SLIDING MODE CONTROL

INTRODUCTION
Overview of MIMO sliding mode control
The controller design starts with a standard linear state space representation:

x= Ax+ Bu (120)

where:
mxm .
ADD™ state matrix

mxn .
BUU™ control matrix

mxiL
xOO™ state vector

nx1l
uO™ control vector

The sliding mode control law, #, is composed of two main parts:

u=0+T (121)

The first part, U, is a linear feedback based on the linear representation given by Equation
(120). The second part, U, are nonlinear feedbacks with their signs switching depending on
the relationship of the system states to the sliding surfaces. The sliding surfaces are hyper
planes in the state space, with one for each control. They are defined by:

o(x)=S"x=0 (122)

Whete:

SDanm

To determine the nonlinear feedback functions, the concept of Liapunov stability is
used. The Liapunov function is taken as:

V(X) = %(af +022+...+0f) (123)
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Asymptotic system stability is guaranteed provided that V®¥is a positive definite function,
that is:

V(X) = 0,0, + 0,0 y+..40,0, <0 (124)

Equation (124) is satisfied if:

6,0, <0 (125)

=1ton

Equation (125) can be rewritten as:

g; = -1 signo;) (126)

where iis a positive gain parameter for the 7" sliding surface. Equation (126) can be rewritten
after substituting the time derivative of Equation (122) and Equation (120) as:

sign(o) O (127)
ASign@,)

O

ST(Ax+ By = —S

OoOonoO

O
O
. O

, O
@,Sign(0,,)

Solving Equation (127) for # yields:

[, sign(o,) O (128)
Msign(o,)

u==(S"B7S Ax($ Blg 0
O : O
o 0
o . O
f,sign(o )5

O

Equation (128) can be rewritten in matrix form as:

u= Kx+ Kgsigr(o) (129)
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where:

K=—(S"B's A

Ks = _(ST B)_l

Equation (129) is identical in form to Equation (121), with a linear state feedback and a
nonlinear switching term.

For the decomposition in Equation (128), it is required that the closed loop stability
matrix, (4-BK), have # zero eigenvalues. The sliding surfaces are the left eigenvectors resulting

trom the zero eigenvalues.

Utkin’s method for MIMO sliding mode control law design
Determination of the sliding surfaces can be difficult, especially with a MIMO system.
One technique for this is proposed by Utkin (1977). For this technique to be applied, the B

matrix of the state space system (Equation (120)) must be of the form:

[B,0 (130)
B=n
0

[

whetre:

Bl DDan

ODD(m—n)xn

For the MIMO cases of vertical plane depth control used in this thesis, this was the case. For
the stern planes only control examples, a QR factorization was applied, to transform the state
space system into this form.

Given that the B matrix is of the form defined in Equation (130), Equation (120) can

be decomposed into the following:

X1 = A X+ Ao Xt Byu (131)
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Xp = PAgiXgt Ay Xy

where:

x, 0O0™
xp OO MA

A11 Dann
A12 Dan(m—n)
A21 DD(m—n)xn

Ay DD(m—n)x(m—r)

The sliding surfaces become:

0=S5%+S %=0

where:

SJT DDan

S;r Dan(m—r)

(132)

(133)

.
Because the sliding surfaces are the left eigenvectors of the # zero eigenvalues, St can

be set to the identity matrix without loss of generality. Substitution of Equation (133) into

Equation (148) leads to:

G=%+S) % =-nsigi x+ $ ¥
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[msign(o;) O (135)
Hsign(,)

O O
u=-B(A1+ S A) x+( A+ § A) 4- 80 0
o 0O
o . O
m.sign(o )8

When the system is on the sliding surfaces, Equation (133) can be used to solve for "t

in terms of X2 resulting in:

X, = =S % (1306)
Substitution of this result into Equation (132) results in:
X = (A2 = A1) % (137)

Equation (137) is the set of independent equations that the non zero eigenvalues for
the control result from. For the application of pole placement algorithms to determine the

sliding surfaces, it only has to be recognized that it is in the standard state space format:

y = Ay+ BKy (138)
with:
A= Ay,
B= e
K=5]

N
Once 2 is determined, the control law can be determined by substituting it into Equation

(135).
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Utkin’s technique also allows for the use of linear quadratic regulator methods for
determination of the sliding surfaces. (Utkin 1977) For this method, it is desired to minimize a

quadratic performance index:

1% (139)
| = ZJ;X Qxdt

where 0 is a positive definite weighting matrix. By partitioning ¢ in the same manner as .4

was partitioned for equations (131)and (132), Equation (139) can be rewritten as:

) (140)
I =EJ’(X1TQ11X1+ Xo' QoXyt X QuaXat X3 Qppxp dt
0

or:
10 .. o (141)
I =—I(x2 Q %, + V' Q;V')dt
2%
where:
Q =Q2- QuQiQ
A= Ay = A Q,
V= + Qi Qo%
With the system on the sliding surfaces, Equation (140) can be rewritten as:
% = A X+ AV (142)
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Equations (141) and (142) are in a recognizable form for the application of any

convenient linear quadratic regulator solution. The Hamiltonian is:

H=p (At A =305 Q%+ ¥ QY ()
The algebraic Riccati equation is:
(A)Tk+ kA - kA, Qi A ke Q=0 (144)
The solution of Equation (144) results in:
v=-Qi Al ke (145)

This result is used with the definition for » from Equation (141) to provide the relationship

between x1 and x». This results in the sliding surface:

S = Qi(Q+ A B (146)

With s determined, the control law can be determined by substitution into Equation (135).

