and compared with the TEMP. Acquisition Strategy are updated as appropriate. Developmental test and evaluation (DT&E) (test to development specification) is performed. DT&E also supports, and provides data for, operational assessment prior to the operational test and evaluation (OT&E) (test to operational requirements) which is also performed during EMD. The outcome of the EMD phase is the Milestone III decision, when it is determined whether the activities of this phase warrant continuation to the next phase. A �xe "Baseline:Production"�Production Baseline is established that reflects cost, schedule, and performance assessment requirements for the next phase. According to �xe "Humphrey, Watts"�Watts Humphrey,

As long as programmers are writing code, they are making design decisions, just at a more detailed level. Many of these details will impact the usability and performance of the system, just not at a high enough level for the people who wrote the requirements to be aware of them. The field users of such systems, however, will almost always find that systems developed blindly from requirements documents are inconvenient and unwieldy in operational use. Truly superior usability can only be obtained when the developers have an in-depth knowledge of actual field conditions. While suppliers should start from official requirements, these must be recognized as a starting point and that much more detailed knowledge is required before the system can actually be built. The key is to make the supplier responsible for devising, defining, and using a process that uncovers true operational requirements.

[HUMPHREY95]

�xe "Production and Deployment Phase"�Production and Deployment (Phase III). Following a successful Milestone III decision, system performance and quality are monitored during this phase by follow-on OT&E (FOT&E). Cost, schedule, and performance are periodically reviewed and compared to the Production Baseline. User feedback and the results of field experience, to include operational readiness rates, are continuously monitored. Support plans are implemented to ensure sufficient support resources are acquired and deployed with the system.

�xe "Operations and Support Phase"�Operations and Support (Phase IV). This phase overlaps with Phase III and begins after initial systems, increments, or capabilities have been fielded. This phase is marked by either the declaration of an operational capability or the transition of management responsibility from the developer to the maintainer. It continues until the system is retired from the inventory or a Milestone IV decision is made to commit to a major upgrade or modification (which causes the program to re-enter Phase I, II, or III, as appropriate). Quality, safety, performance, and technological obsolescence are corrected as identified. Modifications and updates are undertaken to extend the system’s useful life with care taken to minimize proliferation of system configurations. Post deployment supportability/readiness reviews are periodically conducted to resolve operational and supportability issues.

LIFE CYCLE MANAGEMENT METHODOLOGIES�tc "<Head 2 (14)>LIFE CYCLE MANAGEMENT METHODOLOGIES"�

A �xe "Life cycle:Methodology"�methodology refers to the standards and procedures that affect the planning, analysis, design, development, implementation, operation, support, and disposal of a software-intensive system. Thus, we use the term software life cycle management methodology, rather than software development methodology, to avoid a perception that the methodology only focuses on the design and build stages. Developed from historical program experience, methodologies provide insight into the use of candidate solutions based on program character, acceptable level of risk, and program constraints. Methodologies also present a conceptualization of the life cycle process that can be used as a communication tool among all system stakeholders. Specifically, life cycle management methodologies aid in determining the sequence of major life cycle activities, provide a better understanding of the processes required for each activity, and serve as a starting point from which management decisions can be made. One thing to remember is that software development methodologies used for weapon systems must integrate with, and be consistent with, the weapon system and systems engineering development methodologies used for the total program.

Software life cycle management methodologies include evolutionary, incremental, spiral, waterfall, or any other method chosen for its applicability to your developmental or support environment. [PASSMORE94] A fast-track life cycle methodology speeds up (or bypasses) one or more of the life cycle phases or development processes. An organization can use an existing methodology or develop its own. The focus, names of components, and division of activities vary among methodologies. A life cycle methodology should be chosen based on the nature of your program, software domain, the methods and tools used, and the controls and deliverables required. [PRESSMAN92] Most life cycle management methodologies include at least the following:

•	Phases. The methodology should divide the life cycle into phases, noting which activities fall in each, and include a process for determining when each system component can move to the next phase.

•	�xe "Milestone"�Milestones. The methodology should define the milestones in each phase. Milestones should be event-driven, rather than schedule of cost driven. Each milestone should specify appropriate deliverables (e.g., a written report, briefing, test result, por�tion of code, or analysis and design data). The methodology should also include criteria for when the program office approves completion of one phase and movement into the next.

