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The problem of loss of stability of autonomous vehicles maneuvering in the horizon-
tal plane is considered. Path keeping is achieved through linear full state feedback for
orientation control, pure pursuit guidance, and either zero or first order memory
holds for navigational information. Stability maps are generated parametrized in
terms of navigational time lag, guidance visibility distance, and control time con-
stant. Nonlinear bifurcation analysis is conducted which reveals the occurence of
both supercritical and subcritical Hopf bifurcations to periodic solutions. The results
can be used in design to guarantee stability under finite disturbances for a given
vehicle system equipped with separate navigation, guidance, and control functions.
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Y sway force
Y heading angle
Y, commanded heading angle

1. Introduction

Autonomous vehicles suitable for use in modern applications require high maneu-
verability, quick reponse, and robust performance characteristics [Healey er al.
(1992)]. In order to maintain accurate track keeping characteristics, a suitable
combination of path planning, navigation, guidance, and crontrol design is needed
[Papoulias (1991)]. Sufficient information is obtained from charted obstacles and
the environment for smooth paths to be generated for the vehicle to follow
[Kanayama & Hartman (1989)]. Although it is possible to design a nonlinear
controller which incorporates and utilizes information on the nonlinear dynamic
properties of the vehicle, as well as the geometric nonlinearities of the desired
track, the resulting scheme tends to be very complex and time consuming [Cottle
(1993)]. The alternative is to use separated navigation, guidance, and autopilot
functions. A certain level of feedback is provided at the navigation level trough the
use of sonars in order to replan a path when uncharted obstacles or when the
mission objectives have changed. This operation is event-driven and occurs asyn-
chronously, and in most cases it does not affect stability and performance of the
overall navigation, guidance, and control scheme. Based on the provided naviga-
tional information, the guidance law generates heading commands, which are exe-
cuted by the control law by appropriate use of the vehicle effectors, such as control
surfaces and cross body thrusters. However, the time required to process sonar
data and/or inertial positional information may be significant and can not be ne-
glected [Kwak ez al. (1992)]. In addition, the guidance and control laws must be as
fast as possible in order to ensure accurate path keeping characteristics. The navi-
gational positional information time lags, as well as the dynamic lags due to the
vehicle inertia, however, set a limit on the vehicle reaction time. therefore, stability
of the combined scheme becomes an issue that needs to be analyzed.

Previous studies have established stability boundaries for guidance and control
laws in horizontal [Papoulias (1991)] and vertical plan [Papoulias (1993)] maneu-
vering along straight line paths, as well as curved segments [Papoulias (1992)]. The
most important assumption in those results was the existence of instantaneous
positional information updates when needed. In this work we relax the latter
assumption. Stability boundaries are computed parametrized by the amount of
positional information time lag. Results are presented based on eigenvalue and
frequency response techniques. Linear stability analysis predicts the shape of the
stability boundaries, while vehicle motions in the vicinity of the corresponding
boundary are assessed using nonlinear bifurcation theory [Guckenheimer &
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Holmes (1983)]. It is shown that loss of stability occurs as generic Hopf bifurca-
tions, where upon loss of stability of straight line motion a family of periodic
solutions appears. Nonlinear expansions utilizing center manifold approximations
and integral averaging techniques, reveal that these Hopf bifurcations can occur
either in supercritical or subcritical forms. In the supercritical case, a stable family
of limit cycles is generated immediately after the nominal motion becomes un-
stable. In the subcritical case, however, the resulting limit cycles are initially unst-
able and they are generated even before the nominal motion loses its stability. In
the latter case, the domain of convergence of straight line motion becomes in-
creasingly smaller as the stability boundary is reached. As a result, the methods
developed in this work characterize the degree of confidence of the computed
stability boundaries by examining stability under finite external disturbances. All
computations are performed for the Naval Postgraduate School autonomous un-
derwater vehicle for which a set of geometric properties and slow motion hydro-
dynamic derivatives is available [Bahrke (1992)]. Unless otherwise mentioned, all
results are presented in standard nondimensional form, with respect to the vehicle
length, 2.2 m, and nominal forward speed, 0.6 m/sec.

2. Problem formulation
2.1. Equations of motion

Restricting our attention to motion in the horizontal plane, the mathematical
model consists of the nonlinear sway and yaw equations of motion. In a moving
coordinate frame fixed at the vehicle’s geometric center, Newton’s equations of
motion are,

m(Vv + ur + x5f) =Y, (1)
L + mxg(V + ur) = N, (2)

where v and r the relative sway and yaw velocities of the moving vehicle with
respect to the water, m is the vehicle mass, Xg is the longitudinal position of the
center of gravity, and Y, N represent the total excitation sway force and yaw
moment, respectively. These forces can be expressed as the sum of quadratic drag
terms and first order memoryless polynomials in v and r. The latter represents the
hydrodynamic added mass and damping at some representative low frequency of
motion. In this way, Y and N can be expressed as,