This sliding mode LQR controller design was implemented in a MATLAB® function
SMLQR.M which included provisions for a QR factorization for the cases when the B matrix
was not of the form given by Equation (130). SMLQR.M is included in Appendix A.

Control of chatter

One undesirable aspect of sliding mode control is the chatter induced by the nonlinear
switching term near the sliding surfaces. The nonlinear switching term in the sliding mode
control can cause control chatter when the system is near a sliding surface. One way to reduce
the chatter is to use the concept of a boundary layer around the sliding surface. First, asassign

function is defined:
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0 1x>1 (147)
satsigrf ¥ = Ep(,—ls x<1
H-1x<-1

A boundary layer of thickness ¢ around each sliding surface, is applied using the satsign

function:

o,

g; = satsigr%a

(148)

[ |

Equation (147) can be used to replace the sigr function used in Equation (129) with no change

Block info and requirements
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Figure 27. SIMULINK® model sliding mode controller
in the asymptotic stability of the system. There are some effects, however, because the

dynamics near the sliding surface are not the same as the closed loop dynamics which exist

when the system is on the sliding surface. The final control law is:

149
u=Kx+ Ksnsatsign%% (149

[

Equation (149) was implemented as a SIMULINK® model, shown in Figure 27.
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SIMO SLIDING MODE CONTROL RESPONSE TO DISTURBANCES

When applied to vertical plane submarine control, sliding mode control has several
nuances which are not obvious from inspection of the governing equations. In order to
illustrate these, the performance of sliding mode control will be explored through several
example cases. To keep the analytic derivations simple, the cases worked will be done with
stern planes control only. The general concepts, however, will be applicable to stern and bow
planes control.

The response of sliding mode control to force and moment disturbances is
fundamental to its application to submarine control in the vertical plane. These force and
moment disturbances could result from a variety of situations. Examples of these include out
of trim conditions, free surface effects, and wave forces.

Basic sliding mode disturbance response

The first case will use a basic sliding mode control law, that is one without a

feedforward term or integral control. The resulting control law is:

o=SwrS ¢ P+ S z (150)
o (151)

d = Kw+ K,q+ K39+;7Kssat5|g|(|5)
10] < 8 (152)

Linear analysis steady state

Assuming that the sliding mode control is not saturated and that the control
deflection is less than the maximum, the submarine should reach an equilibrium state under the
action of steady force and or moment disturbances. The linear equations of motion in the

vertical plane with one control are:

W= auwt+ a,ugr af+ Qs + f (153)
4= ayuw+ a,uqt 3+ h s+ M (154)
6=q (155)
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7= w- 18 (156)

X=wl+u (157)

Equations (150) through (157) can be solved for the following steady state condition:

_ F,(-ub,) + M, (uh) (158)
Wss_
b2a11u2+QQ3_ Q%la_ p%
O =0 (159)
o - Fs(b)+ My(b) (160)
* b2a11u2+QQ3_ Q%la_ bg
z,. = Fda21U2+ KWPh + g+ Un Kpb $+ tn p b s+ K'u,b (161)

VK. S@ba,d+ ba- ba ti- pbga)
_y Kb+ alf+a.+ UnKeb S+ Kb ip lp.bsS
‘ UK, Se(ba,d+ ba- ba ti-ba,)

- Fd (a21u2 + 323) + Md (= an'“F ~ %) (162)
T u(ba,f+ha;- ha,d- ba)

If the sliding mode is just saturated, that is lo/9= 1, the system will still be

stable, however the gain pzncztrneter’7 will be at a critical value. If further reduced, the system

will be unstable. Assuming the sliding mode is just saturated this critical value, Meri , can be

determined.

F a0 +a,+ KU h+ Kdb (163)
_| "KW (ba,f+ha,- b3 G- ba)
a U +a;+ K+ Kd b
"KL (baf +ha,- ha G- ba)|

For cases with the gain parameter M Jess than critical, a steady state Z results,

along with steady state values in all states other than Z. By assuming a steady state Zand

solving Equations (150) through (157) for equilibrium, the following equations result:
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g = Fa(-ax —buk) + Md(buk+ a)+ G Kn(ba- ba) (164)

ss 2
U Ks(byapy — bay) + UK{ ayghy~ axg+ ayza,7 apasn

, _ Fatb’Ka+Ofas+ anf + b i K+ k) (165)
= u(loy Uk + &)
Wss = uess"' Zgs (1 66)
Oss =0 <167)
S = _(alluv%s"' 8139554' Fc) (1 68)
ss bluz

Inspection of Equation (164) may cause the reader to incorrectly assume that a
nonzero steady state value of & will exist in the absence of disturbances. This is not the case,
however, because the use of Equation (164) implies the lack of a steady state Z, and therefore
a disturbance.

