�tc "<>"�
CHAPTER�tc "<>CHAPTER"�
 �tc "<> "�10�tc "<> 10"�

Software Tools�tc "<>Software Tools"�
�tc "<Head 3 (14)>"�
EDITORS’ NOTE: Graphics quality will improve when printed.
CHAPTER OVERVIEW�tc "<Head 3 (14)>CHAPTER OVERVIEW"�

Economy of force rightly means, not a mere husbanding of one’s resources in manpower, but the employment of one’s force, both weapons and men, in accordance with economic laws, so as to yield the highest possible dividend of success in proportion to the expenditure of strength...Economy of force is the supreme law of successful war. — Captain Sir Basil Liddell Hart [HART24]

	The key to improving the software development process is to increase productivity through economy of effort. Effort can be decreased by reducing the amount software to be developed through reuse, simplification and refinement of the production process through better methods and procedures, and by automating all manual, repetitive tasks. In this chapter you will be introduced to a variety of software technologies, models of optimum performance, and automated tools that can yield a high dividend of success by harnessing your expenditures of manpower caused by inefficient production processes. Software technologies include: methods, languages, tools, metrics, facilities, techniques, processes, hardware, and other software.
	Improving productivity requires making the programmer’s job easier. Computer-aided software engineering (CASE) tools provide the means to do this. When properly implemented, tools can increase your chances for program success by eliminating the classic sources of program failure, discussed in Chapter 1, Software Acquisition Overview. Their benefits include the following: they make planning and estimation more accurate; they enhance user involvement; they eliminate errors in requirements and design; they detect and correct defects; they help build flexible, standards-based architectures; and they increase productivity, shorten lead time, and decrease staff turnover through improved job satisfaction.
	Despite these benefits, implementing new technologies is an extremely risky business. In fact when poorly planned or understood, “Silver Bullet” technologies are a major source of program failure. To be successful, tool selection and use must be a needs-based, needs-driven process performed with the help of the people who use them. If the tools do not fit the current process, or if the current process is ad hoc and poorly defined, the training required to learn new processes, or bend old ones to fit a new tool, can be catastrophic. Technology use must be based on detailed knowledge of programmer activities and the software to be built, market analysis of tool availability, cost/benefit analyses, and research into tool evaluations by practitioners and experienced software technology analysts. This implies you must have a technology strategy implemented through a structured, methodical, well-managed Technology Plan.
	Throughout this chapter you will be cautioned about common pitfalls to avoid when selecting and implementing new technologies in your program. You will also learn what to look for and who to contact for help. The bottom line in this discussion, however, is that continuous process improvement and advancement to higher software development maturity levels (a Number 1 software management goal) is inextricably dependent on technology insertion. The technologies discussed here include: software engineering tools and environments; program management tools, methods, and models; requirements and design tools; testing tools; documentation tools; re-engineering tools; and configuration management tools.

ATTENTION:	The tools discussed in this chapter are examples of those that have been successfully used on major DoD software-intensive programs. The list is not all-inclusive nor does it imply an endorsement for any tool over another. Because program-specific tool needs vary, it is suggested you contract an organization such as the STSC or the Air Force SSC for information about tools approved for DoD use. [See Volume 2, Appendix for information on how to contact these organizations.]�tc "<>"�
�
CHAPTER�tc "<>CHAPTER"�
 �tc "<> "�10�tc "<> 10"�

Software Tools�tc "<>Software Tools"�
Production Efficiency Through Tools, Methods, and Models�tc "<Head 2 (14)>Production Efficiency Through Tools, Methods, and Models"�

Whatever the system adopted, it must aim above all at perfect efficiency in military action; and the nearer it approaches to this ideal the better it is.	 	
— Rear Admiral Alfred Thayer Mahan [MAHON08]

Software is handmade, therefore, it represents a substantial capital investment. In his book, The Decline and Fall of the American Programmer, Yourdon warns that by the end of this decade the American programmer is going to be as extinct as the dodo bird. Competing in the world software market, he says that high labor costs are forcing the American software industry out of business — the same way the American auto industry was devastated by �xe "Japanese software development"�Japanese competition in the 1970’s. As illustrated on Table 10-1, our software labor costs have been among the top ten countries with the highest net labor cost per feature point. Yourdon predicts that for American companies to be competitive, they are going to have to go overseas with their software development. In fact, as you read in the �xe "Scientific American"�Scientific American article in the Foreword to this volume, many big American software producers are doing just that.

�
Table 10-1 Countries with the Highest Net Cost per Feature Point Produced

As illustrated on Table 10-2 by hiring a programmer in �xe "Programmer:Indian"�India you will pay about 1/10th what you pay an �xe "Programmer:American"�American programmer. The same goes for software engineers and all other software professionals. [YOURDON92] The question is, what do software companies with contracts to develop software for the federal government do who are under federal procurement regulations to hire only American labor? Are they, as Yourdon claims, going to follow suit with our defense aerospace industry which is swiftly losing its market share?

�
Table 10-2 Countries with the Lowest Net Cost per Feature Point (US 1991 dollars)

Wait a minute, Yourdon. Is there any other answer to our dilemma? What did the US automobile industry do to turn around business when sales hit rock bottom, and a major segment of the American labor force was relegated to the unemployment lines? They became leaner-and-meaner by being more efficient. They invested in new technologies and automated all the production processes they could. [KENNEDY93] They built quality into their products by focusing on the complex values and needs of their customers. They invested in their workforce by training them to be technicians instead of wrench-turners. [REICH91] They increased productivity, reduced their overhead, and lowered costs. They gained control of their process by following the advice of Brigadier General S.L.A. Marshall, who said:

Half of control during battle comes from the commander’s avoiding useless expenditure of the physical resources of his men… [MARSHALL80]

The most efficient way to build quality in, increase customer satisfaction and confidence, and improve your product, is to avoid useless expenditure of manpower and to remove the greatest source of poor quality, human-error. Eliminating the human from your process is the best way to improve your process. When you can reduce a task to a routine activity, automate it! Automating the software process does away with manual labor and reduces human error and improves productivity. A rule of thumb is: more productivity savings come from eliminating the source of error than from humans performing tasks more efficiently. [HUMPHREY90]

By progressively automating more and more of those tasks performed manually, not only will you increase productivity, you will free your software professionals from their current manual drudgery. They will be rejuvenated for more intellectually rewarding work. They will have the time to find better ways to characterize software objects, to design better processes for controlling and relating them, and more powerful ways for their manipulation. With the power of an automated environment, you will free the imagination of your development team. Because automation promotes reuse, they will be able to capitalize on the work of others — our greatest opportunity for significant productivity and quality improvements. Automation also improves the way software is supported, and should be used in your software strategy to build supportability in new software product-lines.

CAUTION!	Having a defined, mature software development process is a fundamental prerequisite for successful technology use. Having an ad hoc, poorly controlled process almost guarantees failure.
�tc "<Head 4 (12)>"�
Tool Process Improvement Benefits�tc "<Head 4 (12)>Tool Process Improvement Benefits"�

�xe "Tools:Computer-aided software engineering (CASE)"�Computer-aided software engineering (CASE) tools are the most cost-effective, efficient way to increase productivity and product quality. Tools help us efficiently build relatively defect free, easy-to-modify, quality software. Because tools accelerate the pace of development, user requirement, schedule, and budgetary constraints are easily accommodated. Tools also aid in alleviating the classic reasons why software acquisitions fail [discussed in Chapter 1, Software Acquisition Overview]. Aggarwal and Lee restate the most common reasons for software acquisition failures:

1.	Improper planning and estimation because the system is too complex and no scientific methodology exists to correctly estimate resource requirements;
2.	Lack of user involvement resulting from behavioral, organizational, and political issues;
3.	Inadequate requirements analysis and design due to system complexity, size, and/or misunderstood user requirements;
4.	Inflexibility of design which causes flow down of defects inserted when modifying one module to interrelated other modules;
5.	Long lead time where user requirements or technology dramatically changes before system completion, rendering it obsolete before fielding; and
6.	Turnover of personnel resulting in lack of program continuity, loss of skills and system knowledge, and the introduction of design changes by new personnel not familiar with the program.

Tools alleviate the sources of these problems in the following ways:

1.	�xe "Planning"�Planning and �xe "Estimation"�estimation. Parametric models provide quantitative measures for estimating resource requirements. An example of an estimating model, based on historical data, is one that assumes development effort and cost are functions of software size, the level of technology used, and the time spent in the analysis, specification, and design phases, as illustrated in the following equations:

�[TOBIN90]

� [RAJA85]
	
	Structured systems analysis and design tools decompose the system into a hierarchy of logical components. Interfaces among hierarchical modules are precisely defined and module output is tested to ensure desired results. Problems identified at intermediate stages are easier and less costly to correct than those discovered later in development.
2.	�xe "User:Involvement"�User involvement. To ensure user involvement, they must participate in prototyping, design specification, and standardized data model creation. Prototyping and code-generation tools that include screen painters and report generators allow users to more clearly define their needs. A part of the system can be built which the users can experience hands-on. Seeing in advance how the system will look and act, users can ask for modifications early on. Increments can be tested and improved before the total system is delivered which improves the probability the system will be used.
3.	�xe "Requirements, software"�Requirements analysis and design. Structured analysis and design, prototyping, and requirements specification tools help the user visualize how the development process is to take place. Process decomposition diagrams, normalized data models, and entity-relationship diagrams aid users and designers in examining and improving system design. Errors or inadequacies are more easily detected on an automated diagram than in textual descriptions. In an automated environment, more time is spent during the analysis, specification, and design phases, reducing the risk of program failure.
4.	�xe "Architecture"�Architectural design flexibility. Rather than waiting until PDSS where little money is budgeted for changes, an automated tool environment promotes open systems architectures which lead to flexible specifications which are not frozen until late in the design phase. Design tools, prototyping tools, code generators, and a repository of well-tested modules enhances responsiveness to user needs. In a modular design environment, the rate of change does not exceed the rate of progress.
5.	Lead time. Well-tested modules, prototyping, and code generators improve productivity and shorten lead time. Because design tools decompose complex systems into small, easy-to-manage modules that interact only minimally, small, independent teams can perform development tasks in parallel. Module integration is facilitated because interfaces among modules are clearly defined. Through a central repository, the same data models can be used and reused by different teams. By reusing pretested designs, data models, specifications, and code, approximately 75% of the resources needed for development from scratch can be reduced. Productivity is increased and defects decreased.
6.	�xe "People:Turn over"�Staff turnover. Tools help reduce staff turnover and absenteeism through better job satisfaction. By automating boring, manual tasks, teams have more time for creative thinking and process improvement efforts. The time spent hiring and training new staff members is also reduced. [AGGARWAL95]

Table 10-3 summarizes how tools can be used to improve the development process and eliminate classic sources of program failure.

�
Table 10-3	Tools to Implement Process Improvement Goals and Remove Management Inadequacies [AGGARWAL95]
MANAGING NEW TECHNOLOGIES�tc "<Head 2 (14)>MANAGING NEW TECHNOLOGIES"�

The term “�xe "Technology"�technology” involves many elements when applied to software. It can include methods, languages, tools, metrics, facilities, techniques, processes, hardware, other software and/or anything nonhuman used in the production or support of a software-intensive system. Major technology transitions often involve changing or upgrading the fundamental components of the software development process. Managing new technology requires an understanding of the evolution of software engineering from an historical and predictive perspective. In the Foreword to this volume, “Software’s Chronic Crisis,” �xe "Scientific American"�Scientific American, Shaw’s comparison of the evolution of software engineering to chemical engineering is cited. Shaw explains that both fields evolved from craft to commercialization to professional engineering. While both fields strive to design processes to create safe, defect-free products as fast and cost-effectively as possible, they differ in their approaches. Unlike software engineering, chemical engineering relied heavily on scientific theory, mathematical modeling, proven design solutions, and strict quality assurance techniques to progress to professional engineering. Contrastly, software engineering (still a cottage industry) has yet to build the scientific foundation upon which to progress to a professional discipline. [GIBBS94] Utz explains that software engineering has been and will be tracking the following evolutionary stages:

·	Crafted. All engineering begins in the crafted mode.
·	Tooled. Engineering technologies progress to a tooled mode with stand-alone tools (eventually becoming loosely linked) that help build components to a specification. This, Utz says, is an advanced crafted stage because a crafter with loosely linked tools is still a crafter.
·	Engineered. In this stage, entire systems are built to specification.
·	Automated engineered. In this stage, tightly linked tools and hierarchical methods are used to handle design complexity.
·	Automated intelligent engineered. In this stage, complex system interactions and interfaces are design and built by an automated engineering environment freeing engineers to concentrate on product solutions.

Moving from one stage to the next higher level requires the desire for improved product quality and productivity. To improve the product and process, there comes a time when engineers must move on to new technologies. When advancing to new technologies, the following should be understood:

·	If you delay too long in realizing that it is time to move on to the next engineering stage, motivation will occur through failure to advance.
·	If you lead the pack and pioneer new technologies before they are proven, your results will be unpredictable and involve greater risk — but could have positive cost or competitive returns.
·	The ideal way to advance is to progress to the next stage just behind the industry’s risk takers.

Management of new technology is a critical challenge. As managers, we are often skilled in the present technology, but have a only a limited knowledge of the new one or how to transition it. This makes it difficult to assess risks, costs, benefits, and to plan. Some of us rush to implementation; while others give up when victory is just within reach. We are constantly challenged to manage new technologies because (especially in software) no one can afford to stay with technologies that are obsolete, inefficient, or outside the competitive range. When the present process promises no further gains in quality or productivity, there are fundamental mistakes we make when faced with the decision to transition to new technologies.

1.	One mistake is to implement a new technology when none is needed at the time. As discussed in Chapter 16, The Challenge, what you really needed is continuous process improvement which is only achieved through measurement and control. If your process is out of control, the introduction of a new technology will confuse the situation with the lowering of already poor productivity. In this case, process improvement will produce the same benefit as the new technology. Continuous process improvement establishes a solid foundation upon which subsequent new technologies can be implemented.
2.	Another mistake we make is when there has been continuous process improvement, but gains in quality and productivity have leveled off. Not fully understanding how to plan for, select, or implement the new technology, we make the decision to transition. This results in a net gain that is slightly worse than the old process where extra effort is required to get the new technology properly working. This situation is compounded when we conclude that we have selected the wrong technology, try again, and select yet another.
3.	Additional mistakes we make are:
•	We do not know what we need,
•	We believe what we see in print,
•	We do not have the time or resources to make good decisions,
•	We decide to use what everyone else uses, or
•	It looks like a good deal, so we buy it.

Technology involves the application of science to the business of software development. Implementing a new technology means switching from one state to another. Although transitioning to new technology is different than continuous process improvement, the goals are the same. Both techniques should yield gains in quality and productivity. They must both be well-managed and well-ingrained within the management process.

Figure 10-1 illustrates the pressure for technology change representing the software industry as a whole. For example, quality and productivity are linked to the extent that a crafted technology can move up the curve only to the maximum gain shown by the crafted line. Those organizations using engineered technologies can achieve much higher levels of quality and productivity than those using crafted ones. Individual organizations make discrete transitions to new technologies in response to technology pull or user needs. Successful organizations manage technology transitions — rather than being dragged through them. [UTZ92]

�
Figure 10-1	Gains in Quality and Productivity Attained by Technology Transitions [UTZ92]

Technology Strategy�tc "<Head 3 (14)>Technology Strategy"�

To guide the use of new methods, tools, and techniques, you need a �xe "Tools:Planning for"�technology strategy. This means you must have knowledge of what is needed, what is feasible, and what is available, proven, and germane to your process. It also requires the development of a methodical, well-thought out plan. For example, the software engineering environment you choose should provide a full set of facilities to enhance the efficiency of your process. Therefore, the environment you select must be easy to use, support customization, have an open architecture, be based on mature standards, and have the ability to encompass databases, process data, link tools, and provide for its own evolution. Prerequisites for establishing a long-term �xe "Technology:Technology Plan"�Technology Plan include:

•	The establishment of a technology working group,
•	Understanding your current technology status,
•	Making a systematic assessment of the most promising environments and tools available (by contacting support organizations such as the STSC and the SSC, and by meeting with a wide variety of vendors),
•	Developing a common data model for the software environment, and
•	Establishing a common user interface so the new tools and facilities are presented consistently to users.

You need to have a structured, methodical, well-managed process for selecting technology or you will wind up with tools that become shelfware, tools that do not perform as you thought they would, or spend more on support tools than you do on the system under development. Your Technology Plan must also have economic justification based on thorough cost/benefit/risk analyses. This process can start by creating with a task map of your currently-used technology, and another for that planned. Next, define the resources you are currently expending for each task and assemble a team of cost analysts to determine the resource impact of the new environment and its associated support tools and methods. Each development team’s technology migration plan must be reviewed to assess the accrual rate of programmed savings. Once approved, each team element must commit to their savings schedule. Finally, develop a new schedule based on the estimating factors established, and construct a composite savings schedule for your program as a whole. All teams elements also must agree to this plan. Above all, involve your cost analysts throughout the process, and ensure that they perform their work in detail. It takes time to implement a Technology Plan; but the productivity increases, quality gains, and cost savings are well worth the effort. [HUMPHREY90]

NOTE:	See SEI report, CASE Planning and the Software Process, CMU/SEI-89-TR-26. [See Volume 2, Appendices A and B for information on how to obtain SEI reports.]

Technology Selection�tc "<Head 3 (14)>Technology Selection"�

Another big mistake we make is selecting tools before determining how they can support their process. Time and money is often spent buying and learning tools that ultimately get discarded because they do not fit the process. Attempts are also made to make the process fit the tools — which never works. These mistakes happen for several reasons.

Due to DoD procurement process long lead times, tools are often selected before requirements are narrowed down and a process is defined to fulfill those requirements. Another problem specific to DoD is money must often be spent upfront or it is lost. Tools are procured on the assumption that whichever method the tools support can be implemented — usually leading to waste and disappointment. [QUANN93] When selecting new technologies, consider the following:

·	Know your resources (both positive and negative reports) and use profile sheets.
·	Understand your user’s requirements. Users tend not to fully understand their needs, therefore use an iterative process to extract this information.
·	Use standard evaluation criteria. Evaluations of unproven technologies are outdated within six months — Don’t believe it unless you see it!
Acquisition involves people, software, and hardware. Most items are negotiable, and hardware and software vendors often will loan resources at no cost. Remember, buy only what is needed. Table 10-4 summarizes Mosley’s 10 rules for technology selection.