•	Content of deliverables. The meth�odology should define, either by topic or outline, what each milestone deliver�able should include.

•	Evaluation criteria for deliver�ables. The methodology should define what criteria a deliverable must meet for formal acceptance by the Government as having satisfied the milestone. [These are also defined as exit criteria for completion of the phase and passage to the next milestone]. Both the methodology and criteria should be specified in the �xe "Software Development Plan (SDP)"�Software Development Plan (SDP) [discussed in Chapter 14, Managing Software Development. See Chapter 15, Managing Process Improvement, for a discussion on “exit criteria” in respect to earned-value analysis.]

During software development, errors/defects are discovered, opportunities are revealed, changes are superimposed, and even changes are changed. Unless carefully controlled, the ensuing complexity makes the software evolution error-prone, time consuming, and expensive. The use of life cycle management methodologies has proven to be extremely effective in controlling change and in managing the complexity of the development process. However, for any life cycle methodology to be effective, it must be customized to specific program goals. Therefore, your selected methodology must be adapted and evolved, the same as the technical activities it ties together. Understanding your software process and making tradeoffs between incorporating and deleting life cycle components is crucially important for producing high quality software, on time, within budget.

As useful as they are, life cycle methodologies have their limitations in that they can hide important process detail crucial to program success. In themselves, life cycle management methods are often too abstract to convey the details of architecture, concept of operations, process steps, data flows, development activities, engineering roles, and program constraints. CASE tools [discussed in Chapter 10, Software Tools] can aid many facets of the life cycle process, such as data modeling and normalization, graphical support of design modeling, and code testing. They also support program management, planning, estimation and control, as well as configuration management. [PASSMORE94] But remember, CASE tools are just that — tools. A CASE tool will not tell you what software-intensive system to build, what the system must do, or how it should be designed. This process must evolve from user needs and reflect improvements in development methods, techniques, standards, and available software engineering technology.

Choosing an appropriate life cycle methodology is not always an easy task. All those presented here have unique advantages and limitations that must be considered. Current guidance for MIS development is that either incremental or evolutionary methods [particularly the Ada Spiral Model, discussed below] constitute more effective risk management and provide earlier satisfaction of user requirements. These approaches are also recommended for weapon systems, when appropriate. [See Chapter 10, Software Tools, for guidance on selecting an appropriate CASE tool that models your selected life cycle methodology.]

Evolutionary�tc "<Head 3 (14)>Evolutionary"�

�xe "DoDI 5000.2"�The evolutionary life cycle is an alternative strategy for systems where future requirement refinements are anticipated or where there is a technical risk or opportunity that discourages the immediate implementation of a required capability. The evolutionary life cycle method is a strategy in which a core capability is fielded, the system design has a modular structure, and provisions are made for upgrades and changes as requirements are refined. Figure 3-4 illustrates Pressman’s interpretation of the evolutionary model where a first generation spiral evolves into a second generation extended spiral. [PRESSMAN93]

�

Figure 3-4 Evolutionary Life Cycle Generations [PRESSMAN93]

An evolutionary life cycle method is well-suited for high technology software-intensive systems where requirements beyond the core capability can generally, but not specifically, be identified. This is usually the case with software-dominated decision support systems that are highly interactive with complex human-machine interfaces. Evolutionary programs are conducted within the context of a plan for progression towards an ultimate capability. This strategy also requires the development of increments of software demonstrable to the user, who is involved throughout the entire development process, as illustrated in Figure 3-5. An evolutionary methodology can be employed on all types of acquisitions. However, it is mostly used on medium to high-risk programs. While the final version of the system often takes more time and effort to develop than other efforts, this additional effort and time is offset by delivery of a better quality product with reduced maintenance cost. According to �xe "Humphrey, Watts"�Humphrey,

There is a basic principle of most systems that involve more than minor evolutionary change: the system will change the operational environment. Since the users can only think in terms of the environment they know, the requirements for such systems are always stated in the current environment’s terms. These requirements are thus necessarily incomplete, inaccurate, and misleading. The challenge for the system developer is to devise a development process that will discover, define, and develop to real requirements. This can only be done with intimate user involvement, and often with periodic prototype or early version field tests. Such processes always appear to take longer but invariably end up with a better system much sooner than with any other strategy. [HUMPHREY95]

�

Figure 3-5 User Involvement in the Evolutionary Method

Incremental�tc "<Head 3 (14)>Incremental"�

The �xe \b "Incremental development"�incremental life cycle management method involves developing a software-intensive product in a series of increments of increasing functional capability. Benefits of the incremental method are:

•	Risk is spread across several smaller increments instead of concentrating in one large development;

•	Requirements are stabilized (through user buy-in) during the production of a given increment by deferring nonessential changes until later increments; and

•	Understanding of the requirements for later increments becomes clearer based on the user’s ability to gain a working knowledge of earlier increments.