Nonlinear analysis steady state

An analysis similar to that conducted on the linear equations can be conducted
to determine the system steady state response under a constant disturbance. The nonlinear

equations of motion in the vertical plane with one control are:

W= 8, Uw+ g, Ugr 35sin@@)+ hed+ Fcosf + g G+ ¢ qw (169)
(= 8 UW+ &, UgH 35sin@)+ B &5+ Mcosf )+ g G+ £ qw (170)
6=q (171)

2= wcos@)- using) (172)

% = wsin(@)+ ucos@ ) (173)

Once again, the basic sliding mode control of Equations (150) and (151) is
used. Assuming that steady state is possible (sliding mode control is not saturated, and the
control deflection is less than the maximum) Equations (169) through (173) subject to the basic

sliding mode control law can be reduced to the following nonlinear equation:
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ay;, SINO)Ph, + a3 Sin@)cosh o+ F cdsq b - (174)
biay Sin@)U ~ &3 sin@)cosg ) g My cdsq ¥0

Solution of Equation (174) yields the steady state value of €. Tt is of note that
Equation (174) is independent of the control law. The correct root is readily determined by
using the value closest to the linear analysis (Equation (160)). Substitution of this value into

Equations (169) through (173) yields following steady state results:

w = utan@.,,) (175)
qSS = 0 (l 76)
o = _(alluvvss+ 313Sin(953)+ Fd) (177)
ss bluz
i (635_ Klwss_ K39 sg - Slwss_ %9 Ss (l 78)
Zss = d >
S,

The steady state value of Zgiven by Equation (178) is dependent upon the

control law gains. Following the example of the linear analysis, a critical value of the gain

parameter, 'Terit can be determined.

_ |6ss B Kles_ K39 ssL (1 79)
Nerit _| K

<

Unlike the linear analysis, the critical value of the gain parameter is not just a
linear combination of the disturbance forces, but rather requires nonlinear solution for each

possible case.
lo/¢g>1 . :
If the sliding mode control will be saturated, and a nonzero steady

state %ss will exist. For this case, the control law control law reduces to:
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d = Kyw+ K,q+ K8 +nK,sigr(o) (180)

Given the steady state final condition in all state variables with the exception of
z, BEquations (169) through (173) and (180) can be reduced to finding a root of the following

nonlinear equation:

u? (b Ksapf + by K ap;— by Kaan@— byKoa+ 8in(@)( aysh,Ke ARy, (181)
byuK; + 8y,

Fy cos@ )0, UK, + @y, )~ My cos@ )puk+ ay; jr Sinf )@3ayi a23a11):0
by UK + 8y,

This can be accomplished using the using the linear value of Ossfrom Equation (164) as the

initial guess. It follows that:

_ Fd CO§ @ss)"' A3 Siness)COSQ ss) (l 82)
ST (b, Uk, + 2y
_ U?(ay; Sin(Bss) + by UK SIN@se)+ b KP 4sC0sf o Jr b KR cofl )
u(b,uky + &)
Wy = Utan@qo)+ Z o (183)
555 = KIW ssT KSB sst ’7K §igr(a) (1 84)

Disturbance response simulation with basic sliding mode
These results can then be applied to the SUBOFF hydrodynamic coefficients.
For the modified coefficients used in this thesis, the linear state space system at six knots with

stern planes only is:

WO (00179 37101 00196 QWO G-010090 [F, O (185)
.0 O 0 O_g9p70 O
i C00006 - 00680 - 00034 B D—.ooz7§+ a0
0 0 0 1 o om0 0o O
%0 o 1 0 -101269 PFA 0 O § 0O Q
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A sliding mode control law is determined using Utkin’s method. After some
experimentation, the diagonal of the minimization matrix QQ was selected as Q11 = 100, Q2=

100, Q33 = 100, Q44 = 1. This yielded the following control law:

o =10w- 67.5592/- 154082+ .00830 (186)

187

0 =-0.2803v+ 848578+ 706E+ Kin satsigr@%@ (187
o] <04 (188)

A moment disturbance was chosen to be controllable but give a nontrivial
response. The application of a force of five thousand pounds and moment of 4,573 thousand

M, =0.001

foot pounds resulted in a pure angular acceleration, radians/second?. For this state

space system, control law, and disturbance set, the value of'Terit was (0.0661). Application of

the nonlinear solutions yielded the steady state solutions in Table 13.

nin, | w.(Feet/ Sep| g.(Rad/sec) 6 (Degree3 z..(Fee) 5. (Radiang | Zs(Feet/ Sep
0 -0.9606 0 -0.8271 Infinity 0.1673 -0.8143
0.5 -1.1791 0 -4.3402 Infinity 0.1941 -0.4094
1.1 -1.3965 0 -7.8518 -19.5783 0.2208 0
2 -1.3965 0 -7.8518 -14.6467 0.2208 0
4 -1.3965 0 -7.8518 -11.6330 0.2208 0
M, =0.001

Table 13. Steady state nonlinear solutions for radians/second?

The system transient response was simulated using the RK45 function of the

SIMULINK® toolbox. Figure 28 shows the resulting paths. The response is given for six

values of the ratio of T and "Terit | As expected, for values of 7 less than critical the control

law is unable to maintain a steady depth.