364 Effects of Positional Information Time Lags

1 1 1
Y = 7 olfY; 1t + 5 ol3(Y,v + Y,ur) + ) oY uv

2
1 bow 3
~To| com® S e + 5 okvous, ©

1 1 1
N=7 oFY;i + 5 ol¥(N,v + N.ur) + > oPPN,uv

1 bow 3 1
Y f CoE)h() ‘|V iif’, d& + + orNous, @

where 1 is the vehicle length, Y, and N, represent partial derivatives of Y and N
with respect to the indicated variable a, Cp, is the local drag coefficient at some
location & along the length of the hull, h(§) is the local vehicle height at the same
location, and ¢ is the effective rudder angle.

Equations (1) and (2) can be nodimensionalized with respect to the constant
forward speed u, and the vehicle length 1; the dimensionless time variable is tu/l.
The cross flow integral drag terms become important for hovering operations or
low speed maneuvering, whereas at relatively low angles of attack with respect to
the water, the steering response is predominantly linear. Therefore, we can neglect
these quadratic drag terms for the analysis that follows, numerical experience
shows that the induced error is very small and does not affect the salient qualitative
features of our results. This assumption has been extensively verified in experi-
ments, where it has been observed that quadratic drag needs to be incorporated in
the modeling of the vehicle only at zero speed hovering and sideways positioning.

The model becomes complete with the addition of the expressions for the vehi-
cle yaw rate,

y=r, )
and the inertial position rate,

y = usin ¢ + vcos ¥, (6)
where v is the vehicle heading angle. A standard inertial (x,y) system is introduced

here where the x-axis points in the assumed nominal straight line path, and the
y-axis is distance from the reference path.
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2.2, Navigation, guidance and control

Steering control is based on the linearized set of equations (1) through (5), which is
written in the form,

v =r,

v = ajuv + ajur + bu?d,

I = a,;uv + ayur + b,u?d, @)
where the coefficients a;;, b; are functions of the vehicle hydrodynamic coefficients

and geometric properties. Linear full state feedback, [Friedland (1986)], can be
introduced in the form,

0 =ki(y — ¥) + kv + kar, (8)

where . is the commanded heading angle which is a function of the guidance law
characteristics as seen later in this section. The feedback gains k;, k,, k; are com-
puted such that the closed loop system (7) and (8) has the desired dynamics, in
linearized sense. The existence of the difference (v — ¥.) in the control law (8) has
the effect of trying to point the vehicle’s longitudinal axis towards the desired
heading. It is reminded that the commanded straight line path is assumed to lie
along the earth-fixed x-axis. More general paths can be adequately discretized into
a series of leading straight line segments [Papoulias & Chism (1992)].

If the desired characteristic equation is selected so that its time constant is t,
dimensionless seconds, its general form becomes,

AB+alt+ad+a;=0, C))
where,

3 3 1
W mTE ey

The controller gains are computed by equating the coefficients of the desired and
actual characteristic equations as,
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(bay; — byay)uk, = as,

(bay — bap)udk, + (baay — bay)u’k; = a; + buk, — (ajay — apan)u?,
b,uZk, + byuZk; = —a; — (a;; + ap)u. (10)

Due to the explicit dependence on u, the gains ki, k,, k; are continuously updated
for different nominal forward speeds.

A guidance law is needed to provide the appropriate commanded heading angle
. in (8). Such a typical orientation guidance law is based on the line of sight angle,
between the vehicle longitudinal axis and a moving reference point located ahead
of the vehicle at a constant distance, d, along the commanded straight line path.
The simplest law is when the commanded heading equals precisely this line of sight
angle,

Y. = —tan! —g— . (11)

The distance d in (11) is referred to as the lookahead or visibility distance. Finally,
the positional error information, y, needed in (11) is provided by the navigation
function, which in this work is assumed to provide the exact estimate of y with a
time lag of T dimensionless seconds. Therefore,

y= Y(t - T)’ (12)

in (11). the time lag, T, models the necessary time to process sonar range informa-
tion and thereby reconstruct an accurate representation of the environment. Equa-
tions (12) and (11) substituted back into (8) provide the combined navigation,
guidance, and control model used in this work. It should be pointed out that in
order to capture the effect of rudder angle saturation, we re-write (8) in the form,

ki(y —y) + kv + k3r:|, (13)

0 = Oy, tan h{ 5

sat

where d,,, is the saturation limit of d, typically set at +0.4 radians. Equation (13)
produces the same slope at zero as (8), and it provides a smooth representation of
the nonlinear saturation function which is required by the analysis that is presented
in the following sections. Rudder saturation is a feature that is introduced in the
system to prevent rudder stall at higher angles of attack. Although some stall of the
forward rudder has been observed in certain experiments, most of the time it can
be neglected. We also assume that rudder response is instantaneous. This is be-
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cause the DC-servos that control the vehicle control surfaces have considerable
smaller time constants than the dominant vehicle turning dynamics.