Figure 3-6 illustrates the incremental life cycle method. It allows the user to employ part of the product and is characterized by a build-a-little, test-a-little approach to deliver an initial functional subset of the final capability. This subset is subsequently upgraded or augmented until the total scope of the stated user requirement is satisfied. The number, size, and phasing of incremental builds leading to program completion are defined in consultation with the user. An incremental methodology is most appropriate for low to medium-risk programs, when user requirements can be fully defined, or assessment of other considerations (e.g., risks, funding, schedule, size of program, early realization of benefits) indicate that a phased approach is the most prudent.

�

Figure 3-6 Example Incremental Life Cycle Method

Figure 3-7 provides an example of how the incremental method might be related to the �xe "Major Automated Information System Review Council"�MAISRC process [�xe "System Program Director (SPD)"�System Program Director (SPD) or �xe "Designated Acquisition Commander (DAC)"�Designated Acquisition Commander (DAC)/�xe \i "Program Executive Officer (PEO)"�Program Executive Officer (PEO)]. Allowing the user to employ the partially completed product before the entire product is integrated and tested also promotes early discovery of problems and facilitates corrections.

�

Figure 3-7	Example Incremental Method/MAISRC/Project Board Milestones/ Reviews

Be aware, while the program as a whole may be large enough to merit MAISRC (or DAB) oversight, incremental development and fielding decisions only address small subsets of the system. For example, a $240 million program with MAISRC oversight may have a Milestone II decision impacting $15 million. It may be inappropriate for the MDA to make a $15 million development milestone decision, although the decision to develop the subset of system functionality is, in fact, a Milestone II decision (for a small effort). DoDI 5000.2 and DoDI 8120 describe the elements required for a development decision (adequate cost estimate and funds, firm documentation of operational requirements, mature acquisition strategy, and other elements).

Due to their nature, the evolutionary/incremental acquisitions often encounter complications. Questions arise because each incremental build block provides but a small part of the capability of the system to be acquired. In addition to normal development decision criteria, additional questions must be answered, which include:

•	Is the decision to develop this functionality for this amount of money a good idea?

•	Is this the time to address the functionality question (user priorities, dictates of the evolution itself)?

•	Is this a reasonable price for the functionality being added (or are we goldplating one functional area before developing all required capabilities)?

•	Will we run out of money before we complete the required system?

NOTE:	Critical to evolutionary or incremental methods is a sound �xe "Architecture"�architecture which permits the addition of capability, core enlargement, or added increments.

�

Spiral Method�tc "<Head 3 (14)>Spiral Method"�

Spiral method (implemented by the Spiral Model), developed by �xe "Boehm, Barry W"�Barry Boehm, provides a risk reducing approach to the software life cycle. As illustrated in Figure 3-8, in the Spiral Model the radial distance is a measure of effort expended, while the angular distance represents progress. It combines basic waterfall [discussed next] building block and evolutionary/incremental prototype approaches to software development. The building block activities of architectural (preliminary) design, �xe "Preliminary Design Review (PDR)"�Preliminary Design Review (PDR), detailed design, �xe "Critical Design Review (CDR)"�Critical Design Review (CDR), code, unit test, integration and test, and qualification test are sequentially followed to deliver an �xe "Initial operational capability (IOC)"�initial operational capability (IOC). After IOC, the product is reviewed to determine how its operational capability can be enhanced. Support and maintenance issues are revisited through risk analysis. The product is updated and an operational prototype(s) demonstrated and validated. [Prototyping is discussed in Chapter 14, Managing Software Development.] The system then goes through an updated waterfall development process with final delivery of a �xe "Full operational capability (FOC)"�full operational capability (FOC) product.