�
Table 10-4 Ten Common Sense Rules for Tool Selection [MOSLEY95]

Typical Toolset�tc "<Head 4 (12)>Typical Toolset"�

A few of the same tools are used in every major software development [although there are other tools you can use to improve productivity throughout software development]. The typical toolset, adequate for development of software of simple to medium design complexity, consists of:

·	A �xe "Compiler"�compiler that translates source code into object (assembly) code.
·	An �xe "Assembler"�assembler that translates assembly code into object code.
·	A �xe "Linker"�linker that combines the object code output from the compiler and/or assembler together into one executable unit by resolving symbol and address references.
·	A �xe "Run-time:System (RTS)"�run-time system (RTS) that provides functions required for execution of Ada programs on a particular hardware platform. Usually, only those RTS functions needed by the specific application are linked into an executable unit, thus reducing code and data sizes.

A more complete Ada toolset should also include:

·	A �xe "Loader/reformatter"�loader/reformatter that takes the executable unit generated by the linker, performs any necessary formatting, and loads it onto the target computer.
·	A �xe "Librarian"�librarian that maintains a library of object modules produced by the compiler and/or assembler.
·	A �xe "Debug:Debugger"�debugger that provides an interface between the target platform and the programmer to aid in testing and correcting programs.
·	An �xe "Editor"�editor (ranging from simple text editors to language-sensitive editors) that can display a selected language statement template that is filled in by programmer with program-specific information.
·	A �xe "Documentation:Generator"�documentation generator that accepts completed source code, analyzes it, and generates program documentation reflecting the code design. (These are also referred to as reverse analyzers.) [ALLEN92]

Utz groups software tools into a series of eight logical toolsets grouped by related attributes, as illustrated on Table 10-5. To be used successfully, Utz says these tools must possess three fundamental characteristics:

·	Simplicity. The toolsets must support a natural problem-solving process. Toolset functions and the flow from problem to solution must be easy to understand.
·	Standards. Open systems approaches are breaking new ground in dealing with multi-vendor standardization problems, but the standardization of all system elements is far from imminent. Developing a large software-intensive system involves integrating packages (either COTS, reuse, or custom-built) that must exchange data and support shared functionality. The act of building a new system from these building block components creates complex design problems where they interface — which in turn introduce unforeseen side-effects and a new class of defects. Integration problems become enormous when building high-performance, distributed, or networked systems operating on many computer platforms from various vendors, using multiple protocols and multiple database processors. Ideally, tools should support the Ada language and be based on ISO and/or NIST certified standards. Standards are essential for a stable software engineering environment [discussed below].
·	�xe "Linkage"�Linkages. Linkages among tools are needed to eliminate unnecessary manual shifting from one tool to the next. For example, the most common linkages are found in compilation, linking, loading, and running tools allowing them to be invoked and used with minimum effort or confusion.

�
Table 10-5 Eight Software Engineering Toolset [UTZ92]
�
NOTE:	See Addendum A of this chapter, “COTS Integration and Support Model.”

How the eight software engineering toolsets are combined is illustrated on Figure 10-2. The connections illustrate the concepts of management and documentation performed throughout the development process within an integrated framework. [NOTE: Although a left-to-right flow is indicated here, it is only used to organize the toolsets in a logical way. It does not imply a left-to-right flow of the software engineering process.] The data repository is a storage box containing well-integrated support tools, services, and functional databases supported by the engineering process.

�
Figure 10-2 Connectivity Among Software Engineering Toolboxes [UTZ92]

Mosley suggests a six-phase process for buying tools and environments, as summarized on Table 10-6. When making tool evaluations, she recommends using SEI publication, A Guide to the Classification and Assessment of Software Engineering Tools (CMU/SEI-87-TR-10), which lists 140 generic questions for you to consider. These questions can be tailored for specific tools types applicable to the specific development activity you plan to automate. The answers to these question are then evaluated in a simple, weighted, scoring scheme. [See Volume 2, Appendix A for information on how to obtain this publication from DTIC or the SEI.] [MOSLEY95]
	
�
Table 10-6 Tool Selection and Evaluation Activities [MOSLEY95]

More Cautions About CASE Tools�tc "<Head 4 (12)>More Cautions About CASE Tools"�

CASE tools are often used to produce graphic representations of systems specifications for the user’s review. The difficulty with many CASE products is that they produce abstract graphic representations that can be as difficult for users to understand as traditional specifications. CASE diagrams often help designers communicate better among themselves, but not with the average user. Excessive automated diagram generation can have the effect of overwhelming the user with stacks of specifications. Users then become less able to visualize how the system will work, and are less effective participants in its development. Your developer must first decide on a specific development methodology, and then look for those tools that are necessary to accomplish the specific needs that evolve. Excessive �xe "Complexity"�complexity in the development process is inordinately counterproductive.

Also be aware, CASE technologies have an associated cost which must be planned and budgeted for which involves much more than the actual dollar cost of the technology. Training costs must be considered and are easy to quantify. The costs that are not so easy to estimate include, but are not limited to, the complexity of the technology (the engineer must, in addition to understanding the software to be built and the implementation domain, learn the complexities of his tools), the cost of tailoring the technology to the development process, and the risks associated with the technology. Be cautioned, (as you learned in Chapter 1, Software Acquisition Overview), Silver Bullet technologies are a major source of program failure. The great promise of technologies is that they can and do deliver more benefits than their costs — but they must be properly planned for and managed!

NOTE:	See SEI reports: Issues in Tool Acquisition, CMU/SEI-91-TR-8 and Guide to CASE Adoption, CMU/SEI-92-TR-15. [See Volume 2, Appendix A for information on how to obtain SEI reports.]

Technology Transition�tc "<Head 3 (14)>Technology Transition"�

Most software technology is, in fact, multi-use and transcends all domains. The theoretical knowledge and practical know-how that comprise the essence of software technology are more ripe for �xe "Technology:Transitioning"�transitioning than the software products themselves. Software technology, developed for one intended use, can often be directly applied to other programs within the domain, and even to other domains. It must be everyone’s goal to facilitate the movement of ideas, tools, experience, and knowledge among all members of the software development community. This does not simply mean among DoD practitioners, but also to and from our software development industry partners, our colleagues in the other military services and defense agencies, and academia.

NOTE: 	DoD experience has demonstrated that the most effective results, particularly at integration, occur when the prime contractor and all software subcontractors use an identical software development environment with on-line connections among all developers.

You have the opportunity to encourage the transfer of technology through your software development contractor. The knowledge, tools, and experiences gained on your program must be transitioned to other software developments within DoD. They should also be transitioned to your program through contractor personnel who work on military and commercial assignments within their companies. Civilian demand has spurred industry into rapid technological advances in areas of importance to DoD’s mission, such as large-scale communications, networking, expert systems, and other forms of artificial intelligence and telerobotics. [ZRAKET92] Efforts in industry to create better software tools, techniques, and more effective management practices have parallel efforts in universities and government-sponsored laboratories, providing further pools for technology transition.

NOTE:	See SEI report, A Conceptual Framework for Software Technology Transition, CMU/SEI-93-TR-31. [See Volume 2, Appendix A for information on how to obtain SEI reports.]
SOFTWARE ENGINEERING TOOLS AND ENVIRONMENTS�tc "<Head 2 (14)>SOFTWARE ENGINEERING TOOLS AND ENVIRONMENTS"�

A supermarket full of CASE tools, tool environments, and support services exists for your Ada software development. Tools range from commercially-developed ones to the program-specific ones you develop. Justice cannot be done to all available Ada tools; therefore, only a few selected successful tools are included here. The same is true for tool support services that range from DoD organizations to professional consortiums comprised of government and industry experts and practitioners.

CASE Tools�tc "<Head 3 (14)>CASE Tools"�

Successful software development demands the implementation of �xe "Tools:Computer-aided software engineering (CASE)"�computer-aided software engineering CASE tools. These tools should include some or all of the following capabilities:

•	Model user requirements in a graphical format (e.g., data flow diagrams, entity-relationship diagrams);
•	Create software design models for both data and procedural code;
•	Check defects and consistency;
•	Analyze and cross-reference all systems information;
•	Build prototypes of systems and enable simulations;
•	Enforce development standards for specification, design, and implementation activities throughout the software life cycle;
•	Generate code directly from design models;
•	Provide automated support for testing and validation;
•	Provide support for reusable software components (in the form of designs, code modules, data elements, etc.);
•	Provide interfaces to external dictionaries and databases;
•	Re-engineer, restructure, and reverse engineer existing software; and
•	Store, manage, and report software-related and program management information.
 [YOURDON92]

WARNING!	The implementation of a CASE tool is a complex process the success of which depends on more than having just the right tool with the desired features.

Software Engineering Environments (SEEs)�tc "<Head 3 (14)>Software Engineering Environments (SEEs)"�

A �xe "Systems engineering"�software engineering system is a collection of all the elements contributing to the development of a software product: people, equipment, data, repositories, procedures, methodologies, and tools. A software engineering environment (SEE) is a harmonious collection of integrated methods, CASE tools, procedures, and a management information system for monitoring and control. An Ada �xe "Tools:Software engineering environment (SEE):Ada programming support environment (APSE)"�programming support environment (APSE) is an Ada SEE configured to meet the specific needs of an individual program. Normally contractors propose the SEE. This should be a specific evaluation criterion during source selection. You must be assured, not only of the quality of the SEE — but of the contractor’s experience in using it. A SEE also produces information about:

•	The software under development (e.g., specifications, design data, source code, test data, and program plans);
•	Program resources (e.g., costs, hardware, and software engineering personnel, their assignments, and management duties); and
•	Organizational policy, standards, and guidelines on software production.

NOTE:	See STSC publication, Software Engineering Environment, April 1994, for guidance on how to acquire an SEE and evaluations of commercially-available SEE products.

A good SEE automates or facilitates compliance with identified standards by avoiding cumbersome, time consuming, and expensive manual efforts. It provides and integrates tools that assure consistent application of an effective development process by eliminating design defects early in the process. Such a process makes quality a predictable result. The tools and methods commonly included in a SEE, either dependent or non-dependent on life cycle phase, are illustrated on Table 10-7.

�
Table 10-7 Common Tools and Methods of a SEE [MARCINIAK90]

NOTE:	Sample RFP paragraphs describing the requirement for a SEE are found in Volume 2, Appendix M. Also refer to “Reference Model for Program Support Environments,” SEI/CMU-83-TR-23/NIST, Special Publication 500-213, November 1993, for another list of capabilities to include in a SEE.

UNAS�tc "<Head 4 (12)>UNAS"�

The �xe \b "Tools:Design tools:Universal Network Architecture Services (UNAS)"�Universal Network Architecture Services (UNAS) was initially developed by TRW for the �xe "Command Center Processing and Display System-Repla"�Command Center Processing and Display System-Replacement (CCPDS-R) program [discussed next]. It is comprised of a common-layered architecture approach and a supporting suite of reusable components, tools, and instrumentation which represent very high-level language primitives for building distributed C2 systems in Ada. The product, having achieved impressive productivity and quality gains on large-scale, distributed systems, includes support software for rapidly constructing, modifying, and fine-tuning candidate architectures and instrumentation for evaluating the performance and characteristics of alternate approaches, prototypes, and final solutions.

The UNAS environment solves interface design problems without introducing unnecessary side-effects within pre-existing code by automatically generating integration links. It transforms a 4GL input into a 3GL (i.e., Ada) output which then gains measurable machine language performance. It gives the user (developer) the flexibility to experiment with, and change, high-level architecture components throughout the software life cycle. A UNAS user can build the architecture-defined system integration software in a week or less (compared to months if custom code is written by hand). A series of alternative architectures can be quickly built, tailored (non-standardized) for highest performance, and selected. The system integration code can be changed to fit building block component usage requirements, leaving functional packages virtually untouched with system performance uncompromised. A seamless, errorless integration can be achieved with resulting cost and schedule savings. UNAS has been described as

the epitome of “showcase technology” where the process and products are “exposed” to constant observation, in-depth visibility, and constant improvement.
[CRAFTS93]

UNAS can be used with a range of �xe "Open systems:Environment (OSE)"�open systems environments, including most �xe "Standards:Portable Operating System Interface for UNIX (POSI"�POSIX-compatible Unix platforms, �xe "Rational:Environment™"��xe "Rational"�Rational,™ and VAX/VMS. UNAS also supports platform interoperation so that applications can cooperate in a heterogeneous network while UNAS performs the run-time translation of data formats between dissimilar platforms. [ROYCE91]

NOTE:	More information about UNAS can be obtained from the STSC or the Rational Software Corporation. It is also available for inspection and experimentation from the CARDS or ASSET Libraries (discussed in Chapter 9, Reuse). [See Volume 2, Appendix A for information on how to contact these sources.]

CCPDS-R Ada Success Story/UNAS Tool Design�tc "<Head 4 (12)>CCPDS-R Ada Success Story/UNAS Tool Design"�

The �xe "Command Center Processing and Display System-Repla"�Command Center Processing and Display System-Replacement (CCPDS-R) program was designed for use by US Space Command. The CCPDS-R is a highly distributed system with stringent performance and reliability standards that provides strategic missile warning and real-time communications and displays. The program entailed the development of over one million lines-of-Ada code for three physically independent subsystems deployed at various Joint Command sites.

The development team encountered a problem domain consisting of a distributed architecture that was extremely complex to model or evaluate on paper. As the program unfolded, it was realized the architecture would embody much more than just system structure. The architecture became the highest priority during the design stages, as it had to address the majority of the high-leverage design tradeoffs that were driving performance, reliability, and adaptability.

The problems the developers encountered were generally not related to physical theory — nor were they governed by any well-understood form of mathematics. They were more a function of the underlying platform implementation (i.e., the hardware and operating system) and interdependent system-level characteristics. The team realized they had a challenge but did not want to design the architecture from scratch. This, they concluded, would result in a hand-crafted, custom solution with innumerable system unknowns, ambiguities, and complexities. Anticipating changing requirements and deadlines, a bad architecture would have ultimately resulted in program failure. This was all occurring in 1987, when Ada was only 4 years old. The conventional design tools of the day lacked the technology necessary to produce the architectural solution they needed early in the development. The team decided to design an environment that could define an early architecture while concurrently assessing its quality. The SEE they developed was called “�xe "Tools:Design tools:Universal Network Architecture Services (UNAS)"�UNAS.”

The benefits of combining Ada with CASE technology are well documented on the CCPDS-R program. Of the one million source lines-of-code (SLOC), 40% were reusable. After only 1/3 of the code had been written, the productivity was 40% higher than expected. This was attributable to the use of Ada, in concert with UNAS. (Their original productivity projections were based on historical data gathered from completed �xe "Language, programming:Higher order (HOL):Formula Translation (Fortran)"�Fortran programs.) The CCPDS-R product has proven to be highly reliable. The average change to CCPDS-R’s configured software takes approximately 16 hours, based on over 700 changes [recorded at the time the report upon which this discussion is based] each of which has affected only about 60 SLOC. These significantly low figures indicate good change localization, due in part to Ada’s packaging features and a good flexible UNAS architecture.

Regarding Ada’s overall performance, the team found that quality costs less with proper use of Ada. For instance, Ada’s strong typing forces early, precise definition of software interfaces, which in turn reduce downstream integration problems and risk. The Ada compiler performs significantly more semantic and syntactic checking than non-Ada compilers, including identification and recompilation of obsolete components. Also, technical reviews and audits of in-process and completed Ada modules is enhanced by a consistent representation format throughout the product design and development.

Lt. General Carl G. �xe "O’Berry, Lt Gen Carl G"�O’Berry, former Air Force Deputy Chief of Staff (Command, Control, Communications, and Computers), stated,

Ada is an ideal language for an architecture-based environment. It allows designs to be abstract and at the same time provides the flexibility for each developer to concentrate on their part of the design. Two widely different programs, CCPDS-R and �xe "Cobra Dane"�Cobra Dane, were delivered on time, under budget, and did what the user wanted. They both used the same architecture, the same standards, and the same language — Ada. [O’BERRY93]

With UNAS enabling early software quality assessment, schedule and cost overruns of the past were turned around. Figure 10-3 illustrates the difference between the CCPDS-R code development and integration schedule, compared to traditional schedules. The traditional curve (i.e., a �xe "Grand design (waterfall)"�waterfall approach) is driven by paper reports and design reviews. This approach delays discovery of architectural design breakage until late in the development process. Late breakage almost always results in program delays and cost overruns, since defects are much more expensive to find and fix when detected and corrected earlier in the process. In contrast, UNAS permits an evolutionary approach by allowing developers to produce a series of demonstrable products/builds, enabling early detection of requirements and design flaws. These early problem resolutions are depicted in the center and left-hand curves as small blips, as opposed to the jagged breaks in the traditional curve. �xe "Royce, Walker"�Walker Royce, TRW’s UNAS development manager, pointed out that, “With [UNAS’s] evolutionary process, there are no surprises late in the program, resulting in lower risk and lower costs.” [ROYCE93]

�
Figure 10-3 CCPDS-R Time Savings Approach

The benefits of using UNAS technologies have proven successful on other programs. As Lt. General O’Berry mentioned above, UNAS was also used on the USAF Cobra Dane program which required large-scale development of real-time radar software in Ada. It is also being used by Eurocontrol’s �xe "Central Flow Management Unit"�Central Flow Management Unit that manages airspace planning throughout Europe.