79



-160

-140

-120

-100

Depth, Feet
%
o

-60

-20

2500

X axis, Feet

Figure 28. Nonlinear simulation of vertical plane response to a pure moment disturbance

The calculations and simulations were repeated for a pure force disturbance. A
force of 43 thousand pounds and a moment of 220.4 foot thousand pounds resulted in a pure

vertical acceleration of 0.005 feet/second. For this state space system, control law, and

disturbance set, the value of Terit was (0.0466).

N 1 Nege w,(Feet/ Sef q.(Rad/sec) 6 (Degree$ z.(Fee) J.(Radiang | z (Feet/ Sef
0 1.5724 0 5.4888 Infinity 0.2357 0.5966
0.5 1.4156 0 2.9632 Infinity 0.2549 0.8902
1.1 1.8836 0 10.5368 224107 0.1976 0
2 1.8836 0 10.5368 17.4792 0.1976 0
4 1.8836 0 10.5368 14.4654 0.1976 0

Table 14. Steady state nonlinear solutions for Fq =005
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Figure 29. Nonlinear simulation of vertical plane response to a pure force disturbance

Disturbance response with sliding mode feedforward control

To eliminate the steady state error induced by a disturbance, several techniques
may be employed. Using a feedforward function in the sliding mode control law is one
technique. A feedforward term works by using knowledge of the external disturbance and
using applying some degree of control effort. This provides a steady state control effort to
oppose the disturbance without a steady state error. This approach is limited as it requires one
control per zero error state and may be limited in other ways. A feedforward term can be

added to the sliding mode control law by changing the sliding surface to the following:
c=SwrSa P+ § e S (189)

The value of S is such that it will equal the control effort that is applied by the

steady state quantity that is desired to be zeroed. Since the main priority is to obtain zero
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depth error, S i selected to equal the control effort introduced by the previously calculated

value of steady state depth error:

S = (0K~ KOS 9 . (%)

The steady state values needed for Equation (190) can be determined from

linear or nonlinear analysis, although the linear analysis will result in a non-zero depth error.

The linear analysis gives the following:

S=GM+GHR (191)
where:
U a S;h . SupRO (192)
B i 1 NN
ay; Uk, + ash- ha,d- bag
(193)

0 0
P+ 8 ek, + Klub2§+i@+ Slub
u S S, 0O

ay;u’hy + ash- ha, G- ba
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Figure 30. Nonlinear simulation of vertical plane response to a pure moment
disturbance with a feedforward term based on nonlinear steady state
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Figure 31. Nonlinear simulation of vertical plane response to a pure force disturbance with
a feedforward term based on nonlinear steady state

Disturbance response with sliding mode integral control
Another means of eliminating steady state error is by the use of an integral
control term. To accomplish this, an additional equation is added to the state space

representation.

2 =z (194)

This forces a zero steady state error in Z, although there are some additional
considerations with the use of integral control. The resulting control law, with the additional

state, is:

G=SWrSq P+ § z §7 (195)

o (196)
0 = Kw+ Ky,q+ K+ Kyzt+n }gsat5|g(15)
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o] < 0.4 (197)

Based on inspection of Equations (195) and (196) several conclusions can be
drawn. First, because Zis included in the proportional portion of the control law, values of the
gain parameter which are less than critical will result in a steady state error in Z for any

controllable disturbance. Second, if there is a steady state error in Z, the magnitude of the

integral term, %, will tend to infinity. This can cause problems with changing conditions or
pathkeeping as it will delay the control response to other errors.

At a condition of steady state, with the gain parameter greater than critical, the
steady state error in Zis zero. Because of this, the previously calculated values for steady state
pitch angle, heave, and control deflection are still valid (Equations (174) through (177)).
Moreover, because any controllable disturbance will result in a steady state condition these
values apply for cases where the gain parameter is less than critical.

For conditions where the gain parameter is less than critical, the resulting
control law is:

0 = Kyw+ K,q+ K8 + K,z+n K sigrfo) (198)

And the steady state value of z is:

_ 655 — Kywgs— K30 ss” NK §igr(a) (199)
Zgs = K4

Expressed in linear state space form for control law design, the representation

for the SUBOFF at six knots is:

OWD (-00179 37101 00196 O [OwO (-01009] [OF, O (200)
60 D00006 - 0068 - 00034 O B4 00027 Myo
B0=0 0 1 0 0 0BO+O 0 B+000
220 gt 0 -101269 0 Bzn 0 O g 00p
®H H o 0 o 1 dxHH 0 § HoH
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Utkin’s method was applied to obtain a suitable control law. After some
experimentation, the diagonal of the minimization matrix QQ was selected as Q11 = 100, Q2=

100, Q33 = 100, Qa4 = 1, Qs5 = 0.01. This yielded the following control law:

0 =10w- 498158~ 12772+ .01058 .00035 (201)

o0 (202)
4 =-16009v+ 1610589+ 248185 .00984 K satag%ag

6] < 0.4 (203)

Simulations of the SUBOFF under sliding mode integral control with a

moment disturbance are given in Figure 32. For this state space system, control law, and

disturbance set the value of Terit was (0.0484). Shown are five different values the ratio of the
gain parameter to the critical gain parameter. For values of the ratio larger than about two, the
system exhibited excessive oscillation before settling to zero depth error.