3. Stability analysis

3.1. Eigenvalue analysis

The linearized navigation, guidance, and control equations of motion ar written as,

Y =r, (14)
k

v = buk,y + (a; + buk)uv + (a, + byuk,)ur + b,u? Fl y(t — T), (15)

. Ky

I = byu?k,p + (a, + buky)uv + (ay, + byuks)ur + byu q y(t = T), (16)

y =uy + v. 17)

The system of equations (14) through (17) represents an infinite dimensional vector
field, since the time delay operator can be thought of in terms of its Taylor series,

T3

T2
e L (18)

ye-T=y-Ty+

Practical computations can be performed by truncating (18) to first, second, or
third order.
A first order approximation in the time lag T is achieved by,

yt—-T)=y—-Ty, or yt—T)=y— T(uy +v). (19)

Substitution of (19) into (15) and (16) yields,

Y 0 0 1 0 Y
v Agi1 Agy Axg Agy v
= , (20)
r Azq Asg Ay Aggg r
Y] | u 1 0 0 Ly

where the entries A;;; are shown in the Appendix. The standard eigenvalue prob-
lem (20) can be solved numerically in order to establish stability or instability of
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straight line motion. In general, we expect that for a given time lag T and control
time constant t, there must be a minimum required visibility distance d for stabili-
ty. Convergence to the nominal motion should then be ensured, in a linear sense,
for values of d greater than its critical value.

A second order approximation in T is achieved by,

T? T2
y(t—T)=y—Ty+7y=y—T(uw+v)+7(ur+\'l). (21)

Substitution of (21) into (15) and (16) yields,

P 0 0 1 0 Y
v Aja Aps Apa Ay v
= ; (20)
r Ay; Ao Az A r
Yyl L u 1 0 0 Ly

where the elements A, , are also included in the Appendix. Solution to the eigenva-
lue problem (22) provides a more accurate approximation to the stability domain.
Finally, a third order approximation in T is based on,

T3

yt-T)=y-Ty + 5§ - ud (23)

Similar algebraic steps as in the previous two approximations result in the following
generalized eigenvalue problem,

_10000ﬁ—¢__0 o 1 0 ()_—wT

01 0 0 0 v o 0 o0 o0 1 v,

O 0 B33,3 0 B35,3 t A31,3 A32,3 A33,3 A34,3 A35,3 r ’ (24)
00 0 1 0 y u 1 0 0 0 y

_O 0 B53,3 0 B55,3_ _‘.’2_ _A51,3 A52,3 A53.3 A54.3 A55,3__ _v2_

where v, = v, v, is the rate of change of v, and the entries of the generalized
eigenvalue problem (24) are included in the Appendix. Higher order approxima-
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tions in T can not produce any usable stability results, since the B-matrix in (24)
becomes singular.

3.2. Comparison and normalization of results

A plot of the critical visibility distance, dy, versus the control time constant t, for T
= 1is shown in Figure 1, using all three approximations for y(t— T). In general, the
following conclusions can be made:

1. Higher values of t, require higher values of d in order to guarantee stability.
Since higher t. corresponds to a lower bandwidth control law, this means that a
slower guidance law is needed to accomodate the slower control law.

2. Agreement between the three approximations is relatively good, the third order
approximation is naturally the most accurate. The agreement is progressively bet-
ter as t_ is increased. It can also be seen that, for design purposes, the first order
approximation provides the most conservative estimate for the domain of stability.
Since this is also the simplest to compute, we will make use of this result in the next
section where we attempt to classify the dynamics of the system at the neighbor-
hood of the stability boundary.

1.8 ik ///
s

1:6 ///

WL

1 1.2 1.4 1.8 1.8 2 2.2

d

Fig. 1. Stability boundaries in the (d,t.) parameter plane for T = 1.
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For design purposes, it is desirable to normalize the results so that we can characte-
rize the stability analysis for all values of time lag. To this end, we proceed as
follows: If the vehicle side slip velocity v is very small so that it can be neglected,
the vehicle equations of motion (6) and (7) take the form,

y=r

I = ayur + b,u?d,

y = uy. (25)

The control law is,
6 =k(y — v + ki, (26)

where the first order approximation for the commanded heading angle is em-
ployed,

— Tv
ye =T (27)

Based on equations (25), (26), and (27), we can get the characteristic equation of
the system as,

T 1
A2 — (ayp + bkju)ui? — bzkl(l -u 'a')uzi - b,k,u? i 0.

Applying Routh’s criterion to this cubic equation, we find that loss of stability
occurs when,

T 1

from which we can get the critical visibility distance,

1
dr = — m + Tu. (28)
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Equation (28) can be written as,

dt_do
T

=u, (29)

where d, is the critical visibility distance for T = 0, and d; the corresponding
distance for T # 0. In dimensionless quantities, equation (29) is written as,

dr —dy
— =1 (30)

where d, d, are in vehicle length, and T is expressed in the time it takes to travel a
vehicle length.