Rational Apex™�tc "<Head 4 (12)>Rational Apex™"�

The �xe "Rational:Environment™"�Rational Environment™ is an integrated, interactive SEE for total life cycle control of large-scale Ada programs by enforcing the software architecture throughout development. It also has an Ada-specific editor, an incremental compiler, debugging tools, configuration management, and process and version control facilities. The environment includes features for team support, software testing, large-scale software reuse, and PDSS maintenance. In July 1993, Rational introduced a next generation SEE, Rational Apex,™ an open-systems implementation of the Rational Environment.™ Its features include:

•	Persistent intermediate representation enables the capture and management of information about a user’s software and stores it in a repository accessible by analysis and design tools, editors, compilers, debuggers, and re-engineering and maintenance tools.
•	Optimal recompilation recompiles only those individual statements or declarations (depending on the code) that are changed, added, or deleted.
•	�xe "Configuration management (CM)"�Configuration management automatically keeps detailed records of changes made to the code and prevents unauthorized changes. It enables multiple developers and teams to work from the same baselined code and generates a complete history and program tracking.
•	Rational Subsystems™ control and enforce the system architecture throughout the life cycle and implement iterative development methods that reduce risk by exposing the architecture early. They also aid in identification, packaging, and distribution of reusable components.
•	�xe "Compiler"�Compiler independence allows Apex™ to be used with any Ada compiler, from any vendor, on any platform.

ASC/SEE�tc "<Head 4 (12)>ASC/SEE"�
�tc "<>"�
According to Colonel Robert �xe "Lyons, Col Robert, Jr"�Lyons, the �xe "F-22 Advanced Tactical Fighter:Software engineering environment (SEE)"�F-22 SEE is one of the most comprehensive of its kind being implemented by DoD today. He reports that where most environments focus only on the original software development, the F-22 program extends the role of a SEE to the PDSS phase, making it a part of the total weapon system life cycle. The �xe "Aeronautical Systems Center/ Software Engineering"�Aeronautical Systems Center/Software Engineering Environment (ASC/SEE), used on the F-22 program, addresses the need for automated standards compliance by using electronic development files, documented templates, and management tools customized to standards.

COHESION™ Team/SEE�tc "<Head 4 (12)>COHESION™ Team/SEE"�

Digital Equipment Corporation, the developer of the �xe "Tools:Software engineering environment (SEE):COHESION™"��xe "COHESION™"�F-22 ASC/SEE, Rational Software Company, and a consortium of 19 other software tool vendors worked together to develop a comprehensive, universal SEE. The COHESION™ Team/SEE (CTS) runs on any combination of Digital Unix, SunOS, HP-UX, or IBM-compatible or Macintosh PC operating system, workstation, and server platforms. Working from developer (user) requirements, the team produced an Ada environment populated with plug-’n-play tools, technologies, and services conformable to user-specific needs. The CTS’ transparent, object-oriented environment manages tool behavior details; thus, it allows users, with little additional training, to mix-’n-match new tools and technologies with existing software.

The environment enhances inter-team communication, knowledge-sharing, and development maturity though advanced programming and process management functions. Figure 10-4 illustrates the categories and functions automated within the CTS environment. Browsers and library tools help in visualizing product development, while the graphical workspace paradigm automatically implements those functions needed by the developer to complete his task. Although on-line help and tutorials shorten the user’s learning curve, worldwide educational, consulting, and support services are also available to augment in-house expertise. [SHATZ96] [See Volume 2, Appendix A for information on how to contact Digital about this SEE.]

Demonstration Project SEE�tc "<Head 4 (12)>Demonstration Project SEE"�

The �xe "Demonstration Project SEE"�Demonstration Project SEE is comprised of approximately 50 workstations connected to three server-class machines. The network is distributed across two geographical sites (over a high-speed link) and is evenly divided between Sun and IBM Unix-based platforms. The SEE is populated with a set of tools that support the desired end-user functionality. The �xe "Air Force Space and Warning Systems Center (SWSC)"�Air Force Space and Warning Systems Center (SWSC) uses Ada for their application product-line, and has selected the Rational toolset (Apex, Verdix, RCI, Ada Analyzer, SoDA, and Rose) as key parts of their SEE. In addition, because the application is based on a TRW-originated architectural infrastructure, the SWSC has adopted the corresponding toolset (SALE, RICC Tools) to augment the SEE. Figure 10-5 illustrates the SWSC’s emphasis on process technology (the Process Modeling, Program Management, Process Enactment, and Metrics functionality clusters).

�
Figure 10-4 COHESION SEE Functions [SHATZ96]

Table 10-8 identifies the supplier of each tool shown in Figure 10-5. As shown, the SWSC selected Rational and TRW as major toolset providers for the Demonstration Project. Also shown in the table are four tools developed with STARS support. [RANDALL95] The integration of the SEE tools was accomplished through a combination of techniques and mechanisms. Control integration (tool invocation and communication) is provided by:

·	IBM AIX SDE WorkBench/6000 broadcast messaging service, the Process Weaver message service, operating system process services, and TCP/IP sockets. The WorkBench and operating system process controls provide local service within a user’s machine session. Process Weaver and TCP/IP provide service among users and among machines.
·	Data integration is provided by the Oracle Relational Database Management System (RDBMS) and the operating system file system.
·	Presentation and user interface integration is provided by the XWindow system and the Motif window manager.
·	Process integration is provided by the STARS-sponsored Process Support Environment toolset: PEAKS, and ProjectCatalyst (in conjunction with Process Weaver). [RANDALL95]

�
Table 10-8 Demonstration Project SEE Tool Suppliers [RANDALL95]

�
Figure 10-5 Demonstration Project SEE Tool Functionality Groups

I-CASE�tc "<Head 4 (12)>I-CASE"�

The �xe "Integrated Computer-Aided Software Engineering (I-"�Integrated Computer-Aided Software Engineering (I-CASE) program provides a means for DoD users to purchase standard software engineering environments for development activities throughout the department. I-CASE, to the maximum extent practicable, utilizes COTS hardware and software components for development environments and includes target environment runtime licenses so development activities can deliver complete executable software systems. I-CASE provides automated tool support for all MIS software developments, including development of new MIS applications, maintenance, re-engineering of existing MIS applications, and tools to support the entire software development and maintenance life cycle. I-CASE also provides the support elements necessary to implement, operate, and maintain the I-CASE environment, such as training, maintenance, and technical support.

I�CASE SEE encompasses an integrated information. The repository, critical in improving software production and quality, allows flexibility through the introduction of new standard technologies as they become available. The repository serves as a hub, synthesizing program management, configuration management, and quality assurance into the entire development process.

I-CASE, an Ada-based environment, utilizes evolving standards supported by DoD, including SQL, XWindows end-user interfaces, POSIX, the NIST Reference Model for Frameworks, and GOSIP. New technology can be added as the I-CASE marketplace matures and the I-CASE SPO closely monitors its evolution to make sure it keeps pace. The I-CASE repository data model is commercially available, allowing vendors to build I-CASE easily integrated tools. The I-CASE operational environment is illustrated on Figure 10-6.

�
Figure 10-6 I-CASE Operational Concept

The I-CASE acquisition was accomplished on behalf of the �xe "Defense Information Systems Agency (DISA)"�Defense Information Systems Agency (DISA) for use by all military services and defense agencies. The I-CASE contract was awarded in April 1994 to Logicon, Incorporated. The Logicon SEE provides full life cycle support with an automated workflow control feature that enforces chosen the software development methodologies, automatically collects metrics data, and is easily tailored as processes mature. All program data are stored in a single, integrated repository which is implemented using data bridges to those tools that do not directly support the repository data model. [See Volume 2, Appendix L for descriptions of I-CASE tools and Appendix A for points of contact.]

Ada-ASSURED�tc "<Head 4 (12)>Ada-ASSURED"�

�xe "Ada-ASSURED"�Ada-ASSURED (designed by GrammaTech) is an easy-to-use Ada development environment that includes language-sensitive editing, standards enforcement, browsing, and pretty printing in a single package that can be integrated with any Ada compiler. It was designed to increase programmer productivity and enforce compliance with accepted Ada programming style rules, including the �xe "Ada Quality and Style Guidelines"�Ada Quality and Style Guidelines developed by the Software Productivity Consortium (SPC) and recommended by the Ada Joint Program Office (AJPO).

Ada-ASSURED automates a variety of tasks so novice and advanced Ada programmers can write and maintain code faster with fewer errors. Its formatting features generate easily readable, understandable, modifiable, and reusable code. Ada-ASSURED is based on attribute grammars which create an internal tree structure. This allows code to be accessed, manipulated, and formatted with greater precision than conventional editors and pretty printers.

Ada-ASSURED follows the SPC’s Guidelines wherever possible (e.g., horizontal spacing, indentation, alignment of declarations, alignment of parameter modes, number of statements per line, automatic naming of end statements, and mode indication.) When viewing a file, pretty printing adjusts to window width. If the user resizes a window, the application is reformatted to fit the window, making it easy to read [of course, the user may select a default width (e.g., 80 characters) for printing or saving a file]. Two features, Untouchable Comments and Freeform Text, allow special handling of comments and regions of code that users want to format manually. Its pretty printing feature can run existing code in batch mode for consistent appearance. It also has a language-sensitive editor which formats code as it is typed in.

Ada-ASSURED’s LSE features include textual and structural editing. Structural editing allows accurate and efficient navigation with respect to code structure. Structural selection enables users to choose any code phrase or subphrase without manually scrolling from beginning to end. Although the user can cut and paste the subphrase, Ada-ASSURED only allows pasting where it is syntactically correct. Structural search allows users to search for and edit phrases of a particular syntactic category. For example, it can quickly replace all occurrences of a variable “i” while ignoring textual occurrences of the character “i” or any non-variable occurrence.

Ada-ASSURED supports the product-line approach to software development. The major objective of this approach is to move from the current development paradigm, where code is nearly 100% written from scratch, to the product-line that focuses on substantial reuse. Ada-ASSURED supports this approach for the following three code categories:

·	New code. Ada-ASSURED automatically enforces SPC Guidelines as code is written (i.e., stricter coding standards may be enforced through user customization of Ada-ASSURED). Formatting, standards enforcement, and syntax checking are all performed automatically.
·	Generated code. Ada-ASSURED ensures consistency and performs precise style and formatting code generation.
·	Reused code. Before code is reused Ada-ASSURED runs it through a batch mode to ensure that it is consistently formatted so it is easier to read and understand — thus, easier to maintain and reuse.

Although Ada-ASSURED provides full textual editing, it can be used with existing text editors. Other productivity features include: context-sensitive templates, hypertext name-based browsing, a user-mappable keyboard, and a scripting language. The latest version, Ada-ASSURED 3.0, supports Ada 95 and Ada 83. Upcoming enhancements include user-definable header templates and HTML links to documentation, the �xe "Ada Language Reference Manual"�Ada Language Reference Manual, and the SPC guidelines. Ada-ASSURED runs on most workstation environments, including SunOS, Solaris (Sun or Intel), Digital Unix, HP-UX, AIX, and IRIX. Ada-ASSURED’s vendor is a strategic partner of the Software Productivity Consortium, which uses Ada-ASSURED to format all examples in the current Ada 95 Guidelines. Ada-ASSURED is being used on the FAA’s National Airspace System (NAS), on the Czech nuclear plant retrofit program, on the Sustaining Base Information System (SBIS) program, and on the Navy Seawolf’s BSY-2 program. [See Volume 2, Appendix A for information on how to obtain Ada-ASSURED and points of contact for programs using the product.]

WARNING!	Because SEEs are not yet a proven technology, you must to be aware of the danger in using them. If the contractor has not previously used the proposed environment on a job of similar type and complexity, there is a good chance it will cause problems with product quality, schedule, and cost. Environment problems, if not caught early, can be fatal to any program, large or small.
 [HUMPHREY95]
PROGRAM MANAGEMENT TOOLS, METHODS, AND MODELS�tc "<Head 2 (14)>PROGRAM MANAGEMENT TOOLS, METHODS, AND MODELS"�

This technology domain involves the principles, methods, tools, and products that aid program managers. There are a variety of tools to assist management, the features and functions of which include the following:

·	User assistance features. These aid in the learning and operation of program management tools. They can include:
•	Graphical user interfaces,
•	Tutorials, sources of instruction, explanations of terminology or procedures, and on-line help,
•	Automation of program management processes or functions, and
•	User-defined customization of the interface and tool itself.
·	Program scheduling functions. These aid in accurately modeling and displaying program scheduling. This involves a variety of methods for analyzing the program mathematically and logically, and defining the constraints which effect the implementation of the Program Plan. They also contain methods for scheduling tasks and for defining the program WBS [discussed in Chapter 12, Strategic Planning]. They can include:
•	User-defined customization,
•	Forward/reverse scheduling,
•	Method-driven scheduling,
•	Task priority analyses,
•	WBS definitions, and
•	Program evaluation and review techniques (PERT).
·	Resource management functions. These aid in accurately modeling program resources. They can include:
•	Program baseline definition,
•	Planned versus actual comparisons,
•	Automatic/manual updating, and
•	“What-if” analyses.
·	Program and product estimation functions. These aid in estimating program schedules, resources, productivity, costs, and product quality, size, and complexity. They can include:
•	Critical path analyses;
•	Tutorials, sources of instruction, explanations of terminology or procedures, and on-line help;
•	Early estimations before requirements and development environments are fully defined,
•	Estimations for all phases and activities for the most commonly-used software life cycle methodologies;
•	Adaptability to various programming languages and functions;
•	Software size estimation or help in defining a method to estimate size; and
•	Schedule and support estimation.
·	Program tracking features. These aid in collecting useful progress and comparison data which can be used to identify possible problems. They can include:
•	Program baseline definition,
•	Planned versus actual comparisons,
•	Automatic/manual updating, and
•	“What-if” analyses.
·	Program reporting features.
•	Customization of program information,
•	Gantt and resource histogram charts,
•	Network diagrams (PERT charts), and
•	Cost graphs and spreadsheet reports.

NOTE:	See STSC publication, Program Management and Software Cost Estimation, April 1995, for evaluations of approved commercial program management tools. [See Volume 2, Appendix A for information on how to contact the STSC.]

Cost/Schedule/Size Estimation Models�tc "<Head 3 (14)>Cost/Schedule/Size Estimation Models"�

The most commonly-used technology for software estimation is �xe "Models:Parametric"�parametric models, a variety of which are available from both commercial and government sources. The estimates produced by the models are repeatable, facilitating sensitivity and domain analysis. The models generate estimates through statistical formulas that relate a dependent variable (e.g., cost, schedule, resources) to one or more independent variables. Independent variables are called “�xe "Cost:Driver"�cost drivers” because any change in their value results in a change in the cost, schedule, or resource estimate. The models also address both the development (e.g., development team skills/experience, process maturity, tools, complexity, size, domain, etc.) and operational (how the software will be used) environments, as well as software characteristics. Mosemann tells us that “software size estimation is the main cost and schedule �xe "Schedule:Drivers"�driver — with environmental factors adding extra dimensions.” [MOSEMANN92] The environmental factors, used to calculate cost (manpower/effort), schedule, and resources (people, hardware, tools, etc.), are often the basis of comparison among historical programs, or can be used to assess on-going program progress. Because environmental factors are relatively subjective, a rule of thumb when using parametric models for program estimates is to use multiple models as checks and balances against each other.

Parametric Model Selection and Use�tc "<Head 4 (12)>Parametric Model Selection and Use"�

Although you may use any model(s) you choose, you will need to justify their appropriateness as part of your �xe "Defense Acquisition Board (DAB)"�DAB and/or �xe "Major Automated Information System Review Council"�MAISRC reviews. The best models are those that assess the cost elements relevant to your program and with which your cost analysts are the most skilled. Experience shows that the best estimates are produced when the models are used by people who fully understand them. The best cost analysts are also those who understand the basic concepts of software engineering and who have reached a thorough understanding of the software being appraised. Conversely, the estimates produced by these same models are significantly less accurate if used incorrectly by inexperienced personnel who do not understand the software being estimated. �xe "Mosemann, Lloyd K., II"�Mosemann explains that we must be careful making our cost estimates based on current software size estimation methods:

We are now dealing with only a first generation of software cost models. Issues of software cost and schedule overruns associated with the use of these models ultimately stem from the inability to estimate software size accurately. This is the Achilles heel for our current software cost estimating models. [MOSEMANN92]

NOTE:	See Chapter 8, Measurement and Metrics, for a discussion on measuring software size.

Another important point to remember is that different models assess different parts of the software life cycle and include different cost elements in the resulting estimate. Therefore, direct, unadjusted comparisons of the results from two models is inappropriate and misleading. Also, existing software estimating models do not estimate all the costs associated with typical DoD programs. It is critical to understand exactly what costs are included in the estimate produced, as well as those not included. Alternative estimating techniques (e.g., expert opinion, analogy, cost performance report (CPR) analysis, cost estimation relationship/factor analysis) must be used to calculate costs not included in your selected software estimation model(s).

Because similar internal parameter settings may be based on different definitions, the inputs and outputs among models can vary, as well as the algorithms used to convert inputs into outputs. Further, many models include other elements (e.g., data, program management, or configuration control) that may be based on a higher or lower WBS level. Understanding the relationship of these estimates to similar, but higher or lower programmatic WBS elements is important. Without thorough knowledge on how to use each model, there is a high probability that your cost analyst will use the model incorrectly and obtain an incredible estimate. Formal �xe "Training"�training on your selected parametric model(s) is critical for overcoming this problem and for their effective and credible use, the best source of which is from the model’s vendor.

BE AWARE!	Basing your estimates on models built from data which do not correspond to, or mirror, your anticipated development will produce substantially inaccurate estimates.

While size is by far the most significant cost, schedule, and resource driver, other factors have impact. The specific environmental parameters used by the estimation models can only produce accurate results when your input parameter settings are chosen in a manner consistent with the model’s definitions. Remember, the old axiom applies: “garbage-in, garbage-out.” It is, imperative to have a solid understanding of the exact definitions of each environmental factors being used, as they vary among models. Simply inputting the values of your specific parameters (size and environmental) and letting the model calculate your cost, schedule, and resources — is not recommended. This approach relies on the database upon which the model was built, and assumes that the model’s database reflects your environment. This is a dangerous assumption, because models are typically based on data readily-available to the developer which can differ significantly from yours.

REMEMBER!	While many models use similar terms for similar environmental parameters, the way their associated characteristics are defined can differ significantly among models.