Simulations of the SUBOFF under sliding mode integral control with a force

disturbance are given in Figure 33. For this state space system, control law, and disturbance set

the value of Terit was (0.0466). Shown are six different values the ratio of the gain parameter to
the critical gain parameter. For values of the ratio larger than about two, the system exhibited

excessive oscillation before settling to zero depth error.

Sliding mode disturbance response conclusions

Submarine vertical plane depth control using sliding mode control can be
effectively achieved in the presence of disturbances. Sliding mode control is similar to linear
state feedback in that the an external disturbance will result in a steady state depth error.
However, if the gain parameters of the sliding mode control are not properly selected, a loss of
depth control can occur.

Steady state error can be dealt with using feedforward or integral control.
Integral control has several advantages. Application of integral control does not require
knowledge of the disturbance. However, if the gain parameter is too small, windup of the

integral term occurs. If the gain parameter is too large, excessive oscillations can be
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introduced. The greatest advantage of integral control demonstrated was that gain parameters

less than critical did not result in loss of depth stability.
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Figure 32. Nonlinear simulation of moment disturbance using sliding mode integral
control

Feedforward control exhibited good disturbance compensation, assuming that
the disturbances were measurable. Given the disturbances, feedforward values can be
determined based upon the nonlinear equations of motion, requiring periodic nonlinear root
finding, or upon the linear solution. Because of the computational expense of obtaining the
nonlinear solution and the expected error in the hydrodynamic coefficients, a linear steady state

solution is appropriate for feedforward computation.
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Figure 33. Nonlinear simulation of force disturbance using sliding mode integral control
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MIMO SLIDING MODE CONTROL AT PERISCOPE DEPTH

Introduction

The purpose of using sliding mode control was to provide an alternate means of
control which relied upon all the system states. The robust characteristics of sliding mode
control were thought to be a good approximation to the human operators.

At periscope depth, experience dictates several desired conditions. First, the ship is
trimmed heavy to counter the steady wave forces. Even more weight is brought on after this
point to allow for a constant small positive trim angle, of several degrees. This provides
reserve ballast which is made available by reducing the trim angle. Finally, in sea state three, it
should be very possible to maintain depth within one foot of ordered depth.

The equations of motion used for this section are the nonlinear equations of submarine
motion in the vertical plane. They are different from the equations used previously in this
chapter, as they include both bow and stern planes. Also the force and moment disturbances
used represent not only constant disturbances, like ships trim, but time varying wave forces as

well. Repeated for convenience, the equations are:

W= auw+ g, ugr gssin@)+ b, G0, + p W+ fFcosf i+ ¢ T+ 18 qw (204)

(= @y UW+ &, UG 3;Sin@)+ by 65, + p B+ Mcosf i £ o+ .6 qw (205)

6=q (200)
z= wcos@ )- using ) 207)
X = wsin(@)+ ucos@ ) (208)

Basic sliding mode controller
The sliding mode controller is of the same form as before, although with the
introduction of MIMO control some of the scalar terms become vectors or matrices. The

form of the basic sliding mode controller is:

0, =Sw+ S, 8P+ & Z (209)
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0, =S;W+ S, SP+ §y z (210)

3, = KW+ Kppq+ Ky +1 K t'r%i% t'DUZB @1l
b = KW+ Kppq+ Ky f +n Ky, satsig B, 0 n, K, sa Slqg(p—ZD

3, = KygW+ Kopg+ Ko +1 K t'%ﬁ% t'DUZB @12)
s = KW+ Kpq+ Kof +17 K, satsig B, 0 N2 Ky, sa SIQ&D_ZD

|6b| = 6max (213)

16| < B (214)

As an initial attempt, Utkin’s method was used to determine a sliding mode control
law. After some experimentation, the diagonal of the minimization matrix QQ was selected as

Q11 =100, Q2= 100, Q33 = 100, Q44 = 1. This resulted in the following control matrices:

« . 0396585 - 63281~ 40454 [0 (215)
=0
H 246916 42965 25027 [
1 0 O (216
0
0 1 g

(+ 00985 172811

O
O
s=U
[

Hoo170 - 00985

_ 009711 - 40506 (217)
s~ H3083 252104

The values of the gain and boundary layer thickness parameters were taken as:

e (218)
m=n; >0
p=p=1 (219)
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A SIMULINK® model was developed to incorporate the submarine dynamics of
Chapter I, the wave forces of Chapter 111, and the MIMO sliding mode control law. Also
included was the trim model from Chapter IV.

The model was used to simulate a step change in commanded depth from 140 feet to
50 feet in depth. To provide some realism in the trim condition, the submarine was trimmed
to 25 thousand pounds heavy, with no moment correction. Wave force values for sea state
three were used, with a relative heading of 180 degrees (head seas). Figure 35 shows the

resulting path taken by the submarine.

aliC

WWave Forces
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o[ Ol

Sum ”: Integrato state
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sub dynamics

T delta - E’_ p—
fim caontral To Waorkspace

Sliding mode Commanded
Control Law State

Figure 34. SIMULINK® model of submarine with wave forces and trim

At first glance, this control scheme fulfills most of the desired characteristics of a
submarine depth controller. Periscope depth was achieved with no overshoot, and reasonable
depth control was maintained. The trim condition was selected so that a steady state positive
trim angle would exist at periscope depth. During the depth change, the maximum trim angle
achieved was about ten degrees, which is also very consistent with actual submarine practice.