A comparison between the approximation expression (30), and the three Taylor
series approximations (19), (21), and (23), is shown in Figure 2, for T = 1. As
expected, the agreement if better for the first order approximation, and also for
higher controller time constants t.. This is because a high t, results in soft vehicle
response with negligible amounts of side slip. A plot of (d; — d,)/T versus t, using
the third order approximation (23) and for different T is shown in Figure 3. As
expected, the agreement increases with increasing t. and decreasing T.

| |
/ \
bl
. /1]
IR
| ( \
S+ S~

0.8 0.85 0.9 0.95 1 1.05 1.1
(dr — dp)/T

Fig. 2. Critical ratio (dy — d,)/T versus t. for T = 1, and for first, second, and third
order approximations of y(t — T).

2
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Fig. 3. Critical ratio (dy — d,)/T versus t_ for third order approximation of y(t — T),
and for different values of T.

3.3. Exact computation

The previous analysis using Taylor expansions of y(t — T) breaks down for approxi-
mations beyond third order, as the corresponding generalized eigenvalue problem
becomes singular. A different technique should, therefore, be sought in order to
obtain an exact computation of the stability curves and check the validity of our
calculations. This technique is based on frequency response methods and it utilizes
Nyquist’s criterion for stability [Friedland (1986)]. We write the equations of mo-
tion (14) through (17) in the Laplace domain, where,

y(t = T) - ye™Ts, (31)

is the time delay operator. The characteristic equation of the system is,

1
st + ;83 + 82 + ass + (8,52 + Bis + Bo)as i e s =0, (32)
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where,

Bo = u,

B, = — apb, — apb, + b, ’
bya); — biay

Br=— b

u(bya;; — bjay) ’

and a,, a,, a; are given in terms of t. in (9). The characteristic equation (32) is
written as,

1+ %G(s) =0, (33)

where,

G(s) (Bas? + Bis + Bylase™™
§) = ,
s(s3 + ;8% + a8 + ay)

(34)

is the open loop transfer function, and 1/d denotes the effective position gain. For
stability, we can utilize the Nyquist criterion which states that the critical value d
can be computed from,

1
3 |IG(jw)| =1  for  arg{G(gw)} = —m, (35)
where j denotes the imaginary unit. The argument, arg{G(jw)}, of (34) is,

) 7 Biw ) (azw - w3)
= —oT - = i 1) ogan-t
arg{G(jw)} wT 2 + tan ( By — B0 tan @ — aw?)

The two equations (35) result in the critical visibility,

as\/(ﬂo — Bow?)? + Blw?

d= , (36)
w‘/ (ap = 0,w?)? + (a0 — w?)?

where w is the solution to,

Biw(a; — a,w?) — (By — Bw?) (a0 — w?) _ 1 (37)

(Bo — B (a3 — a,0?) + Bw(aw — w3) ~ tan(wT)
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Fig. 4. Critical visibility dr versus t, for different values of time lag T.

Solution to (37) yields the so-called phase crossover frequency, and then the critical
value of d, dr, is easily obtained from (36).

Typical results are presented in Figure 4 in terms of dr versus t for different
values of time lag T. To within the thickness of the graphs, the results are identical
to those obtained using the third order Taylor series approximation (23).

4. Analysis of Hopf Bifurcation
4.1. Introduction

It can be numerically confirmed that in all cases of stability loss of the previous
chapter, one pair of complex conjugate eigenvalues of the corresponding eigenva-
lue problem crosses transversally the imaginary axis. A situation like this in which a
certain parameter is varied such that the real part of one pair of complex conjugate
eigenvalues of the linearized system matrix crosses zero, results in the system
leaving its steady state in an oscillatory manner. This loss of stability is called Hopf
bifurcation and generically occurs in one of two ways, supercritical or subcritical.
In the supercritical case, stable limit cycles are generated after the nominal straight
line motion loses its stability. The amplitudes of these limit cycles are continuously
increasing as the parameter distance from its critical value is increased. for small
values of this criticality distance the resulting limit cycle is of small amplitude and
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differs little from the initial nominal state. In the subcritical case, however, stable
limit cycles are generated before the nominal state loses its stability. Therefore,
depending on the initial conditions it is possible to diverge away from the nominal
straight line path and converge towards a limit cycle even before the nominal
motion loses its stability. This means that in the subcritical Hopf bifurcation case
the domain of attraction of the nominal state is decreasing and in fact it shrinks to
zero as the critical point is approached. Random external disturbances of sufficient
magnitude can throw the vehicle off to an oscillatory steady state even though the
nominal state may still remain stable. After the nominal state becomes unstable, a
discontinuous increase in the magnitude of motions is observed as there exist no
simple stable nearby attractors for the vehicle to converge to. Distinction between
these two qualitatively different types of bifurcation is, therefore, essential in
design. The computational procedure requires higher order approximations in the
equations of motion and is the subject of the next section.