A more credible approach is to calibrate your selected models with actual data from developments similar to yours. This calibration tunes the model to your domain and software type, as well as to your program’s environment. Only after calibration can the models produce truly credible estimates. To calibrate models, it is necessary to have good, consistently-collected, credible cost, schedule, and technical data from already completed programs. Thus, past experience is used to justify estimates based on more than pure engineering judgment. For example, alternate cost drivers can be used and what-if analysis performed to determine their effect on your effort and schedule estimates. These sensitivity analyses are performed to determine to which parameters effort and schedule are the most sensitive. [MARCINIAK90] Do not artificially modify your development environment to fit the model. The effect of changing your descriptions to fit the model is to inadvertently estimate the wrong software system, thereby producing an inaccurate estimate.

CAUTION!	Do not adjust your data to the model! Always adjust the model to your program’s parameters.
�
There are a few reliable sources of cost, schedule, and technical data that can be used to calibrate your estimation models. They consist of databases containing volumes of information consistently collected over the years on a variety of software developments using different languages, from commercial, command and control, and MIS to weapon systems. The vendors of these databases are also available for assistance in developing software estimates using industry and government-wide comparative productivity and cost information. [How to access these databases of historic software development information is found in Volume 2, Appendix A. Also, you are encouraged to consult early with the Air Force Cost Analysis Agency, also listed in Appendix A.]

Accounting for the differences between your program and the historic data is often difficult. New technologies or development methods, not addressed at the time the model was designed, may not be easily taken into account. However, compared to other estimating techniques, parametric models produce credible estimates quickly, with a minimum of effort. Table 10-9 lists several currently available models and their applicability to life cycle phase coverage. [Volume 2, Appendix A lists the of vendors of these models and how to contact them.]

�
Table 10-9 Parametric Models Applicability to Life Cycle Phase

Cost Analysis Requirements Document (CARD)�tc "<Head 4 (12)>Cost Analysis Requirements Document (CARD)"�

The CARD, defining the technical and program baseline, is required for weapons systems and has been requested on several MIS programs. It contains information such as program requirements, acquisition strategy, descriptions of hardware and software, basing and deployment plans, maintenance strategy, and schedules. The CARD establishes a framework within which to ask and answer those questions necessary for successful planning. The Air Force Cost Analysis Agency (�xe "Air Force Cost Analysis Agency (AFCAA)"�AFCAA) (one of the primary users of the document) provides guidance on the content and preparation of a CARD.

Air Force Acquisition Model (for Weapon System Software)�tc "<Head 3 (14)>Air Force Acquisition Model (for Weapon System Software)"�

The �xe "Air Force Acquisition Model (AFAM)"��xe "Models:Air Force Acquisition Model (AFAM)"�Air Force Acquisition Model (AFAM) is an MS-DOS/Windows application designed to assist experienced and inexperienced personnel in performing acquisition tasks for major weapon systems programs and most non-major acquisitions. It uses a graphical display environment with a text retrieval capability based on the acquisition life cycle. It has a breakdown of processes, tasks, and sub-tasks performed throughout these phases, in addition to key acquisition references, standards, pamphlets, guides, and handbooks. [See Volume 2, Appendix A for a source of more information about the AFAM.]

Program Management Support System (PMSS)�tc "<Head 3 (14)>Program Management Support System (PMSS)"�

The Program Management Support System (PMSS) provides program managers with the skills, methodologies, and automated program management tools to develop program plans and schedules, track technical, schedule and cost progress, conduct what if analyses, verify resource management, manage configuration control, and identify program problem areas. PMSS is a fully integrated turnkey system consisting of three components provides visibility into all aspects of a program.

·	The appropriate methodology,
·	A robust, automated tool for scheduling, information processing, and specific applications development, and
·	Analysts dedicated solely to the task of program management.

Automated tools include program management support applications, information systems hardware, maintenance, supplies, training, documentation, and telecommunications interfaces. PMSS on-site program management support personnel include experienced program analysts, financial/budget/costs analysts, configuration managers and system operators. Typically, the system hardware configuration consists of Hewlett-Packard (HP) 9000 series processors and the HP-UX operating systems software, and a variety of output devices, including printers and plotters. User terminals are primarily DOS-based 486 computers. All hardware items are government owned. This configuration has been installed at over 25 sites throughout the United States and supports over 1,000 users and 44 multiple agency program offices.

PMSS provides the acquisition and maintenance management for Air Force Material Command (AFMC) logistics management systems, the Surgeon General, and other operations at AFMC headquarters and component organizations (e.g., Armstrong Labs, Air Logistics Centers, Air Force Center for Environmental Excellence, Material Systems Group, Standard Systems Group, Air Force CALS Program Office). PMSS supports evolving DoD Standard Systems initiatives, such as the Joint Logistics Systems Center (JLSC) Material Management and Depot Maintenance, the Defense Logistics Agency (DLA), Defense Distribution Systems Center and Procurement initiatives, and the Defense Information Systems Agency (DISA). The automated PMSS tool provides large capacity, real-time responsiveness, and capabilities such as:

·	Critical path networking,
·	The ability to combine multiple networks,
·	A complete and integrated graphics capability including network plots, Gantt, bar, line, histogram, scatter, PERT, and pie charts,
·	Open architecture,
·	An integrated relational database management system that uses a SQL-compliant query language,
·	An integrated 4th generation command and applications development language,
·	Modules for planning, scheduling, configuration management, cost reporting, executive information systems, and
·	Modifiable model networks and work breakdown structures.

A PMSS system is flexible enough to support classic development approaches, as well information engineering, rapid application development and prototyping, and commercial standard, best-of-breed manufacturing/production engineering processes. The ability to see problems early and react, based on informed decision-making, is often the difference between a successful program and one out of control.

One factor contributing to the success of PMSS is the contractor’s ability to apply best commercial practices such as those used by major corporations (e.g., General Motors, GTE, US West, AT&T and EDS). From a corporate perspective, the contractor providing the PMSS solution must have a broad base of experience in successfully implementing the PMSS processes within large, complex commercial operations. This experience base provides the Government with immediate access to best commercial practices which may be tailored and applied to government operations. PMSS has resulted in many tangible and quantifiable benefits, some of the more notable of which are:

·	A cost avoidance over $6 million in one AFMC/MSG program office.
·	PDMSS-facilitated process improvements in weapon systems maintenance management resulting in an estimated:
•	10% to 30% reduction in aircraft PDM cycle time,
•	4% to 15% reduction in aircraft PDM direct labor hours,
•	Savings of $220 million (NPV) in over 6 years, and
•	5:1 ROI.
·	PM/CCAT-facilitated process improvements in aircraft modification management resulting in an estimated:
•	Modification cost reduction,
•	Reduction in aircraft downtime,
•	$10 million annualized cost savings, and
•	10:1 ROI.
·	Yearly savings in excess of $1 million through the use of specifically-tailored PMSS applications.

Examples of how PMSS has been successfully implemented are the PDMSS and PM/CCAT, where PMSS is at the heart of each application.

·	The �xe "Programmed Depot Maintenance Scheduling System (PD"�Programmed Depot Maintenance Scheduling System (PDMSS) module has been deployed and implemented by the JLSC Depot Maintenance Directorate at 21 major defense depot/maintenance centers. PDMSS, a standard migration system, supports Air Force, Army, Navy, and Marine Corps mission-critical weapon systems depot maintenance operations. PDMSS provides depots with the capability to define, plan, estimate, schedule, budget, status, forecast and measure work performance on major end item maintenance, modification, and overhaul programs. The functions performed by the PDMSS support the business processes associated with major end item maintenance. Its program management methodology is adapted to each depot’s workload to support the diversity of requirements and processes. PDMSS provides continuous, uninterrupted, mission-critical support in the maintenance of over 40 major weapon systems. These weapon systems include, but are not limited to:
•	Air Force aircraft,
•	Army helicopters and combat vehicles,
•	Navy aircraft ships and submarines, and
•	Marine Corps weapon systems.
·	The Program Management/Configuration Control and Tracking (PM/CCAT) module has been implemented by the C-130 System Program Directorate (SPD) at Warner Robins Air Logistics Center. PM/CCAT supports mission-critical modification management and provides total asset visibility of C-130 fleet maintenance. PM/CCAT provides the means to integrate and execute multiple modifications in a single, consolidated schedule. PM/CCAT’s integrated modification scheduling process integrates the following information:
•	Aircraft inventory,
•	Designated time-compliance technical orders (TCTOs),
•	Top-level TCTO Data,
•	Aircraft kit availability,
•	Kit delivery schedules,
•	Contract field teams, and
•	Aircraft mishap data and PDM schedules.
·	PM/CCAT is integrated with PDMSS at Warner Robins Air Logistics Center. This integration provides the SPD and the Air Combat Command (ACC) with asset visibility, current status, and forecasts of aircraft undergoing PDM. Baselining the cost, schedule, and technical content of a program and measuring performance against those baselines, provides the means to assess the pulse a program so a manager can react quickly when problems are encountered. The three goals of the PMSS are:
•	Institutionalizing a program methodology based on planning, baselining, and performance measurement;
•	Facilitating methodology implementation; and
•	Providing program management offices with on-site contractor advice, assistance, and training in the PMSS processes. [See Volume 2, Appendix A for a source of additional information on the PMSS.]

ADARTS®�tc "<Head 3 (14)>ADARTS®"�

The �xe "Ada-based Design Approach for Real-time Systems (A"�Ada-based Design Approach for Real-Time Systems (ADARTS) is a systems and software design method for designing large, complex systems, including real-time, multiprocessor and distributed systems. ADARTS applies decomposition principles and object-oriented technology to guide systems and software engineers in creating designs which address concurrency and are resilient to change. Starting from a requirements specification, engineers use ADARTS to develop a detailed design that can be mapped either to an Ada architecture or a C+ + architecture [using the Software Productivity Consortium’s (SPC’s) CDARTS®]. ADARTS supports design for reuse, evolution, and maintenance by managing the impact of potentially critical changes in requirements or designs.

ADARTS provides detailed criteria for designing complex systems, in particular real-time systems. ADARTS is composed of a comprehensive set of activities, each of which contains entrance criteria, heuristics and guidelines, and exit and evaluation criteria. The outputs of these activities produce different architectural views of the system, which capture a particular structure and set of relationships among components of a system or subsystem. Focusing on a different set of concerns, different view allows the engineer to concentrate on a specific, critical set of system/ subsystem properties of the.

The SPC has a complete ADARTS support package that includes a detailed guidebook, case studies, training courses, on-going method improvements, video presentations, ADARTS automation support through commercial software tools, and extensive consulting services. ADARTS has been selected as the standard design methodology on several major Ada development programs, including the �xe "F-22 Advanced Tactical Fighter"�F-22 Advanced Tactical Fighter program. In addition, ADARTS (and other Consortium technologies for requirements engineering and Ada programming) has been used on key programs such as the EF-111A �xe "EF-111A Electronic Fox:System Improvement Program"�System Improvement Program and the �xe "C-130J Hercules program"�C-130J Hercules program. [See Volume 2, Appendix A for information on how to contact the SPC Clearinghouse and ADARTS support line. ADARTS is a service mark and CDARTS is a trademark of the SPC.]

Process Weaver®�tc "<Head 3 (14)>Process Weaver®"�

Process Weaver® (a registered trademark of Cap Gemini Innovation) is a process enactment, work flow management tool which improves productivity as well as quality. Process Weaver® frees developers from process concerns so they can devote more attention to development tasks by enacting (i.e., simulating) development and program management processes within the software engineering environment (SEE). Process metrics are collected and quickly converted into process improvements. Process Weaver® features include:�tc "<>Process Weaver® (a registered trademark of Cap Gemini Innovation) is a process enactment, work flow management tool which improves productivity as well as quality. Process Weaver® frees developers from process concerns so they can devote more attention to development tasks by enacting (i.e., simulating) development and program management processes within the software engineering environment (SEE). Process metrics are collected and quickly converted into process improvements. Process Weaver® features include\:"�

•	An intuitive graphical process editor (definition and enactment),
•	Control level integration with CASE, program management, and business applications,
•	Import/export to and from program management tools,
•	A client/server architecture, and
•	Use on multiple platforms (e.g., Unix, AIX, Windows).

ATTENTION!	In is strongly recommended you require your contractor to use Process Weaver® (or something equally effective) and that your program office has on-line access to the tool.
Requirements and Design Tools�tc "<Head 2 (14)>Requirements and Design Tools"�

Requirements analysis and design tools (called Upper CASE tools) have functional capabilities in eight categories. These categories and their detailed functional characteristics are itemized on Table 10-10.
	�
Table 10-10 Upper CASE Tool Functional Characteristics

�
Table 10-10 Upper CASE Tool Functional Characteristics (cont.)

NOTE:	See STSC publication, Requirements Engineering and Design, October 1995, for evaluations of approved commercial requirements ad design tools. [See Volume 2, Appendix A for information on how to contact the STSC.]

Requirements Engineering Environment (REE)�tc "<Head 3 (14)>Requirements Engineering Environment (REE)"�

REE is a requirements engineering modeling and simulation environment that validates the critical aspects of software and systems prototypes. REE is composed of two tools: Proto and the Rapid Prototyping System (RIP) and an integration component which allows each tool to send/ receive data to/from one another. The REE is hosted on a Sun platform and runs under the Unix operating system.

Proto supports the prototyping of functional requirements by modeling and executing operational capabilities to check information completeness and correctness as it flows through the system. Proto creates a logical (software) model which captures functional software specifications and supports dataflow and object-based techniques for software representation. If the software is targeted for a parallel or distributed environment, a physical (hardware) model can also be created and associated with the software model. Proto addresses high-level architectural issues, such as software-to-hardware mappings and specific hardware architecture tradeoffs. It provides an interpreter facility for model execution which produces performance statistics after an interpretation session.

RIP is a suite of graphical tools for prototyping human-machine interfaces which model screen content and layout, as well as execute associated functions for validating user interface requirements. RIP uses a “MacDraw-like” (Apple Macintosh) editor to create prototype objects. Menus specify the activities to occur during prototype execution such as removing and displaying objects. RIP has a world database facility which graphically extracts geographical areas and incorporates them into the prototype. Prototypes can be developed with static or real-time dynamic displays. [For about REE, see Volume 2, Appendix A for information on how to contact Rome Laboratory.]
��xe "Rational:Apex™"�
Sammi Development Kit (SDK)�tc "<Head 3 (14)>Sammi Development Kit (SDK)"�

Sammi is a prototyping tool that builds graphical user interfaces representing data, commands, and events of multiple processes which are connected to multiple data sources, either locally or across networks. It can be used for distributed C2 and other real-time systems development. It has been used on the �xe "Canadian Automated Air Traffic System (CAATS)"�Canadian Automated Air Traffic System (CAATS), a gas equipment monitoring system, a British railway monitoring system, and a major US highway monitoring system.

Sammi consists graphics tools and a client/server architecture that separates the user interface from the back-end control system. This separation allows concurrent application with user interface development. It also provides an open environment for future upgrades or enhancements to the core application. The Sammi toolset consists of:

•	Sammi Format Editor is a design tool for creating the interface using drawing primitives and drag-and-drop tools. The display building session results in a binary image of the window interpreted by its runtime environment.
•	Sammi Runtime Environment is a group of processes that manage all interactions between the user interface, the application, the XWindow system, Motif, and Unix.
•	Sammi �xe "Application:Programming interface (API)"�Application Programming Interface (API) is a library of functions that enable communications between runtime environment(s), all end-user applications, and data sources. [Sammi is developed by Kinesix, Houston, Texas.]

AdaSAGE�tc "<Head 3 (14)>AdaSAGE"�

AdaSAGE (developed by the Department of Energy) is a set of utilities to facilitate rapid construction of Ada systems. Its capabilities include database storage and retrieval (SQL™ compliant), graphics, communications, formatted windows, on-line help, sorting, and editing. It operates on MS-DOS, Unix System V, and OS/2 platforms. Its applications can run in the stand-alone mode or in a multi-user environment. AdaSAGE is not a development environment in the same sense as the �xe "Rational:Environment™"�Rational Environment,™ but uses Ada as a language with its own database and an SQL™ interface. It has the capability to easily embed informational databases into complex Ada applications. A developer using the AdaSAGE development system can design a product tailored to a specific requirement with quality performance and flexibility. Originally, AdaSAGE was a text-based display system, but the latest version changed the display format to a graphical database which produces charts as well as reports. Its search-and-retrieve mechanism is 10 times faster than other database-type applications in its class.

AdaSAGE is a standard development tool at the Marine Corps’ Computer and Telecommunications Activity, Quantico, Virginia, where it is used to develop 55% of all applications. They have found it often outperforms commercial DBMS products and has reduced their development time by 50%. Beginning AdaSAGE video training materials are sufficient to train a high school graduate (with one month prior Ada training) to become an efficient Ada programmer in only 2 weeks. After 6 weeks of using the advanced training materials, the same programmer is as productive as an Ada programmer with 6 months experience. Marine programmers have rewritten many applications developed in the late 1980’s adding new functionality by implementing AdaSAGE enhancements, while simultaneously reducing SLOC, increasing execution speed, reducing execution size, and improving maintainability.

The Marines and the Army are also using AdaSAGE for MISs they deploy with field units for applications such as unit inventories, personnel data, training records, and other personnel files. AdaSAGE allows this information to be uploaded into locally maintained databases for personnel and inventory updates and ordering. AdaSAGE was used by the STSC on the PC toolbox and an AdaSAGE User’s Group has been formed to assist product users. With their help, technical difficulties formerly wrestled with for days are now often be solved with a single phone call. [DePASQUALE93] [This product is free (public domain). See Volume 2, Appendix A for information on how to contact the AJPO (discussed below).]

AdaSAGE Success Story�tc "<Head 4 (12)>AdaSAGE Success Story"�

According to the Ada Information Clearinghouse (AdaIC) (discussed below), on July 27, 1994, the �xe "Type Commander Readiness Management System (TRMS)"�Type Commander Readiness Management System (TRMS) won the category “Best Object-Based Application Developed Using Non-Object Tools” at the Object World Conference in San Francisco. Developed by the Naval Computer and Telecommunications Area Master Station LANT (NCTAMS LANT), the system defeated Pacific Bell, the other finalist, and 60 other contenders. The winning Ada team used the AdaSAGE development environment to re-engineer the legacy Type Commander Headquarters Automated Information System (THAIS), consisting of 2,000 applications and 2.8 million lines-of-COBOL. Their first program, they completed it on-time, within budget.