Inspection of Figure 36 shows some problems with this particular controller. The
application of control effort was excessive. The main reason for this was the high frequency
variations in Wand 9induced by the wave forces. Because of the combination of wave forces
and trim, the commanded depth was not achieved. The average depth at periscope depth was

50.75 feet, as opposed to the commanded depth of 50 feet.
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Figure 35. Basic sliding mode performance, step change approach to PD

Although the performance for the sea state three, head seas was adequate with this
controller, it did not perform well with the other sea states or headings. Because of this, it was
decided to use this control as a starting point for a performance optimization for each of the
four sea state and direction cases available.

As was done for state feedback control, the MATLAB® CONSTR function was used
to perform the optimizations. To provide a general set of design variables, the sliding mode
linear quadratic regulator program was not used to determine the control law at each step of

the optimization. Instead, the sliding surface itself was varied to change the control law.
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Figure 36. State parameters for basic sliding mode approach to periscope depth

The formal optimization statement is:

Minimize:
(220)
F(Sa1: S20 S Q2112112 H B=
where:
Z= depth, determined by nonlinear simulation
te
J’ (2)dt
. 0
mean t ¢

H = Ballast added to center of bugyancy, thousands of pounds
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Subject to:

real(eigenvalugs A- A 9)< E.

F = Ballast shifted from forward to aft, thousands of pounds

(221)

Deviation from the mean value of depth vice the commanded was used because of the

expected average depth error.

This approach was used for each of the four sea state cases. For sea state three (head
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Figure 37. Simulation with basic sliding mode control in sea state three (head sea direction)
seas), the optimized response is shown in Figure 37. The results of the four optimizations are

shown in Table 15. For the RMS error and maximum error, the optimized values are given,

along with their percentage of the initial values. In all cases, use of the optimization resulted in

reduction of the mean square depth error (measured from the average depth). Reduction of

the maximum error was also achieved.



Sea State/Direction 3/head 3/beam 4/head 4/beam
Initial Values
S 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
-0.0985 1.7281 -0.0985 1.7281 -0.1388 1.377 -0.0932 1.7281
0.0170 -0.0985 0.0170 -0.0985 0.0191 -0.694 0.0170 -0.0903
KT 39.658 -24.69 39.658 -24.69 27.88 -17.34 36.32 -22.61
-632.81 429.6 -632.81 429.6 -491.0 341.0 -632.77 429.7
-404.54 250.27 -404.54 250.27 -285.23 175.8 -370.71 229.21
0 0 0 0 0 0 0 0
mn, 0.05/0.05 0.05/0.05 0.05/0.05 0.0445/0.0445
H/F (10° pounds) 20/0 20/0 20/0 20/0
Mean Depth (fee) 53.46 4955 52.83 5453
RMS Error (feet) 1.48 3.37 1.63 2.75
Maximum Error (feet) 3.00 8.03 4.20 9.78

Sliding surface -0.8725 + 0.50631 -0.8725 + 0.5063i -0.6981 + 0.48201 -0.8726 + 0.4172i
eigenvalues -0.8725 - 0.50631 -0.8725 - 0.50631 -0.6981 - 0.48201 -0.8726 - 0.4172i
Optimized Values
S 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
-0.0816 1.7244 | -0.0196 1.884 -0.1525 1.3761 -0.933 1.7281
0.0205 | -0.1203 | 0.0037 | -0.0208 | 0.0176 [ -0.0759 | 0.0170 -0.0903
KT 48.50 -30.16 8.008 -5.124 30.475 -18.97 36.322 -22.615
-631.1 428.78 | -695.15 469.2 -490.8 340.74 | -632.76 429.67
-494.0 305.61 -84.01 52.11 -3115 192.3 -370.75 229.24
0 0 0 0 0 0 0 0
n,/n, 0.0488/0.0510 0.0457/0.0457 0.0501/0.0501 0.0446,/0.0445
H/F (10° pounds) 19.9/0 19.6/0.0 20.0/0 20.0/0
Mean Depth (feet) 55.44 57.61 55.53 54.57
RMS Ecrror (feet) 0.27 (18%) 0.84 (25%) 0.683 (42%0) 1.43 (52%)
Maximum Error (feet) 0.77 (26%) 2.36 (29%) 1.92 (46%) 4.14 (42%)
Sliding sutface -0.8725 + 0.69451 -1.7649 -0.6968 + 0.54341 -0.8726 + 0.4173i
eigenvalues -0.8725 - 0.69451 -0.1229 -0.6968 - 0.54341 -0.8726 - 0.41731

Table 15. Optimized basic sliding mode control law results and performance
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Disturbance feedforward

The sliding mode control can be implemented with a disturbance feedforward to
correct average depth error. This can be implemented inside or outside of the sliding surface.
For this example, the disturbance feedforward was implemented inside the sliding surface
calculation.