4.2. Computations

The nonlinear equations of motion are written as,

Y=, (38)
vV = ajuv + ajur + bju2d’, (39)
I = ayuv + a,ur + bu?d’, (40)
y = usiny + vcosy, (41)

where the control law is,

t—T
8 = k;y + kv + kst + k;tan-! Y(—d—) , (42)
and, including saturation,
0
o' = ésattanh( ) (43)
653(

We perform a Taylor series expansion of the equations, keeping the first non-
vanishing nonlinear terms. Due to port/starboard symmetry in the problem, this
means expansion to third order terms,
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1 1
siny =y — 3 w3, cosy =1 — 5 Y2, (44)
5 =6 — — &3 (45)
- 36%,
k, K .
0 =k1w+k2v+k3r+Fy(t—-T)—Ey(t—T), (46)

where for consistency, the term y(t — T) is approximated by its first order expan-
sion in T,

1 1
y(t—T)=y—Ty=y—Tu1p+—6-Tuz/)3—Tv+ETvzp2. (47)

Substitution of equations (44) to (47) into equations (38) to (43), produces the
system,

x = Ax + g(x), (48)

where the state variables vector is,

x = [p,v,r.y]T,

A is the linearized matrix at equilibrium, and g(x) contains all third order terms.
If T is the matrix of eigenvectors of A evaluated at the critical point d = dr, the

linear change of coordinates,

x=Tz, z-=TI, (49)

transforms system (48) into its normal coordinate form,

z = T 1ATz + T g(Tz). (50)

At the Hopf bifurcation point, matrix T-1AT takes the form,
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O _wo O 0
w, 0 00

T-AT = :
0 0 po

L0 0 0 q_

where w is the imaginary part of the critical pair of eigenvalues, and the remaining
two eigenvalues p and q are negative. For values of d close to the bifurcation point
dr, matrix T-1AT is,

B ]
a'e —(wy + '¢) 0 0
wy+ w'e a'e 0 0

T-1AT = ,

0 0 p+pe 0

q+q'e

0 0 0
where, ¢ denotes the criticality difference,
£ = d - dT, (51)

w' = derivative of the real part of the critical eigenvalues with respect to &,

a' = derivative of the imaginary part of the critical eigenvalues with respect to ¢,
p’ = derivative of p with respect to ¢,

q’' = derivative of q with respect to &.

Due to continuity, the eigenvalues p + p’e and q + q'e remain negative for small
nonzero values of &. Therefore, the coordinates z;, z, correspond to negative
eigenvalues and are asymptotically stable.

Center manifold theory predicts that the relationship between the critical coor-
dinates z,, z, and the stable coordinates z, z, is at least of quadratic order. In fact,
due to the symmetry in our problem the relationship is cubic,

z, = 0(43,2), z, = 0(8,2).
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It follows that because of this order, z;, z, do not influence the third order Taylor
series expansions, and can be dropped from the equations. Therefore, we can write
the reduced system that describes the center manifold flow of (50) in the form,
z, = a'ez; — (wy + w'€)z, + Fi(2,,2,), (52)
z, = (wy + 0'e)z; + a’ez, — Fy(z4,2y), (53)
where F,, F, contain the third order terms,
Fi(z,2)) = 1473 + 1192i2,2; + 132123 + 1,33, (54)
Fy(z12)) = 13,2} + 121212, + 132,23 + 1,483, (55)
The coefficient 1; are computable from the previous Taylor expansions, see Appen-
dix.

If we introduce polar coordinates in the form,

z, = Rcos®, z, = Rsiné, (56)

we can use (52) and (53) to produce an equation describing the rate of change of
the radial coordinate R,

R = a'eR + P(6)R3, (57)
and a similar equation in the rate of change of the angular coordinate 6,

6 =w, + o't + Q)R (58)
The system of equations (57) and (58) contains two variables, one of which, R, is
slowly varying in time, whereas the other one, @ is a fast variable. Then, equation
(57) can be averaged over one cycle in 6 to produce an equation with constant
coefficients and similar properties,

R= a'eR + KR3, (59)

where,

2r
1 1
K=-— j P(8)d0 =R — 3ty + Ty3 + Iy + 30,). (60)
2n |, 8
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Nontrivial equilibrium solutions of (59) correspond to limit cycles in the original
system. The nontrivial equilibrium of (59), R, is given by,

Ry =~ &F. (61)

In our problem, since the trivial equalibrium gains its stability for d > dp, the
coefficient a’ is always negative. Therefore, it can be seen from (61) that a limit
cycle will exist provided K and ¢ have the same sign. The stability properties of this
limit cycle can be determined by linearization of (59) around R,. The linearized
system is,

R= —2a'¢(R — Ry), (62)
and its eigenvalue is,
B = —2ae. (63)

We can see that the Floquet exponent (63) is negative if € is negative, which means
that K must be negative. Therefore, location and stability of limit cycles depends
entirely on the cubic coefficient K which is computable from (60). We can summar-
ize our findings as,

e If K < 0 then limit cycles exist for ¢ < 0 (d < dy) and they are stable.

e If K > 0 then limit cycles exist for ¢ > 0 (d > dp) and they are unstable.