TRMS is the successful re-engineering of a legacy COBOL system into a state-of-the-art, object-based Ada application. A multifaceted, comprehensive information system serving diverse information needs of six Navy Type Commander staffs, it supports the business areas of combat readiness, casualty reporting, aviation maintenance, logistics, inspections and training. The re-engineering effort entailed information engineering, rapid prototyping, and enhancing the existing system and its documented backlog of change requests. TRMS, a distributed application, written in Ada 83, and running in a client server PC LAN environment, consists of over 150,000 lines-of-Ada. Of these, approximately 40% are calls into AdaSAGE, representing an estimated 150,000 additional lines-of-Ada. Using AdaSAGE allows developers to apply some object-oriented techniques to Ada 83. With internal reusable libraries representing approximately 9% of the application, the NCTAMS LANT contributed its library of reusable Ada components (over 12,000 lines-of-code) to the Navy reuse center. After being successfully fielded at six Navy Type Commanders, TRMS has exhibited the following advantages over the original COBOL THAIS system:

·	The cost of equipping the six sites with server hardware equated to the cost of maintaining the THAIS system for just one year.
·	The 2.8 million lines-of-COBOL have been reduced to just 245,000 lines-of-Ada.
·	The station reduced its TRMS maintenance staff from 30 to 12 engineers.
·	As a LAN-based system, TRMS is available to more staff members than with the THAIS system.
·	As a PC-based product, TRMS can be used by any activity that has a PC or PC LAN.
·	The usefulness of the system has expanded beyond its original customer base, thereby further leveraging the investment in its development.
·	TRMS Ada components have been reused in other development programs. Reusing one major component can save approximately $50K in development cost.

The program has proven to be a cost effective alternative to the continued maintenance of the legacy system. The object-based nature of the Ada language, combined with the object-oriented approach of the Ada/AdaSAGE development environment have helped make software development easier and more cost effective. The benefits of the object-based/object-oriented approach continue to multiply as these methods are applied to future development programs. [See Volume 2, Appendix A for a source of additional information on the TRMS and on how to contact the AdaIC.]

Teamwork®/Ada�tc "<Head 3 (14)>Teamwork®/Ada"�

Teamwork®/Ada (developed by Cadre Technologies, Inc.) is an graphical modeling, �xe "Object-oriented:Development (OOD)"�object-oriented design and documentation tool, integral to I-CASE, which provides full notation and checking support for building, storing, reviewing, and maintaining complex Ada designs and code. It has an extended Buhr notation set for hierarchical navigation and the ability to graphically model an Ada design architecture. The Source Builder and Design-Sensitive Editor (DSE) features support iteration between design and code. Source Builder analyzes design diagrams and produces compilable Ada code frames for program unit bodies as well as specifications by checking diagrams against established criteria to verify design integrity. The Teamwork/DSE is a configurable, language-sensitive editor that enforces the graphical design specified by its Ada Structure Graph Editor feature. It also provides interface, multi-window editing, user-defined menus, custom key binding, user-defined macro routines, and formatted templates. Teamwork®/Ada allows the addition of information to the code generated directly from the tool-specified, architectural design to assure consistency between the design and Ada source code. It has a reverse-engineering capability to help document and maintain existing code.

The Ada Structure Graph (ASG)_Builder feature reads existing Ada code and creates ASGs that reveal the existing source code’s architecture. The DSE provides the functionality to propagate ASGs with actual source code. The combination of the ASG_Builder and DSE provides the capability to document, reuse, re-engineer, and maintain existing Ada code. Teamwork®/Ada contains a cross-referencing tool to locate object dependencies in any given module, to identify internal objects and where and which ones are being referenced. This helps in determining the objects complexity and architectural change ripple effects. The tool generates Tables of Contents (lists of figures, diagrams, and tables) and bullet/numbered lists and increases productivity and quality at each development stage. Teamwork®/Ada components include:

•	Interactive graphical editors,
•	Data flow diagrams, process specifications, data dictionaries, and entity relationship diagrams,
•	A syntax-directed editing system (Windows),
•	A program library,
•	Model configuration management functions,
•	SQL™ query and browsing functions,
•	Cross-referencing,
•	An annotation facility for note creation (notes may be associated with any Teamwork®/Ada object),
•	Consistency checking for verifying requirements, design, and data dictionary elements, and
•	A program data activity facility. Figure 10-7 summarizes Teamwork®/Ada’s capabilities.

�
Figure 10-7 Teamwork®/Ada Overview

Common Object Request Broker Architecture (CORBA)�tc "<Head 3 (14)>Common Object Request Broker Architecture (CORBA)"�

CORBA is a commercially-available specification for an object-oriented messaging system. An implementation of this specification, called the Object Request Broker (ORB), provides an interface between independently-developed, object-oriented applications. Acting as a go-between, the ORB is a communications mechanism by which objects make requests and receive responses.

The CORBA specification was developed by a (300-member) industry consortium, the �xe "Object Management Group (OMG)"�Object Management Group (OMG). The OMG comprises many key industry software producers (large and small), such as Digital, Hewlett-Packard, IBM, Sun, and other software vendors. CORBA, part of a larger OMG specification, the Object Management Architecture (OMA), has four main components:

·	Object services are lower-level object interfaces, such as persistence and access control.
·	Common facilities provide higher-level standardized interfaces to common application services, such as mailers and printers.
·	Application objects are the arbitrary collection of independently-developed applications (e.g., spreadsheets, word processors).
·	Object request broker (ORB) provides the communication mechanism by which objects make requests and receive responses by locating, activating, or invoking the appropriate operations. Interfaces between the ORB and objects depend on, and make use of, an �xe "Language, programming:Interface definition language (IDL)"��xe "Interface:Interface Definition Language (IDL)"�interface definition language (IDL). These interfaces (called IDL specifications) provide a public API to developers.

A Sun product built using CORBA is called Distributed Objects Everywhere (DOE). Digital’s implementation (part of the COHESIONWorks product originally called ACAS) is now called Object Broker. Another implementation, called Orbix (marketed by an Irish company, Iona Technologies) is available on a variety of platforms, including Sun. The OMG is incrementally developing specifications for the object services and common facilities.
[CARNEY94]
Testing Tools�tc "<Head 2 (14)>Testing Tools"�

For software to be truly reliable, it must undergo rigorous testing and verification throughout its development. Automated maintenance of test environments is an important productivity enhancer because programmers spend a substantial amount of time building and rebuilding them. Automated tools perform this function with greater efficiency and accuracy than manual methods — in less time, for less money. A well-organized test environment saves time during unit testing, systems testing, systems reviews, and quality control. �xe "Computer-aided software testing (CAST)"�Computer-aided software testing (CAST) tools, classified by the STSC, are presented on Table 10-11. [NOTE: Tools that manage test resources and support testing of requirements and designs are grouped under the management and requirements/design tool categories above.]

�
Table 10-11 STSC Test Tool Classifications

NOTE:	See STSC publication, Software Test Technologies Report, August 1995, for evaluations of approved commercial testing tools. [See Volume 2, Appendix A for information on how to contact the STSC.]
��tc "<Head 3 (14)>"�
Rate Monotonic Analysis for Real-Time Systems�tc "<Head 3 (14)>Rate Monotonic Analysis for Real-Time Systems"�

Real-time systems are often seen as a “niche” within the software world — a crucial niche. Real-time software is often embedded in life-critical systems (e.g., avionics and other transportation systems, space stations, patient monitoring equipment, process control systems in chemical processing and nuclear power plants, and high-energy physics experiments). [FOWLER93] In these systems, multiple software tasks compete for limited resources [e.g., the central processing unit (CPU)]. Typically these tasks, such as monitoring altitude, monitoring cabin pressure, or controlling the fuel injection level on an aircraft, have different priorities, can occur at regular or erratic intervals, and require varying amounts of CPU resources to complete their jobs. Real-time systems also must complete critical tasks (e.g., the lowering of landing gear) within finite deadlines — or the entire system is at risk. Without the appropriate handling of schedules and priorities, a lower priority task of relatively long duration (e.g., intermittent monitoring of passenger cabin pressure) can monopolize the CPU at the expense of a highly one. In real-time applications, system reliability depends, not only results, but on that point in time when outputs are generated. The quality attributes for real-time systems include:

·	Respondability. Predictably fast response to urgent events.
·	Schedulability. Schedulability is the degree of resource utilization at or below which timing requirements of can be assured (i.e., the number of timely transactions per second).
·	Stability. Stability under transient overload is when the deadlines of selected critical tasks are guaranteed even though the system is overwhelmed by events and cannot meet all task deadlines. [SHA93]

Rate monotonic analysis (RMA) is a simple, practical, mathematically-sound method for guaranteeing all real-time timing requirements are met. RMA allows engineers to understand and predict the timing behavior of real-time software to a degree not previously possible. The �xe "Rate monotonic analysis (RMA):Rate Monotonic Analysis for Real-Time Systems (RMA"�Rate Monotonic Analysis for Real-Time Systems (RMARTS) program at the SEI demonstrated how to design, implement, troubleshoot, and maintain real-time systems using RMA to a degree not previously possible. Rate monotonic scheduling theory and its method of application, RMA, is a scientific approach that can be used before system integration to determine how well schedule requirements are met, and under what conditions task completion is guaranteed. RMA solves difficult problems early in development, and when properly applied, results in significant savings, not only of CPU resources, but of system development and operational resources, such as hardware. [FOWLER93]

�xe "Rate monotonic analysis (RMA):Generalized Rate Monotonic Scheduling (GRMS)"�Generalized Rate Monotonic Scheduling (GRMS) theory (as cited by the SEI) is a useful tool for meeting real-time requirements by managing system concurrency and timing constraints at the tasking and message passing levels. In essence, this theory assures all tasks meet their deadlines as long as system utilization lies below a certain threshold and appropriate scheduling algorithms are used. This method forces analytic, engineering discipline on real-time systems development and maintenance. [SHA93]

NOTE: 	See the article in Volume 2, Appendix P, Chapter 10 Addendum B, “Rate Monotonic Analysis: Did You Fake It?”
�
AdaQuest�tc "<Head 3 (14)>AdaQuest"�
�tc "<>"�
AdaQuest is an Ada quality evaluation and testing toolset. Used during detailed design, coding, testing, and maintenance, it is a collection of static and dynamic analysis tools for assessing code quality, measuring test thoroughness and run-time performance, and capturing information needed to develop, maintain, reuse, and re-engineer large Ada systems. The Static Analyzer feature detects logic errors (e.g., infinite loops, unreachable statements, and data-flow anomalies), creates global cross references (e.g., identifies dependencies for objects, types, exceptions, and subprograms, or for user-defined symbols), illustrates software structure (e.g., application call graph, control-flow structure, &WITH clause dependencies), and identifies violations of common coding guidelines to improve program maintainability, portability, and reliability. The Dynamic Analyzer feature reports unit and branch execution coverage, measures performance timing (i.e., the minimum, maximum, and average time spent in user-specified portions of an application), and maintains test histories reflecting incremental results of a single test run or cumulative results over a set of test runs. The benefits of using a verification tool, such as AdaQuest, are summarized on Figure 10-8.

�
Figure 10-8 Benefits of Automated Code Verification

AdaQuest has automated Ada metrics collection and analysis capabilities that support the full spectrum of development activities. It allows engineers to incrementally measure progress and check compliances with application-specific quality standards, and provides program managers with visibility into the development process (i.e., SEI CMMSM Level 2 and above). AdaQuest features include:

·	Rome Laboratory’s Software Quality Framework,
·	Cyclomatic complexity analysis,
·	SEI software size measurements,
·	SPC Ada Quality and Style Guidelines conformance checks, and
·	Language feature profiles.

All metrics data can be exported to spreadsheets, databases, and popular public-domain graphics utilities for additional analysis. Built on the AJPO-adopted Ada Semantic Interface Specification (ASIS) [discussed below], it has an open interface to the semantic content of an Ada library which makes it plug-compatible with any ASIS-supported Ada complier (e.g., Rational/Apex; Rational/Verdix, Alsys/RISCAda, and Alsys/AdaWorld). [More information about AdaQuest can be obtained from the STSC.]

AdaWISE�tc "<Head 3 (14)>AdaWISE"�
�tc "<>"�
AdaWise is a suite of “lightweight” verification tools. Development was co-sponsored by STARS and Rome Labs and implemented by Odyssey Research Associates (ORA). The AdaWise toolset reflects embedding of formal Ada verification concepts into tools that are usable and useful for all Ada programs. AdaWise supports validation of properties, including the absence of run-time anomalies, such as: incorrect order dependence, erroneous program executions, and accessing program variables before they have been assigned a value. This new technology transitions formal methods concepts into easily usable, lightweight tools. The AdaWise toolset utilizes the ASIS Ada Semantic Interface Specification and thus also serves to validate the utility of the ASIS STARS sponsored product. AdaWise has been integrated with Softbench as part of the Unisys STARS SEE. [NOTE: “Lightweight,” as used here, refers to the application of formal verification concepts to validation and testing problems rather than full-scale provable specifications.]

AdaTEST�tc "<Head 3 (14)>AdaTEST"�

AdaTEST is used to test mission-critical Ada software (e.g., aircraft avionics systems, weapons systems, air traffic management systems, and nuclear reactor control systems). It combines support for dynamic testing (via a full test harness facility) with test coverage and static analysis (e.g., coding and complexity metrics) and can be executed in host and target environments. Its testing capabilities include statement, decision, condition, and exception coverage. Table 10-12 summarizes AdaTEST’s features. [See Volume 2, Appendix A for information on how to contact the tool vendor.]

�
Table 10-12 AdaTEST Features and Functions

MathPack �tc "<Head 3 (14)>MathPack "�

�xe "Tools:Testing tools:MathPack"��xe "MathPack"�MathPack is an Ada mathematical library with over 350 mathematical subprograms in 20 generic Ada packages. Subprograms provide solutions to a range of mathematical problems including linear systems, eigensystems, differential equations, integration, interpolation, transforms, special functions, elementary functions, basic linear algebra, random numbers, probability, and statistics. It also defines data types and numerical, physical, and chemical constants. MathPack’s subprograms are based on proven numerical algorithms, such as LINKPACK for linear systems, EISPACK for eigensystems, and QUADPACK for integration. It also provides a binding to the Generic Package of Elementary Functions (GPEF). [Contact the STSC for more information about MathPack.]

McCabe Design Complexity Tool �tc "<Head 3 (14)>McCabe Design Complexity Tool "�

The McCabe Design Complexity Tool calculates the McCable Design Complexity, analyzes a application’s design, and automatically generates design paths that show the calling structures of modules. Also generates sub-trees that graphically represent the calling structure of an application. It can be used to monitor the effect of system of changes and the insertion of new modules on existing modules. [See Volume 2, Appendix A for information on how to contact the vendor of this tool.]

NOTE:	See Chapter 8, Measurement and Metrics, for a discussion on McCabe Complexity Analysis. Also see the article in Volume 2, Appendix P, Chapter 8 Addendum B, “Software Complexity,” by Thomas McCabe.

McCabe Instrumentation Tool�tc "<Head 3 (14)>McCabe Instrumentation Tool"�

The McCabe Instrumentation Tool is a dynamic testing analysis tool that graphically and textually represents tested and untested paths. It cumulatively monitors code execution and generates all remaining unit-level and integration tests needed. The tool can also be used to isolate error-prone sub-trees and modules. [See Volume 2, Appendix A for information on how to contact the tool vendor.]

McCabe Slice Tool�tc "<Head 3 (14)>McCabe Slice Tool"�

The McCabe Slice Tool is a data-driven visualization tool that traces data through the system’s architecture. It aids in relating the software’s functional execution to its internal structure. It highlights lines-of-code and the graphical section, “slice,” of a system’s architecture that was traversed during the transaction. The tool can be used for debugging, downsizing, requirements traceability, and for identifying redundant and reusable code.

Analysis of Complexity Tool (ACT)�tc "<Head 3 (14)>Analysis of Complexity Tool (ACT)"�

The �xe "Tools:Testing tools:Analysis of Complexity Tool (ACT)"��xe "Analysis of Complexity Tool (ACT)"�Analysis of Complexity Tool (ACT) examines the control structure of a module. It calculates �xe "Complexity:McCabe Cyclomatic Complexity Metric"��xe "McCabe:Cyclomatic Complexity Metric"�McCabe Cyclomatic Complexity, produces module flow graphs that graphically represent control structure, and generates a basic set of test paths and corresponding test conditions. [See Volume 2, Appendix A for information on how to contact the vendor of this tool.]

Battlemap Analysis Tool (BAT)�tc "<Head 3 (14)>Battlemap Analysis Tool (BAT)"�

The Battlemap Analysis Tool (BAT) analyzes source code at the system level and calculates McCabe essential complexity. The primary applications of BAT are in software maintenance, reverse engineering, systems analysis, and program management. Structure charts, called Battlemaps, graphically represent system design. Modules are identified as testable, maintainable, or unmaintainable. The tool identifies error-prone modules and subsystems and user-defined indicators that reflect work completion, code acceptance, or the presence of design specifications. It calculates �xe "Complexity:McCabe Design Complexity"��xe "McCabe:Design Complexity"�McCabe Design Complexity, analyzes an application’s design, and automatically generates design paths that show module calling structures. Sub-trees, graphically representing the calling structure are also generated. The tool can be used to monitor the effect that module changes and new module insertions of have on a system. It provides a basic set of Sub-trees necessary to perform rigorous integration testing, and by showing the architectural design, it aids in reverse engineering. [See Volume 2, Appendix A for information on how to contact the tool vendor.]