SSTx+ § (222)

Assuming that neither sliding surface is saturated, that control deflection is within
limits, and using a linear analysis, the steady state value of the depth error can be written as a

linear combination of the force and moment disturbances (Appendix B).
Zss~ Zeommanded™ G F & G M ¢ (223)

To eliminate the depth error, it is necessary to apply the same amount of control effort that the
steady state error provides within the sliding surface:

ES41D (224)
SS - ( Ls— Zcommande)% N

This results in the following control law:

W-w 0 (o, O (225)
- commanded:| D( K 1sat3|g E DD
bppld [Kyp Kyp Ky 0 C1commanded|:| 512 (pl |
%SPD B(Zl 0 et:ommandedE| a(sﬂ S 2satsig T Lo, %
0¢- ZcommandedEl g U, ED
01 0 DT W = Weommandedd (226>
0 0 0 S 0
(o, O |:|0 1 0 qcommanded|:| [Cl A1 Cz S11|:‘[DFd 0
%2 U [(8y 5328 EB ecommandedD %:1542 G S, a0
A1 S42|:| 0¢- zcommanded[l

18] 8 (227)

where the force and moment disturbances are filtered.
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The initial sliding surface and gains from the basic sliding mode control law was used

as the starting point for optimization. The formal optimization statement is:

» (228)

I (Z - zcommandec) 2 dt
0

F(Ss1, Sy S Q2Weo M1 2 H B= t

Subject to:

real(eigenvalues A- A D)< E. (229)

This approach was used for each of the four sea state cases. For sea state three (head
seas), the optimized response is shown in Figure 38. The results of the four optimizations are
shown in Table 16. For the RMS error and maximum error, the optimized values are given,

along with their percentage of the initial values.
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Sea State/Direction 3/head 3/beam 4/head 4/beam
Initial Values
S 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
-0.0985 | 1.7281 -0.0985 | 1.7281 -0.0985 | 1.7281 -0.0985 1.7281
0.0170 | -0.0985 | 0.0170 | -0.0985 | 0.0170 | -0.0985 0.0170 -0.0985
KT 39.658 -24.69 39.658 -24.69 39.658 -24.69 39.658 -24.69
-632.81 429.6 -632.81 429.6 -632.81 429.6 -632.81 429.6
-404.54 | 250.27 | -404.54 | 250.27 | -404.54 | 250.27 -404.54 250.27
0 0 0 0 0 0 0 0
0.25 0.25 0.25 0.25
Weo (radians/second)
m / n, 0.05/0.05 0.05/0.05 0.05/0.05 0.05/0.05
H/F (10° pounds) 20/0 20/0 20/0 20/0
Mean Depth (feet) 55.28 54.99 55.10 5341
RMS Error (feet) 0.4181 1.50 1.01 7.04
Maximum Error (feet) 1.225 3.85 3.50 18.75

Sliding surface -0.8725 + 0.50631 -0.8725 + 0.5063i -0.8725 + 0.50631 -0.8725 + 0.50631
eigenvalues -0.8725 - 0.50631 -0.8725 - 0.50631 -0.8725 - 0.50631 -0.8725 - 0.50631
Optimized Values
S 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
-0.0981 1.7281 -0.1255 | 21291 -1.9567 | 3.8086 -0.1167 1.8775
0.0166 0.096 0.0400 -0.0473 | -0.0445 | -0.1476 | -0.0155 -0.0240
KT 38.67 -24.08 19.16 -11.70 58.9 -37.3 9.906 -5.992
-632.8 429.65 -795.53 530.65 -1496.0 948.4 -693.54 467.3
-394.5 2441 -196.91 118.74 -599.1 377.5 -95.02 60.9
0 0 0 0 0 0 0 0
0.25 0.350 0.267 0.245
Weo (radians/second)
n,/n, 0.05/0.05 0.0542/0.0578 0.1853/0.0544 0.0596/0.0548
H/F (10° pounds) 20/0 20.2/0.1 20.7/13 20.1/0.0
Mean Depth (feet) 55.22 55.47 55.45 2.00
RMS Ecrror (feet) 0.405 (97%) 1.22 (81%) 1.01 (100%) 1.99 (28%)
Maximum Error (feet) 1.36 (111%) 3.20 (83%) 2.52 (72%) 4.93 (26%)
Sliding sutface -0.8723 + 0.48131 -1.8706 -3.4649 -1.7409
eigenvalues -0.8723 - 0.48131 -0.2984 -0.2992 -0.1211

Table 16. Optimized sliding mode control with disturbance feedforward results and

performance
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Figure 38. Simulation using sliding mode control with disturbance feedforward
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Integral control
The sliding mode control law can be augmented with integral control on depth to

remove the average depth error. This results in the following control law:

W~ Weommanded 0 (o OO (230)
_ it
IjDDD [Kll K12 K 13 K 14 0 qcommanded[l I:Kﬁ_l Ksiz 1satS|g D(ﬂ BB
% 0= H< K K K 0 _ecommanded%" a< K o, [0
sPU 2 2 2 2 0%~ Zommanded[] = = zsatSiglE 2 ([
i 2z B S
B 1 0 BT W = Weommandedd (231>
w0 0 0 1 0 Eﬂ - qummandedD
%f Ez ES31 S&ZB Elm_ ecommandedg
2
%41 SAZ[I 02~ Zommanded[]
B S.HH Z, H
18] 1 (232)

After a stable set of gains was determined, the controller was optimized to minimize

the deviation from the commanded depth. The formal optimization statement is:

Minimize:

4 (233)
I (z- Zcommande() 2 dt

0

F(S31, S, S Q2 & SN2 HIE t

Subject to:

real(eigenvalugs A- A 9)< E, (234)

This approach was used for each of the four sea state cases. For sea state three (head
seas), the optimized response is shown in Figure 39. The results of the four optimizations are

shown in Table 17.
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Sea State/Direction 3/head 3/beam 4/head 4/beam
Initial Values
S 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
-0.1038 1.7582 -0.1038 1.7582 -0.1038 1.7582 -0.1038 1.7582
0.0179 -0.1038 0.0179 -0.1038 0.0179 -0.1038 0.0179 -0.1038
0.0005 -0.0031 0.0005 -0.0031 0.0005 -0.0031 0.0005 -0.0031
Kt 41.79 -26.01 41.79 -26.01 41.79 -26.01 41.79 -26.01
-645.08 437.2 -645.08 437.2 -645.08 437.2 -645.08 437.2
-426.14 263.63 -426.14 263.63 -426.14 263.63 426.14 263.63
1.268 -0.7835 1.268 -0.7835 1.268 -0.7835 1.268 -0.7835
0 0 0 0 0 0 0 0
n,/n, 0.05/0.05 0.05/0.05 0.025/0.025 0.05/0.05
H/F (10° pounds) 20/0 20/0 20/0 20/0
Mean Depth (feet) 54.82 54.80 55.00 54.73
RMS Ecrror (feet) 0.4671 1.47 0.707 13.3
Maximum Error (feet) 1.14 4.23 2.03 31.62

Sliding surface -0.8722 + 0.50031 -0.8722 + 0.50631 -0.8722 + 0.50631 -0.8722 + 0.50031
eigenvalues -0.8722 - 0.50631 -0.8722 - 0.50631 -0.8722 - 0.50631 -0.8722 - 0.50631
-0.0316 -0.0316 -0.0316 -0.0316
Optimized Values
S 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
-0.0106 0.2485 -0.0233 0.5120 -0.0767 1.5995 -0.1428 3.7927
0.0195 -0.0202 | 0.0197 -0.0152 | 0.0118 | -0.0766 0.0177 -0.0624
0.0002 | -0.0010 | 0.0001 -0.0007 0.0005 -0.0031 0.0003 0.0006
KT 7.931 -4.920 5.945 -3.682 30.73 -19.18 25.0 -15.6
-32.52 56.91 -139.4 123.3 -580.47 397.3 -1469.6 950.0
-83.24 50.04 -63.13 37.51 -314.13 194.52 -256.2 157.8
0.3965 -0.245 0.271 -0.1681 1.266 -0.783 0.20 0.10
0 0 0 0 0 0 0 0
n,/n, 0.0468/0.0464 0.0461/0.0453 0.025/0.025 0.0436/0.0553
H/F (10° pounds) 19.6/-0.1 19.6/0.0 20.0/0.0 19.4/-0.1
Mean Depth (feet) 54.98 55.01 55.02 55.16

RMS Error (feet)

0.2345 (50%)

0.713 (49%)

0.693 (98%)

1.47 (11%)

Maximum Error (feet)

0.789 (69%)

1.90 (45%)

1.92 (95%)

415 (13%)

Sliding surface

eigenvalues

-0.1090 + 0.43141
-0.1090 - 0.43141
-0.0500

-0.2418 + 0.28711
-0.2418 - 0.28711
-0.0481

-0.7834 + 0.32601
-0.7834 - 0.32601
-0.0446

-3.6194
-0.1971
0.0061

Table 17. Optimized sliding mode integral control law results and performance
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CONCLUDING REMARKS

A comparison between the quality of control achieved by sliding mode control could
conclude that the sliding mode control was inferior to state feedback control. This comparison
would, however, neglect the added benefits of sliding mode control. The robust character of
sliding mode control with the ability to provide reliable control for submarine control given
uncertain hydrodynamic coefficients has been demonstrated for the NPS autonomous
underwater vehicle program (Hawkinson, 1990).

The sliding mode optimizations did not substantially reduce the control chatter and
attendant high actuation rates. Variations of the sliding mode boundary thickness did not
alleviate the chatter.

Table 18 gives a summary of the RMS error achieved by each of the sliding mode
optimizations. For comparison, it also includes the full state feedback results from Chapter IV.
Although these were larger than the corresponding full state feedback cases, the sliding mode
control proved to be much more robust in response to step changes in commanded depth. The
sliding surface eigenvalues exhibited much more damping than the corresponding cases of full

state feedback control. Also, it seemed to provide a more realistic average pitch angle for

periscope depth operations.

Sea State/Direction 3/Head 3/Beam 4/Head 4/Beam
Control Scheme

Full State 0.037 0.2638 0.2683 1.24

Basic sliding mode 0.27 0.84 0.683 1.43
Full State with feedforward 0.0928 04121 0.400 0.792

Sliding mode with disturbance feedforward 0.405 1.22 1.01 1.99
Full State integral 0.0414 0.372 0.536 1.96

Sliding mode with integral control 0.2345 0.713 0.693 1.47

Table 18. Optimized RMS error (feet) of sliding mode control and full state feedback
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