4.3. Results and discussion

The cubic coefficient K is presented in Figure 5 versus the control time constant, t,,
for rudder saturation limit d,, = 0.4 radians, and for different values of navigation
time lag T in dimensionless seconds. It can be seen that supercritical Hopf bifurca-
tions are ensured for t, higher than a certain critical value. For t, less than the
critical value, the bifurcations are subcritical and higher limit cycle amplitudes are
expected. The critical transition point is decreasing for increasing values of T. The
range of control designs t, for supercritical bifurcations is increasing for increasing
T. This means that, although higher T requires a higher value of d for stability of
straight line motion, it helps in ‘softening’ the response afte the initial loss of
stability. Similar results can be obtained from Figure 6 which presents K versus t,
for T = 0.4 and for different values of J,,,. As before, supercritical bifurcations are
ensured for sufficiently high values of t., whereas the range of t_. for supercritical
loss of stability is increasing with increasing available control dg,.
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The theoretical results of Figures 5 and 6 are confirmed by the direct numerical
integration results presented in Figures 7 and 8. Figure 7 shows limit cycle amplitu-
des for T = 0 as functions of the normalized visibility distance d/d. Solid curves
correspond to stable limit cycles and dotted curves correspond to unstable limit
cycles. The latter were numerically obtained by an iterative shooting scheme. For t,
= 1.2 the corresponding bifurcations are supercritical and we can observe the
continuously increasing amplitudes for d/d; < 1. For t. = 0.6 we can observe the
occurrence of unstable limit cycles for d/d; > 1 characteristic of subcritical beha-
vior. Global asymptotic stability of straight line motion appears to be possible only
after exceeding the least required values of d by more than 60%. For values of d
less than dr, a discontinuous limit cycle amplitude is observed for an infinitely small
initial disturbance y # 0. Figure 8 shows limit cycle amplitudes versus T for d = 0.5
and for the same two values of t.. Supercritical bifurcations occur for t. = 1.2
throughout the range of T, whereas for t. = 0.6 supercritical bifurcations occur only
for T higher than a certain critical value. Limit cycle amplitudes for the supercriti-
cal case remain consistently smaller than in the subcritical case.

5. Stability enhancement

The use of equation (12), y = y(t — T), in the guidance law (11) corresponds to a
zero memory navigation model: in the absence of current positional information
we simply utilize the value at the previous position fix. It is possible that by
expanding this to a first order memory model, the stability properties of the combi-
ned scheme will improve. To assess this we can use the previous two vehicle
positions, at times (t — 2T) and (t — T), and extrapolate linearly to the current
position. This produces the following navigational estimate,

y =2y(t — T) — y(t — 27), (64)

which is then used in the guidance law (11).

The domain of motion stability for the two point formula (64) can be computed
using a technique equivalent to Section 3.3, where the term e~Ts is substituted by
2e-Ts — ¢~2Ts, Typical results are presented in Figure 9 where the critical visibility
distance, d, is plotted versus the control time constant, t., for T = 0.5, and using
the two navigational formulas (12) and (64). It can be seen that in general use of
the two point formula provides a larger domain of stability except for small values
of t, where the situation is reversed. Since such small values of t. must be avoided in
practice based on our analysis of Hopf bifurcations, it can be concluded that the
two point formula results in stability enhancement. The critical value of t. where
use of the one point formula is preferred is generally increasing with increasing
values of time lag T. This is further shown in Figure 10, where we present the ratio
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of the critical visibility based on the two point formula, d,, by the critical visibility
based on the one point formula, d,, versus t., and for different values of T. It can be
seen that the ratio d,/d, is, in general, less than one and that it exceeds the value of
one for higher values of t, as T increased.

Although use of the two point formula (64) provides a wider domain of linear
stability, its effect on the nature of Hopf bifurcations must still be assessed. To this
end we can write the control law (42) in the form,

2y(t = T) — y(t = 2T)
) :

0 = ki + kv + kyr + k tan—! (65)

where we utilized the new navigational law (64). Consistent with our analysis so
far, we expand (65) in a third order Taylor series using a first order expansion for
y(t — T) and y(t — 2T). This procedure yields,

,o_Kk

a¥ 3 (66)

0=k + kv + kyr +

We can see that the effect of the two point formula is to eliminate T from the third
order Taylor series expansions. Based on the results presented in Section 4.3, this
has an adverse effect on limit cycle stability. It should be recalled that higher values
of T helped in establishing supercritical Hopf bifurcations. Therefore in the present
case subcritical bifurcations will occur over a larger range of t.. The physical expla-
nation of this fact is that since now a more accurate navigational law is employed,
the control law needs to be softer. Naturally, using three positional estimates, y(t —
T), y(t — 2T), and y(t — 3T) would have similar effects. The advantage of increased
stability region, though, is not worth the additional computational effort.