TestMate�tc "<Head 3 (14)>TestMate"�

TestMate (developed by Rational Software Corporation) is a software analysis tool that tests life- or safety-critical systems. Based on technology developed to test �xe "Boeing 777"�Boeing 777 avionics source code (two million lines-of-Ada), TestMate meets FAA requirements for �xe "Modified condition decision coverage (MCDC)"�modified condition decision coverage (MCDC). MCDC ensures code is fully tested by checking software variables (i.e., conditional expressions). Whenever a statement can have more than one outcome (e.g., an if-then formulation), each outcome and conditional expression of that outcome must be tested. Because no unnecessary software is allowed in a flight box, TestMate’s checking procedure ensures no unintended functionality shows up in an avionics system while in flight.

Also as part of the 777 program, Boeing worked with FAA engineers in developing the TestMate algorithm that identifies untested code. Prior to its development such testing was performed manually. TestMate’s capabilities include integrated test management, test-results analysis, and noninvasive coverage analysis. Its test management features provide a consistent framework to manage creation, storage, and retrieval of test cases and to determine every potential outcome of each conditional expression. It automates the testing process by combining test cases into test lists and executing those lists against multiple testing scenarios and by defining specific conditions, parameters, and scenarios for each test case.. The test management framework supports reuse of test cases across different phases of the software testing process. The TestMate toolset is being used by the Air Force, the Naval Research Laboratory, Westinghouse Corporation, Honeywell, and other avionics vendors working on DoD programs. [See Volume 2, Appendix A for information on how to contact the tool vendor.]

NOTE:	See STSC publication, Documentation Technology Report, April 1995, for evaluations of approved commercial documentation tools. [See Volume 2, Appendix A for information on how to contact the STSC.]
�Re-engineering Tools�tc "<Head 2 (14)>Re-engineering Tools"�

The STSC has identified several re-engineering tools domains, as illustrated on Figure 10-9.

�
Figure 10-9 Re-engineering Process Models [STEVENS92]

NOTE:	See Chapter 11, Software Support, for a discussion on re-engineering.

•	Analysis tools. These tools depict the attributes of a software application through dynamic or static code analysis and produce metrics, diagrams, and reports. The source code remains unaltered through this process. Process outputs include complexity analyses, reusability analyses, and variable cross-references.
•	Code enhancement tools. These tools include restructuring and redocumentation tools. Restructuring tools automate source code restructuring and produce code which is functionally equivalent to its input. Redocumentation tools produce documentation through analysis of source code.
•	Code reversal tools. These tools automate reverse engineering by reading and abstracting source code. They create a repository of information compatible with most CASE tools.
•	Code-to-code transformation tools. These tools automate the translation of source code from one language to another producing a functionally equivalent output. [STEVENS92]
•	Data name rationalization tools. These tools enforce uniform naming of the same logical data item across all software products.
•	Data re-engineering tools. These tools perform all the re-engineering functions associated with source code (i.e., reverse engineering, forward engineering, translation, redocumentation, restructuring/normalization, and retargeting) which act on data files.
•	Reformatting tools. Redocumentation tools which make source code indentation, bolding, capitalization, etc., consistent.

NOTE:	See STSC publication, Re-engineering, Volume 1, 1995/1996, for evaluations of approved commercial re-engineering tools. [See Volume 2, Appendix A for information on how to contact the STSC.]

SORTS�tc "<Head 3 (14)>SORTS"�

The �xe "Tools:Measurement/metrics tools:SOftware Reliability Modeling and Analysis Tool S"��xe "Tools:Re-engineering tools:SOftware Reliability Modeling and Analysis Toolset"�SOftware Reliability Modeling and Analysis Toolset (SORTS) was designed to remedy problem software delivered with latent development errors (low reliability) and poorly configured and documented design (low maintainability). It was developed by Science Applications International Corporation (SAIC) to support the �xe "Defense Meteorological Satellite Program (DMSP)"�Defense Meteorological Satellite Program (DMSP), the �xe "Global Positioning System (GPS)"�Global Positioning System (GPS) program, and the �xe "Air Force Satellite Control Network Common User El"�Air Force Satellite Control Network Common User Element (AFSCN/CUE) program. Developed in conjunction with hardware reliability and maintainability (R&M) modeling and analysis tools, SORTS has the capabilities to:

•	Measure software R&M,
•	Generate software metrics,
•	Provide the basis for correlating metrics to R&M,
•	Assess software quality,
•	Improve software development and support process maturity levels,
•	Track growth and decay trends of R&M parameters,
•	Reduce time spent on change request analysis, and
•	Allow realistic measures for maintenance manhours.

SORTS was also designed to support measurement programs through its ability to:

•	Process, extract, and use software size, quality, effort, and schedule metrics to improve the software support process,
•	Indicate which metrics are predictors of software R&M and life cycle costs,
•	Track and evaluate progress in software support process improvement, and
•	Assess the quality of the software product. [For information on how to contact the SORTS vendor, SAIC, see Volume 2, Appendix A..]
Measurement Tools�tc "<Head 2 (14)>Measurement Tools"�

For processing metrics data, tools are quite mature and should be given priority over manual, time consuming techniques. Many tools exist for collecting and analyzing metrics data, ranging from error checking, software consistency checking, and error analysis to complexity measurement. When using analysis tools, you should compare metrics taken before and after the tools were employed. [YOURDON92] Tools such as �xe "Tools:Testing tools:AdaQuest"��xe "Tools:Measurement/metrics tools:AdaQuest"��xe "AdaQuest"�AdaQuest, an automated defect detection and verification tool [discussed above], and �xe "Tools:Measurement/metrics tools:AdaMAT"�AdaMAT, an automated software quality verification tool, are examples of tools you might consider for your metrics program. These tools are largely automatic and nonintrusive, and can reduce manual efforts associated with metrics collection by 80% to 90%.
�NOTE:	Many of the testing tools discussed above have measurement data collection and reporting capabilities.
�tc "<Head 3 (14)>"�
AdaMAT�tc "<Head 3 (14)>AdaMAT"�

AdaMAT (developed by Dynamics Research Corporation and marketed by Rational) is a comprehensive tool for static analysis and quality metrics that helps in understanding Ada code and in locating anomalies that cause maintenance, reliability, and portability problems. AdaMAT checks for adherence to hundreds of Ada quality principles, the use of which improve software quality. Other metrics address specific programming concerns, such as code simplicity, modularity, self-descriptiveness, exactness, clarity, and independence. It produces management reports and reduces the effort required to perform effective design and code walkthroughs by automatically identifying unnecessarily defect-prone, machine-dependent, or complex software characteristics. AdaMAT has life cycle applicability by generating reports that reveal critical code details at specified development stages, making it easier to identify problems and errors early. Tool output can also be displayed in graphic format on an IBM PC or compatible, via AdaMAT’s Metrics Display Tool. The benefits of using AdaMAT as a measurement tool are:

·	Detection of downward quality trends resulting from failure to adhere to software engineering standards. Manpower and computing resources can be redirected before poor quality code causes schedule slips and cost overruns.
·	Developer’s skills and computing resources can be allocated to tasks based on module characteristics (e.g., large amounts of tasking, numerical processing, specialized I/O, or machine dependencies).
·	Productivity levels can be restored to acceptable levels after the intervention of testing or demonstration milestones.
·	Consistent design and coding among different development groups and individuals can be assured.
·	Individual programmer training requirements can be determined to improve their understanding and correct use of specific Ada features.
·	Training programs can focus on specific quality principles to enforce their use. [For more information, see Volume 2, Appendix A.]

Amadeus Measurement System�tc "<Head 3 (14)>Amadeus Measurement System"�

The Amadeus Measurement System (by Amadeus Software Research, Inc.) is an automated software metric collection, analysis, reporting, graphing, and prediction system for software process and product analysis and improvement. Amadeus increases program visibility and facilitates informed technical and management decision making — enabling better, faster, and cheaper products. Amadeus provides a flexible system for collecting different types of metric data, ranging from automated data collection to interactive data entry. Example categories of metrics collected are: errors, changes, size, structure, cost, schedule, effort, and cycle time. Amadeus has a user-tailorable, user-extensible open architecture that can integrate Amadeus-supplied tools and foreign tools.

Amadeus provides a template language, similar to a macro language, which allows users to define and customize their own metrics. Users can define a template set that supports a particular metric set, and then share that set throughout an organization to facilitate consistent data collection and interpretation. Example template sets have been developed for SEI CMMSM Levels 2 and 3, Air Force Technical Performance Measurement (TPM) metrics, telecommunications In-Process Quality Metrics (IPQM), and numerous source code metrics including size and cyclomatic complexity.

The Amadeus Basic Package provides infrastructure, tools, and pre-defined templates for metric graphs, reports, data export, data import, and data entry. The Amadeus Customization Package provides full metric templates user-customization. The Amadeus Prediction Package provides metric prediction capabilities using classification analysis. The Amadeus source code metric collection tools analyze various source code languages (e.g., Ada, C, C++, Unix Csh scripts).

Amadeus generates PostScript files for metric graphs and ASCII files for metric reports. Metric data can be imported from an ASCII file or the “tab-separated-value” spreadsheet format. Metric data can be exported to an ASCII file or the “comma-separated-value” or “tab-separated-value” spreadsheet formats. Amadeus provides an application programmer interface for C or Unix Csh scripts that can be used for automatic data collection and integration with other tools. Amadeus metric templates, data formats, and application programmer interface are platform independent and can be reused without change across all Amadeus-supported platforms. Amadeus clients and servers are fully interoperable across all Amadeus-supported platforms, i.e., an Amadeus client can execute on one platform type (such as Sun, IBM, etc.) and send/receive data to/from an Amadeus server executing on another platform type (such as HP, Digital, etc.). The Amadeus products are available on these platforms: Sun Sparc SunOS 4.1.X, Sun Sparc Solaris 2.X, IBM RS/6000 AIX 3.2, DEC Alpha Digital Unix 3.X, DEC VAX VMS 5.5-2, HP 9000/700 HP-UX 9.0, and SGI Indy IRIX 5.3. [For information on how to contact the Amadeus vendor, see Volume 2, Appendix A.]
Configuration Management Tools�tc "<Head 2 (14)>Configuration Management Tools"�

Configuration management (CM) for a large development effort, involving multiple software releases and developers, must be supported by automated tools. A CM toolset should not simply maintain files — it should support:

·	Release management;
·	Problem report management;
·	Control of hardware, software, data, and builds;
·	Status accounting;
·	Audit trails; and
·	The relationships among software products.

A highly-automated CM toolset is required when vast amounts of CM data are generated during large, software-intensive developments. Such a toolset should provide:

·	A mechanism for storing, maintaining, and retrieving source and object code and its supporting documentation;
·	A mechanism for automatically identifying all elements of a configuration item;
·	A mechanism for interfacing the CM tool with the tools that build the deliverable software; and
·	A mechanism to maintain a historical log of configuration changes by storing the incremental changes to each version so an old version can be recreated.

Configuration management tools can have all, or combinations of, the following features:

·	Version control,
·	Configuration support,
·	Process support,
·	Change control,
·	Team support,
·	Library/repository support,
·	Security/protection,
·	Reporting/query,
·	Tool integration,
·	Build support,
·	Release management,
·	Customization support, and
·	Graphical user interface (GUI).

NOTE:	See STSC publication, Software Configuration Management, September 1995, for evaluations of approved commercial configuration management tools. [See Volume 2, Appendix A for information on how to contact the STSC.]
�tc "<Head 3 (14)>"�
Process Configuration Management Software (PCMS)�tc "<Head 3 (14)>Process Configuration Management Software (PCMS)"�

The Process Configuration Management Software (PCMS) (developed by Lockheed Martin Aeronautical Systems) is an example of a CM tool used on the F-22 Program. It allows software engineers from over 40 different vendors to work concurrently by automatically identifying problems within the mainstream program or with changes proposed by the independent vendor groups. The tool is used after the development process is properly planned and partitioned into separate work functions. F-22 software teams are working in parallel by using the tool which alerts them when independent inputs cause conflicts. As conflicts do occur, PCMS aids in understanding the relationships among the effected parts of the program.

On highly complex programs like the F-22, PCMS’ configuration management function streamlines the approval process by providing a detailed audit trail, and by documenting who is making decisions, what they are, and when. Because decision-makers can log-on using their password on any terminal, personal accountability is strengthened. A fully-documented process control mechanism allows users to choose which tool features are loaded for their specific needs. No programming is required to adjust the model, which can be customized using pull-down menus.

PCMS can tightly control the software development process so no new code is written without a change authorization document. The user can also loosened the tool’s control to encourage innovation and adjust the model’s built-in 80% accuracy to suit individual accuracy needs. The F-22 software avionics change process is being managed though on-line change control meetings (traditionally involving travel and 3-4 hours of each team member’s time). These meeting are now accomplished in about 5 minutes at team members’ own locations. [NORDWALL95]
TECHNOLOGY SUPPORT PROGRAMS�tc "<Head 2 (14)>TECHNOLOGY SUPPORT PROGRAMS"�

There are several programs that provide assistance in transitioning technology from and to DoD programs. They include the:

·	Ada Joint Program Office (AJPO),
·	Advanced Computer Technology (ACT) Program,
·	Computer Resource Technology Transition (CRTT) Program, and
·	Embedded Computer Resources Support Improvement Program (ESIP).

Ada Joint Program Office�tc "<Head 3 (14)>Ada Joint Program Office"�

The Ada Joint Program Office (AJPO) was responsible for the original definition of Ada 83 and �xe "Ada:Ada 95"�Ada 95. The AJPO also has responsibility for the validation/evaluation of Ada compilers, sponsorship of the �xe "Ada Information Clearinghouse (AdaIC)"�Ada Information Clearinghouse (AdaIC), the common Ada �xe "Tools:Software engineering environment (SEE):Ada programming support environment (APSE)"�programming support environment (APSE) interface set, and the �xe "Ada Technology Insertion Program"�Ada Technology Insertion Program. In the �xe "Defense Management Report Decision 918"�Defense Management Report Decision 918, the AJPO was one of the activities recommended for transfer to �xe "Defense Information Systems Agency (DISA)"�DISA. This transfer to DISA’s Joint Interoperability and Engineering Organization was one of many initiatives for consolidating DoD software standards activities under one agency. Ada �xe "Ada:Technology:Insertion Program"��xe "Technology:Insertion:Ada Technology Insertion Program"�Technology Insertion Program products have included:

·	AdaSAGE enhancements,
·	A Broad-Based Environment for Test (ABBET),
·	Computer-aided Prototyping System for Real-Time Software,
·	Ada Reuse in a Trusted Message Processing System, and
·	Reusable Ada Products for Information Systems Development (�xe "Reuse:Repository:Reusable Ada Products for Information Systems Deve"�RAPID).

	AJPO bindings programs have included:

·	�xe "Decimal arithmetic"�Decimal arithmetic,
·	�xe "Standards:Government Open Systems Interconnection Profile (G"�GOSIP,
·	�xe "Standards:Portable Operating System Interface for UNIX (POSI"�POSIX (real-time),
·	�xe "Structured Query Language (SQL™)"��xe "Standards:Structured Query Language (SQL™)"�SQL,™
·	�xe "Standards:XWindows"��xe "XWindows"�XWindows, and
·	�xe "Standards:1553 databus"��xe "1553 databus"�1553 data bus.

The AJPO provides a source of electronic information on the Ada language and Ada activities. The Ada Information Directory on the AJPO host contains all the files available on the AdaIC Bulletin Board. The Ada 95 Directory contains all the files on the Ada 95 bulletin boards and the tools directory contains pre-canned searches from the AdaIC products and tools database. The AJPO host is accessible to authorized users of the Defense Data Network (DDN) and other Internet networks. [AdaIC92] [See Volume 2, Appendices A and B for information on how to contact the AJPO.]

Ada Information Clearinghouse (AdaIC)�tc "<Head 4 (12)>Ada Information Clearinghouse (AdaIC)"�

The Ada Information Clearinghouse (AdaIC) (sponsored by the AJPO) provides a full spectrum of information on the Ada programming language. Through flyers, databases, and a newsletter, information is available on Ada community events, working groups, research, publications, and issues. This information can be obtained in hardcopy or electronically from the bulletin board or the AJPO directory on the Internet. [See Volume 2, Appendices A and B for information on how to contact the AdaIC.]

PAL�tc "<Head 4 (12)>PAL"�

The �xe "Public Ada Library (PAL)"��xe "Ada:Public Ada Library (PAL)"�Public Ada Library (PAL) is a collection of Ada software, courseware, and documentation on the Internet. The purposes of PAL are to make Ada-oriented software, courseware, and documentation, released for public distribution (as shareware, freeware, GNU Copyleft, etc.), readily available to the public. It provides a convenient way for the Ada user community to exchange materials and ideas. It contains:

•	A collection maintained by the Ada Information Clearinghouse (AdaIC),
•	The �xe "Very High Speed Integrated Circuit (VHSIC) Hardwar"�Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) [described in Chapter 14, Managing Software Development]
•	A repository at the University of Cincinnati maintained by the Department of Electrical and Computer Engineering, and
•	A PAL-maintained collection containing the PAL Catalog, PAL LOTUS-123, dBase IV compatible database files, and other forms of catalog information.

Many organizations have developed cooperative relationships with the PAL contributing time, effort, user support services, and artifacts — either directly or indirectly. These organizations include: AdaNET, the AJPO, the AdaIC, Asset Source for Software Engineering Technology (ASSET) [discussed in Chapter 4, Systems and Software Engineering], the Comprehensive Approach for Reusable Defense Software (CARDS) [discussed in Chapter 9, Reuse], Conservatoire National des Arts et Metiers (CNAM), Paris, France, the SEI, the Software Reuse Repository at the University of Maine, and the VHDL Repository at the University of Cincinnati. [See Volume 2, Appendix B for information on how to access PAL on-line through the AdaIC.]

ASIS�tc "<Head 3 (14)>ASIS"�

The �xe "Standards:Ada Semantic Interface Specification (ASIS)"��xe "Ada Semantic Interface Specification (ASIS)"��xe "Tools:Design tools:Ada Semantic Interface Specification (ASIS)"�Ada Semantic Interface Specification (ASIS) (sponsored by AJPO) provides an interface between an Ada library and the tools within a software engineering environment. ASIS is an open, callable interface giving CASE tool and application developers access, through predefined formats, to the semantic information contained in any Ada compiler. It can increase the number of tools available to the developer by making them more easily portable to competing compiler environments. Independent of underlying compiler library implementations, ASIS supports portability of CASE tools while relieving ASIS users from having to understand the complexities of internal data representation in an Ada compiler library. For example, a metrics tool can use ASIS to evaluate Ada application code. The symbolic name, type, and usage of each object in the symbol table can be obtained through the ASIS interface to support metrics tool requirements. Client/server communications between Ada programs occurring on separate processors can also benefit from ASIS. For instance, ASIS is currently being used to analyze messages transmitted from a satellite to a ground station. This technology can have significant cost saving benefits for any application doing data reduction for post mission analysis. Examples of tools that can benefit from ASIS are:

·	Symbolic debuggers,
·	Test tools,
·	Design tools,
·	Reverse engineering and re-engineering tools,
·	Metrics tools,
·	Style checkers,
·	Correctness verifiers, and
·	Automatic document generators. [See Volume 2, Appendix A for information on how to contact the AJPO about ASIS.]
�
Advanced Computer Technology (ACT) Program�tc "<Head 3 (14)>Advanced Computer Technology (ACT) Program"�

The ACT program [based at Rome Laboratory (discussed below)], is a basic research and development program that develops and demonstrates technologies to control cost, reduce risk, and increase the efficiency of embedded software and technologies. Its objective is to take recent software technology advances in artificial intelligence, distributed databases, networking, and open systems architectures to a specified prototype stage. These efforts are focused on improving the survivability of distributed C2 systems and the effectiveness and performance of weapon systems.

Computer Resource Technology Transition (CRTT) Program�tc "<Head 3 (14)>Computer Resource Technology Transition (CRTT) Program"�

The CRTT program (Electronic Systems Center (ESC), Hanscom AFB, Massachusetts) addresses the problems of acquiring, developing, and supporting emerging C2 resources to reduce costs and improve the software development and support processes. CRTT is an engineering development program that transitions software technology development from laboratories, industry, and academia to operational users and SPOs. CRTT has a threefold approach for accomplishing its mission:

·	To establish the fundamental elements of an effective software technology transition methodology;
·	To implement reusable software technology in the C2 domain; and
·	To address the technologies/processes inherent in operating and maintaining a central repository of software, software algorithms, and reusable technologies that collectively encompass the development life cycle.

Embedded Computer Resources Support Improvement Program (ESIP)�tc "<Head 3 (14)>Embedded Computer Resources Support Improvement Program (ESIP)"�

The ESIP program (Ogden Air Logistics Center, Hill AFB, Utah) supports an infrastructure that transitions technology to improve the ability of software practitioners to meet weapon systems PDSS requirements. ESIP’s goal is to transition technology from developers to customers who will then institutionalize it in their programs. This program provides for engineering services, hardware procurement, research and development, requirements definition, design, development, installation, testing, selective prototyping, and/or limited COTS procurement. ESIP provides software productivity tools, a test bed for software technology insertion, automated software configuration management tools, and rapid prototyping to address changing threat scenarios and improvements in weapon systems effectiveness and performance. This is accomplished by increasing awareness through information exchange, aiding in software process improvement, and facilitating software technology transition.
TECHNOLOGY SUPPORT CENTERS�tc "<Head 2 (14)>TECHNOLOGY SUPPORT CENTERS"�

The organizations responsible for managing and evaluating tools for use on major DoD software developments include:

·	Software Technology Support Center (STSC),
·	Standard Systems Center (SSC),
·	Software Engineering Institute (SEI),
·	Rome Laboratory, and
·	Oregon Graduate Institute Formal Methods Research.

Other sources for tools and evaluations are the Software Productivity Consortium [discussed in Chapter 16, Managing Process Improvement] and the Software Technology for Adaptable, Reliable Systems (STARS) program [discussed in Chapter 9, Reuse.]

Software Technology Support Center (STSC)�tc "<Head 3 (14)>Software Technology Support Center (STSC)"�

Software Technology Support Center’s (STSC) (Hill Air Force Base, Utah) services are valuable when choosing an Ada support environment as they evaluate and compare a range of Ada support tools from the public and private sectors. The STSC acts as the Consumer’s Report on software engineering technologies. Their mission is to:

improve software quality, productivity, and interoperability by promoting improved business practices, processes, and technologies. This includes increasing an organization’s contact, awareness, understanding, usage, and adoption of software practices, processes, and technologies. [PETERSEN92]

The STSC’s primary areas of expertise are weapons systems and embedded C2 systems, but increasingly these evaluations are equally applicable to MIS. Their publications and monthly newsletter, CrossTalk, are valuable in keeping your up-to-date on tends and current schools of thought on software engineering throughout DoD and industry.

NOTE:	�xe "CrossTalk"�CrossTalk, distributed without charge to DoD and DoD contractor personnel, is highly recommended reading for its currency, professionalism, and technical content. [See Volume 2, Appendix A for information on how to contact the STSC and be placed on CrossTalk’s mailing list.]

Standard Systems Center (SSC)�tc "<Head 3 (14)>Standard Systems Center (SSC)"�

The Standard Systems Center (SSC) (Gunter Annex, Maxwell AFB, Alabama) was established to be a model software development, maintenance, and procurement organization for standard systems has become a software “center of excellence.” Their primary areas of expertise are standard systems, MISs, and non-embedded C2 systems. The SSC mission is to increase user satisfaction through better processes for prioritizing requirements and increasing user participation and support. It aids software quality improvement by ensuring that reliable, maintainable software fulfills user mission requirements. The SSC bimonthly newsletter is a valuable source of information about MIS and non-embedded C2 software development. [See Volume 2, Appendix A for information on how to contract the SSC about their products and services.]

Software Engineering Institute (SEI)�tc "<Head 3 (14)>Software Engineering Institute (SEI)"�

The mission of the Software Engineering Institute (SEI) is to bring the ablest professional minds and the most effective technology to bear on software-intensive systems improvement. Its goal is to accelerate the practice of modern software engineering discipline throughout the defense community by establishing standards of excellence. The SEI, a federally-funded research and development center (FFRDC) sponsored by DoD, has the following characteristics:

•	It is affiliated with a university (Carnegie Mellon University, Pittsburgh, Pennsylvania) granting doctoral degrees in software engineering and computer science;
•	It has wide access to industry, academic, and US government data concerning software engineering technology;
•	It is a nonprofit corporation outside the control of any profit-seeking concern;
•	It has no proprietary interest in the production of software products, equipment, systems, or services for sale or profit;
•	It is strictly prohibited from competing for business; and
•	It retains a Board of Visitors composed of distinguished technical leaders from industry, academia, and Government to review its plans and accomplishments.

In pursuit of its mission, the SEI conducts specific programs and efforts in the areas of technology transition, research, education, and in support of DoD components. The �xe "Advanced Research Projects Agency (ARPA)"�Advanced Research Programs Agency (ARPA) has executive oversight of the SEI. HQ ESC acts as the SEI’s administrative and contracting agent and maintains a Joint Program Office with it. [See Volume 2, Appendix A for information on how to contact the SEI.]

Rome Laboratory�tc "<Head 3 (14)>Rome Laboratory"�

The �xe "Rome Laboratory"�Rome Laboratory (Griffiss AFB, New York) has a long history of developing and applying software engineering technology. It also has a 40-year history in applying new software concepts to improve the automation of C3I functions. Rome has pioneered, or has expertise in, the following technologies:

•	Software/system engineering environment frameworks,
•	Software/system requirements engineering processes and workstations,
•	Software product quality prediction and measurement [NOTE: A consortium of aerospace companies is using and evaluating this technology],
•	Software engineering for distributed/parallel systems,
•	Toolsets for developing and supporting mission planning and scheduling systems,
•	The engineering/integration of artificial intelligence systems,
•	“Intelligent” software engineering tools that understand both software engineering and application areas,
•	Distributed, real-time computing and databases,
•	Computer security including tools to specify and verify both policy and systems software, and
•	3-D and virtual reality interfaces for C3I systems.

In addition, Rome develops and/or fields high-tech, revolutionary system components or whole systems for:

•	Signal intelligence,
•	Intelligence data handling (IDHS),
•	C2 decision aids, and
•	Distributed C2 systems. [See Volume 2, Appendix A for information on how to contact Rome Labs.]

Oregon Graduate Institute Formal Methods Research�tc "<Head 3 (14)>Oregon Graduate Institute Formal Methods Research"�

The Oregon Graduate Institute Formal Methods Research program specializes in formal methods for software development based on a belief that more reliable, better understood software can be produced by applying rigorous, mathematically-based reasoning to the software problem analysis, specification, and design process. Formal design methods are compatible with various technologies for structuring software, such as object-oriented design, rapid prototyping, implementation language choice, and software metrics. The goals of its formal research methods are:

•	To obtain authoritative and complete specifications for software components and systems functional requirements;
•	To verify selected properties of a software specification with the aid of automated tools;
•	To capture design decisions taken at any level of abstraction;
•	To automate the process of specification implementation;
•	To improve the modularity and reusability of software designs; and
•	To manage designs, verifications, and implementations throughout the software life cycle.

These techniques have the potential to lead to new methods for software design and life cycle maintenance, in which:

•	Software components are designed by solution schemes specification;
•	Components are integrated by algebra composition (abstract data types);
•	Critical properties are verified by program specification proofs;
•	Software is automatically generated from solution schema specifications, and programs are improved automatically by type-parametric program transformations; and
•	All modifications to software are made at the specification level. [See Volume 2, Appendix A for information on how to contact the Oregon Graduate Institute.]
ADDRESSING TOOLS IN THE RFP�tc "<Head 2 (14)>ADDRESSING TOOLS IN THE RFP"�

High-performance teams are more productive and develop higher quality software when they employ a properly automated toolset known as a �xe "Tools:Software engineering environment (SEE)"�software engineering environment (SEE). To develop a successful software system, the offeror must have a comprehensive software production capability in place. The offeror’s SEE must include tools, methods, management practices, and organizational resources. Their proposals must also describe a successful integration of software methodologies and tools. Included in these tools should be a process control mechanism (e.g., the use of �xe "ProcessWeaver®"�Process Weaver® or equivalent) and a discussion on their prior experience in using that control mechanism and the software development and configuration management portions of the SEE on past programs of similar size and complexity, within the same domain.

Consideration of the ASC/SEE, or equivalent SEE, should be encouraged for weapon system software. Ideally, each subcontractor should employ an identical SEE. In fact, in all major software development acquisitions, regardless of domain, contractors should be encouraged to provide a common SEE for all subcontractors. Where the SEE and associated methodology are new for some subcontractors, the prime should provide risk mitigation considerations, including a robust education and training program for personnel of those organizations with no prior experience in using the SEE.
�
REFERENCES�tc "<Head 2 (14)>REFERENCES"�

[AdaIC92] AdaIC staff writers, “Accessing Ada Information Clearinghouse Electronic Services,” CrossTalk, April/May 1992
[AGGARWAL95] Aggarwal, Rajesh and Jong-Sung Lee, “Case and TQM for Flexible Systems,” Information Systems Management, Fall 1995
[ALLEN92] Allen, Woody, as quoted by the staff, “Snapshots from STSC-92,” CrossTalk, April/May 1992
[CARNEY94] Carney, David, “Brief Description of the Common Object Request Broker Architecture,” Software Engineering Institute, August 1994
[CRAFTS93] Crafts, Ralph E., “Megaprogramming in Practice — TRW’s UNAS,” Ada Strategies, Software Strategies and Tactics, Inc., Vol. 7, No. 6, June 1993
[DePASQUALES93] DePasquale, MAJ Gerald A., “Marine Corps AdaSAGE Experiences, “briefing, Marine Corps Computer and Telecommunications Activity, Quantico, Virginia, April 1993
[FOWLER93] Fowler, Priscilla, and Linda Levine, Technology Transition Push: A Case Study of Rate Monotonic Analysis (Part 1), CMU/SEI-93-TR-29, ESC-TR-93-203, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, December 1993
[GIBBS94] Gibbs, W. Wayt, “Software’s Chronic Crisis,” Scientific American, September 1994
[HART24] Hart, Capt Sir Basil Liddell, as quoted in Thoughts on War, 1944
[HUMPHREY90] Humphrey, Watts S., Managing the Software Process, Software Engineering Institute, Addison-Wesley Publishing Company, 1990
[HUMPHREY95] Humphrey, Watts S., personal communication to Capt Stanko (USAF), SAF/AQKS, September 15, 1995
[KENNEDY93] Kennedy, Paul, Preparing for the Twenty-First Century, Random House, New York, 1993
[MAHON08] Mahon, RADM Alfred, Naval Administration and Warfare, Little, Brown, & Co., Boston, 1908
[MARCINIAK90] Marciniak, John J., and Donald J. Reifer, Software Acquisition Management: Managing the Acquisition of Custom Software Systems, John Wiley and Sons, New York, 1990
[MARSHALL80] Marshall, BGEN S.L.A., The Soldier’s Load and the Mobility of a Nation, The Marine Corps Association, Quantico, Virginia, 1980
[MOSLEY95] Mosley, Vicky, “Improving Your Process for the Evaluation and Selection of Tools/Environments,” briefing presented to the Seventh Annual Software Technology Conference, Salt Lake City, Utah, April 1995
[MOSEMANN92] Mosemann, Lloyd K., II, “Software Management,” keynote closing address, Fourth Annual Software Technology Conference, Salt Lake City, Utah, April 16, 1992
[NORDWALL95] Nordwall, Bruce D., “Automated Tool Speeds F-22 Software Work,” Aviation Week & Space Technology, October 30, 1995
[O’BERRY93] O’Berry, Lt Gen Carl G., as quoted in Ada Information Clearinghouse Newsletter, Vol. XI, No. 2, August 1993
[PETERSEN92] Petersen, Gary, “The Spectrum of STSC Support, CrossTalk, March 1992
[QUANN93] Quann, Eileen, “Software Will Change the Way We Live,” Fastrak Training, Inc., Columbia, Maryland, September 1993
[RAJA85] Raja, M.K., “Software Program Management and Cost Control,” Journal of Systems Management, October 1985
[RANDALL95] Randall, Richard, and William Ett, “Using Process to Integrate Software Engineering Environments,” paper presented to the Seventh Annual Software Technology Conference, Salt Lake City, Utah, April 1995
[REICH91] Reich, Robert, New Perspectives Quarterly, Fall 1991
[ROYCE91] Royce, W.E., “Ada Technology Evolution, CCPDS-R: An Ada Success Story,” TRW briefing, March 21, 1991
[ROYCE93] Royce, W.E., as quoted in “Megaprogramming in Practice — TRW’s UNAS,” Ralph E. Crafts, editor, Ada Strategies, Vol. 7, No. 6, June 1993
[SHA93] Sha, Lui, and Shirish S. Sathaye, Distributed Real-Time System Design: Theoretical Concepts and Applications, CMU/SEI-93-TR-2, ESC-TR-93-179, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, March 1993
[SHATZ96] Shatz, Daryll, “Reducing Software Development Risk,” Digital Equipment Corporation, 1996
[STEVENS92] Stevens, Barry J., “Linking Software Re-engineering and Reuse: An Economic Motivation,” CrossTalk, August 1992
[TOBIN90] Tobin, L.M., “The New Quality Landscape: Total Quality Management,” Journal of Systems Management, November 1990
[UTZ92] Utz, Walter J., Jr., Software Technology Transitions: Making the Transition to Software Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1992
[YOURDON92] Yourdon, Edward N., Decline and Fall of the American Programmer, Yourdon Press, Englewood Cliffs, New Jersey, 1992
[ZRAKET92] Zraket, Charles E., “Software Productivity Puzzles, Policy Changes,” John A. Alic, ed., Beyond Spin-off: Military and Commercial Technologies in a Changing World, Harvard Business School Press, Boston, Massachusetts, 1992
�
�tc "<>"�
CHAPTER 10�tc "<>CHAPTER 10"�
 Addendum A�tc "<> Addendum A"�
 �tc "<> "� �tc "<> "�
COTS Integration and Support Model�tc "<>COTS Integration and Support Model"�
©Copyright Loral Federal Systems Manassas December 1994 [reprinted with permission]

Carolyn K. Waund �tc "<Head 3 (14)>Carolyn K. Waund "�
Loral Federal Systems-Manassas�tc "<Head 3 (14)>Loral Federal Systems-Manassas"�
Abstract�tc "<Head 2 (14)>Abstract"�

Programs requiring high use of commercial-off-the-shelf (COTS) hardware and software are becoming more prevalent in the federal marketplace. Much of the emphasis on COTS solutions is due to increasing focus on information systems technology as we seek to re-engineer the government. Information systems technology is rich in COTS products and highly competitive, thus making powerful solutions feasible.

Loral Federal Systems (LFS) has in recent years moved to address this important systems integration market. Individual programs have achieved varying degrees of success in adapting traditional system development processes and management practices in the high-COTS environment. This program experience is a key resource. This paper highlights the results of an LFS initiative to use lessons-learned on recent COTS-based programs and defines a COTS integration and support model for guiding future programs. The initial model will be refined and matured by the LFS organization in the future. This paper provides: (1) observations about the current state of COTS integration, (2) a description of a model for a COTS integration and support process, and (3) a discussion of COTS program lessons-learned and their incorporation into the COTS process.
Observations�tc "<Head 2 (14)>Observations"�

Our observations about the current state of large-scale COTS integration and support are illustrated in the following graph. Note that the graph compares a “traditional” development program using few COTS products with three variations of high COTS content programs. We observe an important reduction in effort for high COTS, yet believe that more can be achieved. The “dream” program requires little effort to integrate and support a system. This may be possible today for a small, single computer system, but will not likely be achieved for the large distributed systems which serve an enterprise.

LFS has identified a number of COTS product characteristics which must be dealt with effectively to drive program effort to the “achievable” COTS level. The COTS product “facts of life” are that:

•	They are not interoperable with other COTS,
•	Their literature overstates their capability,
•	They never exactly match users needs,
•	Unique versions are costly,
•	Upgrades are frequent and asynchronous,
•	There is limited support for previous versions, and
•	They are not Ada friendly.

�
Figure 10-10 COTS Integration and Support

The COTS product releases shown under the graph represent a primary characteristic of COTS products: they change frequently in response to the demands of the commercial marketplace. These changes begin to effect a COTS-based program when the products are first selected for system inclusion, and the effects continue throughout the system lifetime. The uniqueness of COTS-based programs is the inability to control the evolution of the commercial products which make up the system. Hardware product technology becomes outdated and the old products and parts reach end of life and are no longer available. Equivalent replacement products and parts may also not be available. Software products are regularly enhanced, correcting problems, and adding and repackaging functions. Support for back level versions is often not available; COTS customers are encouraged to incorporate the upgrades. This dynamic environment indicates the need for a continuing engineering analysis to refresh the COTS-based system.
Program Model�tc "<Head 2 (14)>Program Model"�

The LFS approach has adapted a traditional, proven program model to one that supports a high content of COTS hardware and software. The model includes both technical processes and management practices. Actual program adaptations of the traditional model were analyzed. In some cases, the adaptations were successful and are retained in the current LFS model. In other cases the adaptations failed, necessitating a return to traditional wisdom.

�
Figure 10-11 Project Model

The model for COTS integration programs is illustrated in the following figure. It includes seven traditional technical processes performed in each iteration of activity. A concurrent engineering team, addressing all disciplines, is active throughout, coordinating all technical activities. Seven traditional management processes provide program direction, evaluation, and control. Iterations are grouped into program acquisition phases, beginning with pre-proposal and ending with operations. Contract start is at the beginning of the development phase. In each iteration, the emphasis of technical activities varies with the phase and objectives. A knowledge base captures information from all LFS division programs for use across the organization.

Each iteration begins by establishing objectives, based on the results and evaluations of prior iterations. Technical activities are scheduled with sub-objectives which, when completed, achieve the iteration objective. Each iteration ends with an evaluation of progress against iteration objectives and program goals. The evaluation includes actual and estimated costs and a revised risk assessment, along with recommended actions and objectives for subsequent iterations. These direction and evaluation activities are the key program control mechanisms. This program model is suitable for COTS-based system integration and support because it:

•	Takes advantage of COTS product availability,
•	Includes prototyping iterations to reduce risk,
•	Recognizes that much engineering work is performed prior to contract award, and
•	Accommodates COTS product upgrades asynchronous to the program schedule.

The table indicates characteristics of each phase and the integration objectives of iterations within each phase. The following paragraphs provide additional description.

For COTS programs, the pre-proposal iteration(s) determines the feasibility of satisfying program objectives and high level system and support requirements with products which can be commercially available in the needed time frame. This iteration emphasizes requirements analysis and system architecture tasks. Customers, systems integrators, and COTS vendors interact informally or via Requests for Comments (RFCs) or Requests for Information (RFIs) during this time frame. The hardware and software product selection tasks are characterized by identifying that suitable options exist. Initial product selection is accomplished. Product experience or hands-on product evaluations are essential. Relying on product documentation or demonstration is an invitation to failure. The pre-proposal iteration produces the system integrator’s initial system design. Results can be shared with the customer, for potential inclusion in the Request for Proposal (RFP).

The proposal phase iteration(s) adjusts the system design to RFP requirements and completes the hardware and software product selection. This iteration continues hands-on product evaluation and, if time permits, begins to integrate a prototype of the system. It is important to select the most challenging aspects of the implementation for prototyping priority. Early integration must focus on areas where the return in terms of risk reduction is the greatest. If integration problems arise, it is easier to accomplish a product change-out or architecture change in this time frame than in a later one.

Program Model Phases and Characteristics�tc "<Head 3 (14)>Program Model Phases and Characteristics"�

The demonstration phase can significantly reduce the risk in the requirements baseline. This iteration(s) firms up the hardware and software product selection. In demonstrations, customers can evaluate the human/computer interface, explore the process and data model, and assess consistency with the operations process. If time permits, prototyping can integrate the selected products in vertical and horizontal dimensions, creating a fairly complete system implementation.

Contract work begins in the development phase. Early formal reviews serve to baseline the system requirements and design, including the COTS product selection. This is an opportunity for the systems integrator to suggest requirements changes which will increase COTS content and reduce development content on the program, thereby reducing cost and risk. Prior to this review, the precontract customer evaluation prototype will be reviewed for requirements and/or design change. In this way, the results of prototyping activities are fed back into the requirements, which should remain flexible until the design validation is complete. System capability and functionality are developed during the remaining development phase iterations, which may, if necessary, incorporate COTS product updates. Formal testing culminates each iteration. On the final iteration, the system is ready for customer acceptance.

In the transition phase, the initial iteration produces a fully integrated and tested system configuration installed at a customer test or evaluation site. After the evaluation period, additional iterations produce system configurations at operational customer sites or platforms.

In the operations phase, iterations are driven by requirements changes, problem fixes, technology insertion, and COTS product upgrades. Depending on the significance of the changes, an iteration may be scheduled for prototyping prior to full implementation of the change. Note that COTS-product-induced perturbations are not exclusive to operations phase. They may occur in any of the preceding phases, and need to be handled when they occur.

The COTS model features early iterations through requirements, design, and prototyping tasks, encouraging requirements modification to achieve program goals and minimize risk. This iterative process assures that the final requirements are consistent with COTS content goals. If, for example, the goal is to build the system with currently available COTS products, it is important that the requirements reflect existing product capabilities. Appropriate adjustments to requirements can be made after COTS products have been identified, evaluated, integrated, and used in a prototype application.

�
Table 10-13 Program Model Phases and Characteristics
Lessons-Learned�tc "<Head 2 (14)>Lessons-Learned"�

To formulate the COTS program model, the following key lessons-learned on previous programs were addressed. For each lesson, we indicate how it is incorporated in the COTS program model and approach. In conclusion, we note barriers or challenges to incorporating these lessons, acknowledging that managing COTS programs is an exercise in tradeoffs; there is not always a single “best” answer!

Lesson 1:	Most shortcuts through the traditional systems development process have proven faulty, indicating a need to return to a disciplined, but tailored process.

The COTS program model is adapted from traditional, proven LFS technical processes and management practices. Activities for COTS have been adjusted, scaled down or up, but not eliminated. For example, the traditional software development activity was redefined as COTS software product installation and customization. This requires significantly less effort than developing the product functionality from scratch, so it is a “scaled down” activity. On the other hand, our approach features extensive integration prototyping, so integration is a “scaled up” activity.

The COTS program model features close coordination of technical activity among a multi-disciplined engineering team. Key team skills include systems engineering, software engineering, integration and test, and careful consideration of logistics concerns and the views of the end user, acquisition officials and vendors. This team effort facilitates communications and permits less formality in documentation and reviews. Team agreement, based on informal preliminary documentation of requirements and design, is generally sufficient to establish technical baselines. With rapid turnaround in system development (relative to traditional non-COTS development programs), rapid decision-making is critical. This multi-disciplined team is essential.

Lesson 2:	Some requirements should remain negotiable until COTS system design is validated via prototyping.

To reduce program cost and risk, requirements which drive unique non-COTS development and are not essential for the system’s success should be candidates for change. The COTS program model uses iterations to formalize the feedback from system design, COTS product selection, and prototype integration activities to aid requirements analysis. This feedback can specifically identify the requirements which are not capable of being satisfied using currently available COTS products. These are the requirements which drive program-unique development of product enhancements, including “glue” code to fix interoperability problems or selection of a high risk product. Some of the COTS product noncompliance issues and interoperability problems are discernible without prototyping. However, some issues are uncovered only during hands-on product evaluation and integration prototyping.

The COTS program model features a number of iterations prior to the baselining of requirements in the development phase. In the pre-proposal phase, the integrator should provide feedback to the government customer, indicating those requirements which drive non-COTS content. In the proposal and demonstration phases, the ability to communicate with the customer is limited. During these phases, the integrator builds up a set of recommended requirements changes which would increase COTS content and reduce program cost and risk. These are shared with the customer at contract award, for consideration prior to formal requirements baselining.

Lesson 3:	COTS product selection and system design validation should include, or carefully waive:

•	Hands-on evaluation of each product,
•	Testing of each product-to-product interface,
•	Prototyping of developed application-to-product interfaces,
•	Testing COTS product portability to new platforms, and
•	Vendor and product considerations beyond functionality.

The COTS program model features many early iterations, giving opportunity for hands-on evaluation, product interface testing, and integration prototyping. The emphasis of these activities is directed where the most benefit in terms of risk reduction can be gained. Bypassing these activities is acceptable for well-known products or previously-demonstrated interfaces, where the risk is assumed to be low. However, there can be a tendency to assume compatibility and underestimate the integration effort required.

Experience has shown that it is difficult to understand a product by talking to vendor marketing personnel or reading literature. Hands-on evaluation by the integrator permits a vendor-independent assessment of how the product meets the program requirements, and helps to avoid conflicting interpretations of requirements and what it takes to satisfy them.

Although some products are designed to interoperate, there is no guarantee that product-to-product interfaces will operate properly for the types of data to be supported or the environment of the program. Testing can determine if interface problems exist. Resolution may involve changes by one or both vendors or integrating mechanisms created by the integrator. Early problem detection can influence design and product selection and result in lower program effort and cost.

The boundary between developed applications and COTS products in the operational system can be a source of integration problems. This has been the case on a number of LFS programs using Ada. Ada interfaces or bindings to products are not as prevalent, highly-functional, or mature as those for C. If the degree of compatibility with application development tools and COTS products is overestimated by the integrator, the development effort can be larger than expected. Prototyping is indicated for unproven interfaces.

Sometimes the best COTS software product for the functional requirements has never operated on the hardware and operating system platform of choice for the program. In these cases, the integrator and the vendor agree that a product port is the best option. There is always some risk in porting a software package, especially if the product has never been ported before.

Considering product characteristics other than functionality can also be important in the decision-making process. Such aspects include current quantities in use, reliability, product support, and past performance of the vendor.

Lesson 4:	A well-defined architecture can lessen the impact of COTS product upgrades. Integration facilitators can reduce risk, but also have disadvantages.

In the past, the tendency was to integrate COTS applications in an ad-hoc fashion, creating glue code as needed to permit applications to interface with each other and external interfaces. Each glob of glue is unique to the set of interfaces between a pair of applications, and may require frequent modification as business needs and technologies change. Because this type of system is expensive to build and support, other mechanisms are preferred.

The architecture for high COTS content systems needs to consider a number of approaches which can facilitate the integration of both the COTS products and developed components that comprise the system. These approaches include architecture definition, standards, and frameworks, which are discussed in the following paragraphs.

The major step in creating a top level architecture determines the degree of integration needed among system components and establishes an integration strategy, which may feature using a number of integration mechanisms.

When integrating COTS and developed system components, there are five dimensions of integration to consider:

•	Data Integration. Data created by one component are transformed and transported to another component for its use, in the format and context it requires.
•	Control Integration. An activity or product of one component will cause the activation of one or more other components.
•	Process Integration. The enterprise goals are translated into processing and storage decisions for all the components that participate in that goal. These decisions can influence control integration and data handling. “Workflow” is an implementation of process integration.
•	Presentation Integration. The user interfaces have the same look and feel.
•	Platform Integration. The COTS products and developed software components are independent of the platforms and operating systems inherent to those platforms. A heterogeneous system can result.

The required degree of integration in each of these dimensions is determined to influence the evaluation criteria for selecting the integration mechanisms, COTS products, and defining an architecture to isolate and minimize change as COTS products change.

Standards-based COTS product interfaces facilitate integration, but do not guarantee compatibility. Mature standards are unambiguous but tend to be complex, while immature standards still allow implementation flexibility. This permits different interpretations by vendors which can cause interface problems.

Integration framework products, such as those being used in software engineering environments, provide tool integration services which show promise of facilitating COTS application product integration. Usage of these framework products in this domain is not yet proven, but the integration framework concept and services constructs can be effective tools in system design.

Selecting a product suite from a single vendor, vendor partnership, or coalition is a low-risk integration approach which minimizes problems within the suite. Unfortunately, there may be no flexibility to add a best-of-breed product from outside the suite due to the closed nature of the design.

Product characteristics such as published Application Programming Interfaces (APIs), which reveal most product functions, many documented user exits, and source code availability, can facilitate product adaptation by the integrator to the system environment. The use of these characteristics, however, implies software development.

In the COTS program model, iterations through system design, product selection, and prototyping activities permit the evaluation of a variety of strategies for COTS-based system architecture and design. Various integration facilitators and mechanisms can be explored.

Lesson 5:	Significant advantage can be gained by reusing previously integrated solutions.

There is value in reusing previously integrated COTS solutions to reduce program cost and risk. As a group, the LFS divisions have in place a number of experience-sharing mechanisms which facilitate this type of reuse. Although LFS programs address a variety of information systems application domains, most share a need for integrated platform services (including networking, distributed computing support, and other middleware functions). Standards-based integrated solutions in this area are particularly good candidates for reuse.

In some cases, an integrator can string together contracts with similar needs and reuse integrated solutions or solution parts. To extend the set of ready-to-use solutions, the integrator can invest in COTS product integration initiatives.

The COTS program model includes a knowledge base of product and integration experience that is contributed to by each contract or investment program and is available for use by all programs.

Lesson 6:	Vendor contracts are unique, complex business/ technical/ legal agreements which must clarify all requirements and expectations.

LFS has found that COTS vendor contracts must go beyond standard commercial license and services agreements, and become similar to major development subcontractor relationships. This applies when standard COTS offerings do not meet program requirements and must be enhanced. As a result, COTS vendor relationships become more complex than that of simple commercial product or service offering procurements.

These unique relationships are also more difficult to negotiate and manage because COTS vendors do not typically deal in this manner. Their business and technical processes are tuned to produce and support a standard offering, not to provide specialized solutions for a particular customer’s system. Another contributing factor to negotiation complexity is the fact that many commercial vendors are not experienced in dealing with the Government. Unfamiliar military contracting concepts and terminology, in particular, can contribute to major vendor misunderstandings.

For each COTS program, LFS uses an experienced supplier manager who reports to the program manager. The supplier manager leads a multi-disciplined team which defines and negotiates vendor contracts and manages vendor contract performance.

Lesson 7:	Plan and budget for frequent and uncontrollable COTS product end-of-life and update events during all phases of the program.

The uncontrolled nature of COTS products is often not recognized and planned for. When not properly planned, significant cost impacts can occur. It is likely that after system delivery, COTS software product upgrades will be released by vendors and hardware products and parts will become unavailable. We recommend planning for the engineering effort required to ensure system integrity.

The COTS program model features continuing iterations in which COTS product updates can be scheduled for integration. The model handles each COTS product end-of-life or upgrade event as an engineering change proposal (ECP). Notification of a product end-of-life event by the vendor is followed by impact assessment, selection of a replacement product, and planning for its integration into the system. Notification of product upgrade initiates impact assessment and integration planning.

Lesson 8:	Cost estimation methods for COTS integration programs must be improved.

Industry-proven cost estimation models exist for traditional development programs with a high content of software development. These models have been calibrated with the results of many programs throughout the years. This is not the case for programs with high COTS content, where estimation models do not exist.

To increase the predictability of COTS programs, LFS has standardized the process on COTS programs and developed a program cost estimation model tailored for COTS integration. LFS will use this cost model to estimate new programs. Metrics collected from previous programs are being used to calibrate the model.
Challenges�tc "<Head 2 (14)>Challenges"�

Many of the actions which must be taken to remedy the problems experienced on COTS programs involve a shift of effort into the pre-contract timeframe. This is challenging to systems integrators because it stresses the Bid and Proposal (B&P) budget in a constrained timeframe when customer communications are limited.

For example, prior to submitting the offer to the customer, it is often necessary to validate a significant part of the COTS system design via prototyping to reduce risk. This effort is costly, yet without this validation, the schedule and cost risk of the program under contract is increased, and may be intolerable.

It is highly desirable to adjust requirements based on discoveries during system design, product selection, and prototyping, yet this is not accommodated by the procurement process. RFP requirements are mandatory and inflexible during the proposal and demonstration phases when system design, product selection, and prototyping are accomplished. Requirements changes which could increase COTS content and simplify integration are not allowable in the precontract timeframe, and may be difficult to incorporate after award on a fixed-price contract. This may add unnecessary cost and risk to the program.

A large part of the challenge on COTS programs comes from a lack of widespread understanding and experience with the unique aspects of COTS programs in government and industry. General agreement has not yet been achieved on the complexity of designing and supporting a system made up of uncontrollable, commercially-driven elements.
Conclusion�tc "<Head 2 (14)>Conclusion"�

Improved COTS program predictability will benefit both government and industry. This COTS program model is representative of many challenging COTS programs and establishes a framework for assembling processes tailored for COTS. LFS is seeking process maturity by continuing to refine the model and standardize effective processes for COTS integration and support.

About the Author�tc "<Head 4 (12)>About the Author"�

Carolyn K. Waund is a Senior Programmer in the Federal Systems Integration Laboratory at Loral Federal Systems in Manassas, Virginia. She is currently responsible for defining methods and architectures which facilitate COTS product integration and software engineering. Prior to its acquisition by Loral, she worked for IBM Federal Systems Company in Houston, Texas for 29 years. She has been involved in a number of systems integration programs, both for federal and commercial customers. Most of her career has been focused on real-time support of manned spaceflight, performing both systems and software engineering tasks for NASA Johnson Space Center. She received her B.A. in Mathematics from the University of Texas at Austin.
�
�tc "<>"�
CHAPTER 10�tc "<>CHAPTER 10"�
 Addendum B�tc "<> Addendum B"�
 �tc "<> "�
Rate Monotonic Analysis: �tc "<>Rate Monotonic Analysis\: "�
Did You Fake It?�tc "<>Did You Fake It?"�

NOTE: �xe "CrossTalk"�	This article is found in Volume 2, Appendix O, Additional Volume 1 Addenda.

Version 2.0
CHAPTER 10 Software Tools

10-� PAGE �73�

Version 2.0

10-� PAGE �74�

Version 2.0
CHAPTER 10 Addendum A