Addressed more thoroughly than with other strategies, the spiral method emphasizes the evaluation of alternatives and risk assessment. A review at the end of each phase ensures commitment to the next phase, or if necessary, identifies the need to rework a phase. The advantages of the spiral model are its emphasis on procedures, such as risk analysis, and its adaptability to different life cycle approaches. If the spiral method is employed with demonstrations, baselining, and configuration management, you can get continuous user buy-in and a disciplined process. [BOEHM88]

Ada Spiral Model Environment�tc "<Head 4 (12)>Ada Spiral Model Environment"�

The Ada Spiral Model Environment is an adaptation of Boehm’s spiral model, as illustrated in Figure 3-8. It constitutes a development environment that combines a model and tool environment. It uses Ada as a life cycle language and offers the ability to have continual “touch-and-feel” of the software product (as opposed to paper reports and descriptions). It is a demonstration-based process that employs a top-down incremental approach, resulting in early and continuous design and implementation validation. The advantage of this environment is that not only does it build from the top down, but because Ada supports partial implementation, the structure is automated, real, easily evolved, where each level of development can be demonstrated. Each build and subsequent demonstration validates the process and structure. Each level may serve as a formal baseline that can be controlled. [WOODWARD89]

�

Figure 3-8 Spiral Model

Choosing Among Evolutionary, Incremental, and Spiral Models�tc "<Head 3 (14)>Choosing Among Evolutionary, Incremental, and Spiral Models"�

Are you asking, “What are the differences between the evolutionary, incremental, and spiral models?” Actually, most programs use a combination of all three. The spiral model is an overlay of either incremental or evolutionary with the addition of risk management. In the past, the spiral model has been difficult to implement purely in the DoD procurement environment because predefined deliverables and schedules do not easily accommodate repeating phases, changing deliverables, or discarding requirements without difficult contract modifications. In a commercial environment, it could be described as market-driven, where time-to-market and competitive forces determine when a product must be delivered and what features are included (features may change rapidly in light of competitor releases). In reality, all software evolves — commercial products are always evolving, and in DoD the process is called support or maintenance. Key to identifying which system components should follow which development method is driven by such factors as: (1) time to market/release; (2) understanding requirements; (3) technology obsolescence; (4) priority of user needs; (5) expected life of system; (6) size (magnitude) of effort; (7) complexity; (8) parallel hardware development; and (9) interfaces to existing and unknown (to be developed) systems. [QUANN95] Of course, the order of importance and weighting of each factor varies from program to program and between commercial and military applications.

Waterfall Model�tc "<Head 3 (14)>Waterfall Model"�

The waterfall model was first identified in 1970 as a formal alternative to the code-and-fix software development method prevalent at the time. [ROYCE70] The waterfall model was the first to formalize a framework for software development phases, and placed emphasis on upfront requirements and design activities and on producing documentation during early phases. The major drawback to this model is its inherent sequential nature — any attempt to go back two or more phases to correct a problem or deficiency would result in major increases in cost and schedule.

While the waterfall model (also referred to as “Grand Design”) provided an early structured method for the software life cycle, it is not suited for modern development techniques such as prototyping and automatic code generation. [See General Services Administration’s, Alternatives to Grand Design for Systems Modernization, for a discussion on when the waterfall is NOT appropriate.] [GSA91] In the traditional waterfall model, each stage is a prerequisite for succeeding activities, making this method a risky choice for unprecedented systems because it inhibits flexibility. With a single pass through the process, integration problems usually surface too late. Also, a completed product is not available until the end of the process, discouraging user involvement. Taking these factors into account, the other life cycle methods discussed in this chapter are recommended instead!

NOTE:	In general, the waterfall method itself is NOT recommended for major software-intensive acquisition programs! If it must be used (due to integrating into the weapon system’s overall system engineering methodology) then software management and engineering techniques described throughout this book must also be used to reduce program risk.

Fast Track�tc "<Head 3 (14)>Fast Track"�

Although the focus of these Guidelines is on “major” software-intensive systems, a distinction between major and non-major programs should be understood. Software-intensive programs not considered major acquisitions and using a fast-track life cycle methodology require greater tailoring of software development tasks. This may be based on a time criticality arising from a variety of reasons, such as a national threat. Although these programs are less formal and on a shortened life cycle to benefit the Government, the primary focus may not be on a time critical schedule (e.g., proof-of-concept programs). Fast track or abbreviated software-intensive programs always assume short maintenance phases where system support is performed by the development contractor.