6. Concluding remarks

A methodology for analyzing positional information time lags in the control law for
vehicle maneuvering in the horizontal plane has been presented. The relationship
of the critical visibility, control time constant, and time lag was established. Time
lags have been approximated by first, second, and third order Taylor expansions. It
was found that the first order approximation was the most conservative for control-
ler design purposes since it predicted the highest required critical visibility distance.
Frequency response techniques based on Nyquist’s stability criterion virtually
matched the third order Taylor approximations. The differences among the three
approximations became more pronounced with increasing time lag and decreasing
controller time constant.
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Further analysis was conducted to characterize the stability results for any value
of time lag using a normalization procedure and the first order approximation for
time lag. This provides a quick design estimate for stability degredation which is
valid regardless of vehicle characteristics.

A detailed Hopf bifurcation study demonstrated the mechanism of loss of sta-
bility through subcritical or supercritical bifurcations. Supercritical bifurcations
were ensured for values of control time constant greater than a certain critical
value. This critical value is decreasing for increasing rudder saturation limits and
navigational time lag. The use of a two stage memory model was found to increase,
in general, the region of linear stability but decrease the region of supercritical
Hopf bifurcations.
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9. Appendix
9.1. Elements of matrix Aij, I

The entries of the eigenvalue problem (20) are given by,

k
Agy = bpu? —dl‘ (d — uT),

k
A22,1 = allu + bluz(kz - _(_1'1_ T),

A23,1 = a12u + b1u2k3,

k
Az g = byu? Fl (d —uT),

k
A32,1 = 3.21u + bzuz(kz - _(-jl T),
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A33’1 = azzu + b2u2k3,

k
A34q1 = b2u2 El' .

9.2. Elements of matrix A;;,

The entries of the eigenvalue problem (22) are given by,

227 d — 0.5b,u%k, T2 °

Ana d — 0.5b,u%k, T2 ’
A o Bud ¥ b,uzk,d + 0.5b,u’k, T2
Bz d — 0.5b,u%k,T? ’
b,uzk
Ay L

~ d - 0.5bu%, T2’

bluzkld - b1u3k1T
d — 0.5b,u%k,T? °

A31,2 = bzuzkld - b2113k1T + 0.5b2u2k1T2 .

387

allud + bluzkzd - bluzle

A32'2 = a21ud + bzuzkzd - bzuzle + 0.5b2u2k1T2 M

Asz, = apud + byuksd + 0.5b,u%k T? + 0.5buk, T?

. apud + bywkyd + 0.5b,uk, T
d — 0.5b,uk, T? ’

b,uk,;
d — 0.5b,u%k, T2 °

A34,2 = b2u2k1 + 0.5b2u2k1T2 *

d — 0.5b,uk, T2

b
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9.3. Elements of matrices A;;; and B ;

The entries of the generalized eigenvalue problem (24) are given by,

ky
= 3 —T3
By = bju 6d T3,
k
B35 = b1u2 g'cli' T3,

By = 1 + bt 2L 3
53 2 6d ’

k
By = bou? é T3,

d
A31 = b1u2k1 - b1u3 T T,
kl

k
A32 = allu + b1u2k2 - b1u2 Fl T,

k
Ay = apu + buk, + byud i T2,

k
Ay = byu? —L )

k
Ay = blu2-2-§T2 -1,

kl
A51 = b2k1 - b2u3 _d— T,

A52 = au + b2u2k2 - bzuz Fl T,

k
Ag; = anu + byuZk; + byud i T2,

k
A54 = b2u2 _1 ,

LSE

2dT2—1.
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9.4. Nonlinear expansion coefficients r;

The nonlinear expansion coefficients r; that are utilized in the definition of the
cubic stability coefficient K are given by the following:

Iy = Nply + ngly + mylyy,

I3 = Npbs + Nslyy + Mylys,

I = Nyl + Nyly + Mmyly,

Iy = Dyplyy + Nylyy + My,

where we denote,

T=[my], T!= [ny], iL,j=1,..,4

For numerical purposes the critical eigenvector of T must be normalized so that its

first nonvanishing coefficient is identically equal to 1. The coefficient I; are given
by,

by
bu? Oyyy
+ 4

2 2 2 2
mimy; + 6,,,mym3 + d,, mpymy + 6, m;;msj

2 2 2 2
mi;m,, + 0,,,m;mj + ,,msmy + 6, m,ms

yyy yyy

2 2 2 2
+ Op,miymy; + O,,,mymy; + O mimy + 6,,mymy,
+ Oy My My + O MyMy My + 6, myMyMy; + Oy My My My,

3 3 3 3
+ d,,,mi; + O,,m3 + d,m3 + OyyyMy s
22 _ 2 2
bu? =0y (mimy, + 2mymmy) + 4, (my,ms3; + 2my;m;;my)
2 2
+ 0y (mims, + 2mym;,my;) + d,,(mpm3; + 2m;;mymsy)

+ 0, (mim, + 2m;mp,my) + 6, (mim;, + 2m;;mym,,)

yyy
+ Oy (mymy, + 2mymymy,) + Oyp(mypmy; + 2mymy,m,,)
+ Oyy(mimy, + 2mymymy,) + d,y (Mymi; + 2mym,m,,)
+ 0y (mfmy, + 2m,mymy,) + 4,y (mymj; + 2mym,,msy)
+ 0y, [mymymy, + my(my;my, + m;my)]

+ 0,y [mymymy, + my(m;m,, + m;my)]
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b,u?

b,u?

Iy
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+ 6tpry[m11m41m32 + my(m;;my, + mymy)]
+ 0, [mymymy, + my(mymy, + mymy)]

+ 8,,,(3mimyy) + 8,,,(3m3imyy) + O, (3mimy) + 6y, (3mimyy),

yyy

=0yyy(mimy; + 2m;;my,my) + 0, w(mymj, + 2my,m,my,)
+ 0
+ 0

2 2
ppe(imy; + 2mympms,) + 6, (my;m3; + 2my,m;;my,)

2 2
wwy(m12m41 + 2mymy,m,;) + 6Ipyy(m42m11 + 2my,mymy)

+ Oy (m3,my, + 2mymymy;) + O, (mym3, + 2myymy,ms,)
+ 0,y (m3my; + 2mymymy,) + 3,y (Mymj, + 2mym,m,,)
+ Opy(mipmy; + 2my,mymsy,) + O,yy(M3m3, + 2my;my,ms,)

+ 4

pul MMMy + myp(mym,,; + m,,m,; )]

+ 8, [mpmymy, + my(mymy, + my;my)]
+ 0, y[mpmemy + my(myymy, + m;,my,; )]
+ Oyy[mpmymy; + myy(mymy, + my;my,)]

+ 0y, (3m;m};) + Oun(3mym}y) + 6.,(3mymi;) + 6y, (3m,md),

_ 2 2 2 2
=0, MMy + &y, mpm3; + 8, mims, + 0, Mypm3)

2 2 2 2
+ 0,,ymim,, + 0,,m;,mj + d,,mimy, + 4, myms,

yyy Yvyy

2 2 2 2
+ 6,,ym5pmy, + O,yympmy, + Orymzmy, + O yyM3My,

+ 6 yMyMyMy; + 0y, MpMyMy, + OyryMypMyMy; + OyyMypMy,My,

Pvr
+ dwwwm%) + 6vwm%2 + 6rrrng) + 6yyym?1.2a

by
b,u?

by
b,u?

bs
b,u?

by
b,u?
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1, 1
ly - 7 Mg\ My + > umy, ),

1 1
1y —mll(mlszI + > My, + 2] um%z),

1 1
ly _m12<m11m22 + 5 MMy, t3 umu’u)»

1 1
lyy ~ 5 Mip| My +Eum12 )

where the coefficients in a third order expansion of the control law are defined by

1 T k,T3u3
Oy = — o (k1)%k; + 0.5k, — + ,
w = 7oy WO Ty
1 uT3k,
d.... = — — ki(ky)? + ,
Pyvv 633‘ 1( 2) d’3r
1 o
61/)1/)1' == 5§at (k1%k;,
1 13
5wrr = - "53: klkz’
1 k T2u2k
O,y = — k)2 =+ — ——,
A R
PO 1 ,k_% Tuk,
TN a
1 g
6vvr == azt (kZ) k35
sal
1
b = S
1 k, kT2
= — "2 —L _
Sy ==, G T
1, k? Tk
S =T ew g
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1 ky
6rry T agat k3 dT
1 k?
0y = k ,
S
1
5¢w = T 52 2kikzks,
sat
1 ky T2uk,
Oyyy = 62 2kik; — ar 2—dsT ,
1 ky
(Swry = agat 2k1k3 dt 3
1 k1
Oyy = 5§at 2kok; — ar
B 11 k,Tu kT3
Oypyp = ~ 5z 3 kI’ + S5~ + 3@
11 kT3
b == 52,3 P 5
11
b = =338
5o L1K 2
wy 62, 3 d&& 3d°
and
Tu

ki =k -k,

Kl o=k~ kg
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