Although process tailoring is necessary to meet shortened life cycle requirements, some of the normal acquisition and development steps are maintained while reducing the formality or scope of certain others. Other methods may also be appropriate if agreed upon by both the Government and the contractor prior to program start. Organizations considering fast track or abbreviated programs should have demonstrated successful experience with similar technologies and have a mature, defined development process to minimize risk. Fast track programs must also have a clearly defined, stable set of requirements. [In other words, the objective does not have to solve world hunger, but rather to feed a few starving beggars.] Abbreviated life cycle strategies may be most appropriate when a program can proceed as an �xe "Engineering change proposal (ECP)"�Engineering Change Proposal (ECP) to an existing contract, or where substantial familiarity exists and/or minimum risk is evident.

�xe "Concurrency"�Concurrency is a fast track method where development and operational testing are combined with a concurrent follow-on development and initial production phase. With this method, government involvement are often limited. Lessons-learned from the General Accounting Office (GAO) about employing fast track methods have included the following recommendations:

•	Make an initial detailed assessment of the technical risks involved in individual subsystems, as well as, in the integration of those subsystems into a workable system, with explicit focus on whether the technology being attempted is compatible with an accelerated acquisition strategy.

•	Build into the strategy provisions for adjusting schedules and other program facets if technical difficulties occur.

•	Assess the system’s technological progress periodically to see if it is still compatible with the planned acceleration. If technical progress is no longer keeping pace with the acceleration, the strategy must be adjusted to bring it in line with the technology.

•	Ensure that the strategy provides for testing and evaluation sufficient for decision-makers to identify any major shortcomings in the system’s operational suitability and effectiveness which must be resolved before initial production is approved. [GAO86]

NOTE:	See Chapter 7, Software Development Maturity, for an in-depth discussion on the importance of the contractor’s software development process, methodologies, tools, and capabilities to the success of your program. The software measurement life cycle is described in Chapter 8, Measurement and Metrics. Words to include in your Request for Proposal (RFP) requiring that offerors provide you with adequate information for proposal evaluation are found in Chapter 13, Contracting for Success. How to evaluate offerors’ proposals so you select the contractor with the “best process” as well as product is also found in Chapter 13. A description of the Cleanroom engineering life cycle is found in Chapter 15, Managing Process Improvement.

REFERENCES�tc "<Head 2 (14)>REFERENCES"�

[BOEHM88] Boehm, Barry W., “A Spiral Model of Software Development and Enhancement,” IEEE Computer, May 1988

[GAO86] General Accounting Office, “Sergeant York: Concerns About the Army’s Accelerated Acquisition Strategy,” Report to the Chairman, Committee on Government Affairs, United States, Senate, GAO/NSIAD-86-89, May 1986

[GSA91] Alternatives to Grand Design for Systems Modernization, Information Resources Management Services, US General Services Administration, Washington DC, April 1991

[HUMPHREY95] Humphrey, Watts S., personal communication to Capt Joseph Stanko, September 15, 1995

[MARSHALL51] Marshall, BGEN S.L.A., The Armed Forces Officer, U.S. Printing Office, Washington, DC, 1951

[MONTGOMERY58] Montgomery of Alamein, Field Marshall Viscount, Bernard Law editor, The Memoirs of Field Marshall Montgomery, The World Publishing Company, Cleveland, Ohio, 1958

[PASSMORE94] Passmore, John M., “Life Cycle Methodology Offers Software Starting Point,” Signal, March 1994

[PATTON47] Patton, GEN George S., War As I Knew It, Houghton Mifflin Company, Boston, 1947

[PRESSMAN92] Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Third Edition, McGraw-Hill, Inc., New York, 1992

[PRESSMAN93] Pressman, Roger S., “Understanding Software Engineering Practices: Required at SEI Level 2 Process Maturity,” Software Engineering Training Series, Software Engineering Process Group, July 30, 1993

[QUANN95] Quann, Eileen., personal communication to Lloyd K. Mosemann, II, September, 1995

[ROYCE70] Royce, Winston W., “Managing the Development of Large Software Systems”, IEEE, WESCON, 1970

[WOODWARD89] Woodward, Herbert P., “Ada: A Better Mousetrap,” Defense Science, November, 1989

Version 2.0

CHAPTER 3 System Life Cycle and Methodologies

3-� PAGE �18�

Version 2.0

3-� PAGE �1�

