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ABSTRACT

The problem of dynamic stability of submersible
vehicles in the dive plane is examined utilizing bifur-
cation techniques. The primary mechanism of loss of
stability is identified in the form of generic Hopf bifur-
cations to periodic solutions. Stability of the result-
ing limit cycles is established using center manifold
approximations and integral averaging. Parametric
studies are performed with varying vehicle geometric
properties. The methods described in this work could
lead to techniques resulting in enlargement of the sub-
merged operational envelope of a vehicle.

INTRODUCTION

The dynamic response of a submersible vehicle op-
erating at the extremes of its operational envelope is
becoming increasingly important in order to enhance
vehicle operations. Typically, eigenvalue analysis can
be employed where the equations of motion are lin-
earized around nominal straight line level flight paths
(Arentzen and Mandel, 1960), (Clayton and Bishop,
1982), (Feldman, 1987). Under certain simplified as-
sumptions, a simple but efficient criterion G, > 0 can
be obtained where the stability index G, is a function
of the hydrodynamic coefficients in heave and pitch.
Values for the stability index can be computed by,
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This index is analogous to the familiar stability coef-
ficient for horizontal plane maneuvering and can be
thought of as a high speed approximation where the
effect of the metacentric restoring moment is minimal.

If the value of G, is greater than zero, the vehicle is dy-
namically stable. As we have established in previous
studies (Papoulias and Papadimitriou, 1995) though,
this is only a sufficient, and rather conservative condi-
tion for stability. Nevertheless, it is widely used and
its value is indicative of vertical plane stability for any
new design. We should keep in mind, however, that
the condition G, < 0 indicates a divergent loss of sta-
bility which is quite uncommon in the vertical plane.
Most modern submarines exhibit a flutter—like insta-
bility at high speed, which can not be analyzed using
the above simplified index. Divergent motions may de-
velop in combined six degrees of freedom (Papoulias
et al, 1993) and their occurrence can not be analyzed
by a single stability index.

In our previous work (Papoulias and Papadim-
itriou, 1995) we examined the problem of stability of
motion with controls fixed in the vertical plane, with
particular emphasis on the mechanism of loss of sta-
bility of straight line motion. The closed loop con-
trol problem was analyzed in (Papoulias et al, 1995).
The surge equation was decoupled from heave/pitch
through a perturbation series approach (Bender and
Orszag, 1978). It was shown that loss of stability oc-
curs in the form of generic bifurcations to periodic
solutions (Guckenheimer and Holmes, 1983). Taylor
expansions and center manifold approximations were
employed in order to isolate the main nonlinear terms
that influence system response after the initial loss
of stability (Hassard and Wan, 1978). Integral aver-
aging was performed in order to combine the nonlin-
ear terms into a design stability coefficient [Chow and
Mallet—Paret, 1977). Some difficulties associated with
the nousmoothness of the absolute value nonlinearities
was dealt with by employing the concept of general-
ized gradient (Clarke, 1983). This was employed as
an alternative to the linear/cubic approximation typ-



ically used in ship roll motion studies (Dalzell, 1978).

Vehicle modeling in this work follows standard no-
tation (Gertler and Hagen, 1976), (Smith et al, 1978},
and numerical results are presented for a family of
bodies of revolution similar to the DARPA SUBOFF
model (Roddy, 1990) for which a set of hydrody-
namic coefficients and geometric properties is avail-
able. This parametric study is conducted utilizing ex-
isting semi—empirical methods for the calculation of
hydrodynamic coefficients. The methods are based on
(Fidler and Smith, 1978), (Humphreys and Watkin-
son, 1978), (Peterson, 1980) and have been verified in
(Wolkerstorfer, 1995). The effects of varying the nose,
base, and tail fractions of the body as well its nondi-
mensional volume to length ratio on the hydrodynamic
derivatives were studied in (Holmes, 1995) where pre-
diction equations were derived based on curve fitting
of the results. These hydrodynamic prediction equa-
tions are normalized by taking the SUBOFF model as
a baseline. This mode] has been experimentally val-
idated for angles of attack on the hull between +15
deg., while the constant coefficient approximation in-
troduces very little error in time domain simulations
(Tinker, 1978). Unless otherwise mentioned, all re-
sults in this work are presented in standard dimension-
less form with respect to the vehicle length ¢ = 4.26
m, and nominal forward speed U = 2.44 m/sec.

PROBLEM FORMULATION

Assuming that vehicle motion is restricted in the
vertical plane, the mathematical model consists of the
coupled nonlinear heave and pitch equations of mo-
tion. In a moving coordinate frame fixed at the vehi-
cle’s geometrical center, Newton's equations of motion
for a port/starboard symmetric and neutrally buoyant
vehicle are expressed in dimensionless form as follows,

m(w — uq — 2gq® — vGd) =
Z4q + Zyw + Zgq + Zyw

nose
—C’D/ b(z)(w — zq)|w — zq|dz, (2)
tail
Iyq +mzg(d + wq) — meg(w —uq) =
Myqg+ Myw + Mgq + Myw

nose
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tail

—xgW cosf — zgpW sin @, (3)

where zgp = g —z R, 268 = 2G — 2B, and the rest of
the symbols are based on standard notation. Without
loss of generality we can assume that zp = zg = 0,

so that rgg = z¢ and z¢p = zg. The cross flow
integral terms in these equations become very impor-
tant for high angles of attack maneuvering, where they
provide the primary motion damping. The drag coef-
ficient, Cp, is assumed to be constant throughout the
vehicle length for simplicity. This does not affect the
qualitative properties of the results that follow. The
vehicle pitch rate is,

0=gq. (4)

Dynamic coupling between surge and heave/pitch is
present due to coordinate coupling as a result of the
nonzero metacentric height. However, it has been
shown (Papoulias and Papadimitriou, 1995) that this
coupling is of higher order and does not change the
linear and nonlinear results that follow.

Hydrodynamic Coefficients

Systematic studies based on semi—empirical meth-
ods have resulted in the evaluation of hydrodynamic
coefficients for a generic body of revolution in terms of
basic geometric properties. Curve fitting revealed that
adequate accuracy for initial design can be obtained
by equations of the form

He = A1F}+ AsFnFp+ AsF2 + AsF,

14
+AsFm + A + Az (ﬁ —C’) ,

where Hc denotes a given coeflicient in its standard
nondimensional form, V the underwater volume of the
body, L its nominal length, F,, the nose fraction, and
Fyp, the mid—body fraction. The regression coefficients
A; are as follows,

Zyw : [—0.0641,—-0.1149, —0.0632, +0.0670,
+0.0732, -0.0263, —0.5769],

M, : [+0.0277,+0.0499, +0.0266, —0.0283,
—0.0301, —0.0056, —1.6357),

Zy @ [—0.0314,-0.0559, —0.0292, +0.0310,
+0.0316, —0.0091, —0.0880],

M, : [-0.0003,4-0.0040, +0.0027, —0.0012,
—0.0045, +0.0006, —0.1590],

Zy ¢ [+0.0002,+0.0007, 40.0007, —0.0008,
—0.0016, -0.0144, —1.8067],

My [-0.0002, —0.0007, —0.0007, +0.0008,
+0.0016, +0.0144, +1.8067],
My : [-0.0031,-0.0046, —0.0021, +0.0031,

+0.0024, —0.0013, —0.0808].



Figure 1: Hydrodynamic coefficient My versus Fy, and
Fm

Z4 was assumed constant since the semi-empirical
techniques failed to compute a reliable value. The con-
stant C is approximately 8 x 1073 and is the nominal
value for the volumetric coefficient. These expressions
are for a body of revolution without appendages and
assume parabolic nose, parallel mid-body, and conical
tail (Holmes, 1995). Typical ranges of applicability for
these regression formulas are 0.05 to 0.25 for Fy, 0.40
to 0.60 for F,,, and 6.0 to 10.0 for V/L3. Sample
results in terms of the rotary added mass coeflicient
M versus the nose and mid-body fraction ratios are
presented in Figure 1.

Critical Speed

The parameter value where the real part of
the dominant complex conjugate pair of eigenvalues
crosses zero defines the point where linear stability is
lost. This critical point can be computed by consider-
ing the characteristic equation of the system. Routh’s
criterion applied to this can be solved for the dimen-
sionless weight,

BoC
W= 2C20 ’ (5)
AgaDy 1 — BaCa)
where,
02,0 = Zw(Mq — mmg) - Mw(Zq + T”) )
Ca1 = (m — Zu';)(ZGB cosfg — xgB Sineo) ,
Dy = Zylrgpsinfy — zgB cos o) .

It should be mentioned that the effect of the forward
speed u is embedded into the definition for the dimen-
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Figure 2: Critical speed for F, = 0.1 and F,, = 0.4
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Figure 3: Critical speed for F,, = 0.3 and F,, = 0.4

sionless vehicle weight W through,

W — (6)

-é—,ouZL2 ’
The value of the critical speed u. can then be evalu-
ated from (5) and (6). Typical results are presented in
Figure 2. A family of critical speeds, u., is shown ver-
sus z g with z¢ as the parameter of the curves. These
results were obtained for a nose fraction F,, = 0.1 and
mid-body fraction F,, = 0.4. The volumetric coef-
ficient was kept at nominal for all results. Vertical
plane motions are stable for forward speeds less than
the critical speed. It can be seen that stability is in-
creasing with increasing z¢ while zg = 0 is the most
conservative condition for stability. Therefore, a vehi-
cle which is stable when properly trimmed will remain
stable for off-trim conditions.

In order to confirm the fact that a vehicle with a
longer aft--body ought to be dynamically more stable,
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Figure 4: Critical speed for F,, = 0.3 and F,,, = 0.6
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Figure 5: Critical speed versus F,, = 0.3 and F,, = 0.6
for z¢ = 0.0125 and three values of z¢g

Figure 6: Critical speed versus Fp, = 0.3 and F,, = 0.6
for z¢ = 0.0 and three values of z¢g
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Figure 7: Stability coefficient G, versus z¢g for con-
stant F, and different values of F,,

we present the results of Figures 3 and 4. The meta-
centric heights z¢ are as in Figure 1. It can be seen
that the corresponding critical speeds become smaller,
thereby reducing the dynamic stability margin, as the
nose and mid-body fractions are raised. This trend is
consistent for all values of z¢ and zg examined.

A combined plot of the critical speed versus both
F, and F,, for z¢ = 0 and for z¢ = (—0.01, 0, +0.01)
is shown in Figure 5. The lower surface corresponds to
zg = 0. It can be seen that nonzero x¢ increases the
range of stability, while the general trend is to increase
stability as both F,, and F,, become smaller. A similar
plot for z¢ = 0 and for three values of z¢, 0.005, 0.010,
and 0.025 is shown in Figure 6. The lower surface
corresponds to zg = 0.005 and the higher one to z¢ =
0.025.1t can be seen that the metacentric height has by
far the greatest effect on dynamic stability, while the
effects of hull geometry are by comparison minimal.

A plot of the classical stability coefficient G, from
equation (1), is shown in Figure 7. The differ-
ent curves correspond to various mid-body fractions,
while the nose fraction is kept constant. It can be seen
that G, is negative throughout. Therefore, it would
have been predicted that an unstable vehicle exists for
all ranges of the parameters, which is of course incor-
rect. Furthermore, G, becomes less negative as Fi, is
increased, which would suggest that dynamic stability
is increased as the aft-body length is decreased. This
is also a false conclusion. As we pointed out in the in-
troduction, the classical stability index G, should be
used with extreme caution.



BIFURCATION ANALYSIS

In all cases of stability loss of the previous section,
one pair of complex conjugate eigenvalues of the corre-
sponding eigenvalue problem crosses transversally the
imaginary axis. A situation like this in which a cer-
tain parameter is varied such that the real part of one
pair of complex conjugate eigenvalues of the linearized
system matrix crosses zero, results in the system leav-
ing its steady state in an oscillatory manner. This
loss of stability is called Hopf bifurcation and generi-
cally occurs in either supercritical or subcritical form.
In the supercritical case, stable limit cycles are gen-
erated after the nominal straight line motion loses its
stability. The amplitudes of these limit cycles are con-
tinuously increasing as the parameter distance from
its critical value is increased. For small values of this
criticality distance the resulting limit cycle is of small
amplitude and differs little from the initial nominal
state. In the subcritical case, however, stable limit
cycles are generated before the nominal state loses its
stability. Therefore, depending on the initial condi-
tions it is possible to diverge away from the nominal
straight line path and converge towards a limit cy-
cle even before the nominal motion loses its stability.
This means that in the subcritical Hopf bifurcation
case the domain of attraction of the nominal state is
decreasing and in fact shrinks to zero as the critical
point is approached. Random external disturbances
of sufficient magnitude can throw the vehicle off to an
oscillatory steady state even though the nominal state
may still remain stable. After the nominal state be-
comes unstable, a discontinuous increase in the mag-
nitude of motions is observed as there exist no simple
stable nearby attractors for the vehicle to converge
to. Distinction between these two qualitatively dif-
ferent types of bifurcation is, therefore, essential in
design. The computational procedure requires higher
order approximations in the equations of motion and
is the subject of this section.

Center Manifold Expansions

The nonlinear heave/pitch equations of motion (2),
(3), and (4) are written in the form,

6 = q, (7
w = anw+ajaq+a3(zepcosd + zgpsinb)

+dw(w7Q) +cl(w,q) ] (8)
¢ = aoyw+agq+asg(repcosd + 2gpsind)

+dg(w, q) + c2(w,q) , (9)

where the various coefficients are functions of the hy-
drodynamic derivatives and mass properties, and Iy,
I, are the cross flow integrals.

The system of equations (7) through (9) is written
in the compact form

x=Ax+g(x), (10)

where
x=[0,w,q], (11)

is the three state variables vector, and A is the lin-
earized sytem matrix evaluated at the nominal point
xg- The term g(x) contains all nonlinear terms of
the equations. Hopf bifurcation analysis can be per-
formed by isolating the primary nonlinear terms in
g(x). Keeping terms up to third order, we can write

5(x) =g (x) + g (x) . (12)

Using equations (7) through (11), the various terms in
(12) can be written as,

o = o,

o) = (I, - My)mzeq® — (mag + Zgymzgug
+dP(w,q), (13)

g§2) = —(m — Zy)mzgwg + (mazc + My)mzgq®

+d§2)(w, q),

and
i’ = 0,
057 = dQ(w.a)+
2a13(zepsindo — zgp cos0g)0° , (14)

%agg(ch sin g — zgp cos 6g)0° .

Expansion in Taylor series of d.,, dq requires expansion
of the cross flow integrals I, I, which require the
Taylor series of

f(&) = ¢lgl - (15)

This expression can be converted into an analytic func-
tion using Dalzell’s approximation (Dalzell, (1978),

35 &3

€lel ~ Jptet + 3o (16)
which is derived by a least squares fit of an odd series
over some assumed range of &, namely —¢&. < £ < &.
This approximation has been extensively used in ship
roll motion studies and is very useful for its intended
purpose. However, in the present problem it suffers
from the following drawbacks:



e It introduces a linear term which depends on the
assumed range of motion, and it renders the crit-
ical speed function of the vehicle motions.

e The cubic term, which is ultimately responsible
for the Hopf bifurcation analysis, is a function of
the assumed range of vehicle motions which can
not be known in advance.

e The slope of the actual curve at the origin is sig-
nificantly different than the approximation, which
would make the bifurcation results unreliable.

Instead of Dalzell's approximation, we employ the
concept of generalized gradient (Clarke, (1983), which
is used in the study of control systems involving dis-
continuous or non-smooth functions. In this way we
approximate the gradient of a non-smooth function at
a discontinuity by a map equal to the convex closure
of the limiting gradients near the discontinuity. In our
problem we write,

(&) = ¢&oléol + 2|l (€ — &) +
sign(€o) (€ — &) + 3, (17

as the Taylor series epansion of f(£) near £y. The sign
function in {17) can be approximated by,

sign(€g) = lim tanh (é‘l) . (18)
7—0 vy
The quantity + is a small regularization parameter and
is used for proper normalization of the results. Using
(18), we can approximate f(£) in the vicinity of {op = 0
by,

1
£l ~ =g (19)
2
Since
E— w—1zq, (20)

we can express the non—smooth cross flow integral
terms by,

C
L, = _ﬁ—D(Eow3 — 3E1w?q + 3Ewq® — E3q®)
gl
c
Iy = 6_D(E1w3 — 3Byw’q + 3B3wq” — Eag®)
gl

where
nose .
E;, = / z*b(z)dz , (21)
tail
are the moments of the vehicle “waterplane” area.
Using the previous second and third order Taylor
series expansions, equation (10) is written in the form,

x=Ax+gPx)+g®(x) . (22)

If T is the matrix of eigenvectors of A evaluated at the

critical point u = u., the linear change of coordinates,
x=Tz, z=T x, (23)

transforms system (22) into its normal coordinate
form,

z=T ‘ATz + T 'g®(T2) + T 'g®(Tz) . (24)

At the Hopf bifurcation point, matrix T—'AT takes
the form,

0 —wo 0
T!'AT=|w 0 0],
0 0 P

where wg is the imaginary part of the critical pair of
eigenvalues, and the remaining eigenvalue p is nega-
tive. For values of u close to the bifurcation poit u.,
matrix T~'AT becomes,

a'e —(wo + w'e) 0
T AT = (wo + w'e) a'e 0 ,
0 0 p+pe

where € denotes the criticality difference

€=U — Ug, (25)
and
a' = derivative of the real part of the critical
eigenvalue with respect to €,
w' = derivative of the imaginary part of the
critical eigenvalue with respect to €,
p’ = derivative of p with respect to ¢ .

Due to continuity, the eigevalue p+p’c remains neg-
ative for small nonzero values of €. Therefore, the co-
ordinate z3 corresponds to a negative eigenvalue and
is asymptotically stable. Center manifold theory pre-
dicts that the relationship between the critical coordi-
nates z1, zo and the stable coordinate z3 is at least of
quadratic order. We can then write z3 as,

2 2
z3 = a112] + 122129 + o225, (26)

where the coeflicients, «;;, in the quadratic center
manifold expansion (26) need to be determined. By
differentiating equation (26) we obtain,

23 = 2a112121 + a12(2129 + 2122) + 2a092929 . (27)

We substitute 21 = —wgze and z9 = wpz; and we
obtain

z3 = algwozf + 2((122 —_ all)wozlzg —_ algwoz% . (28)



The third equation of (24) is written as,

3 = prs+ [T_lg(2)(Tz)] (29)

3,3)

where terms up to second order have been kept. If we
denote the elements of T and T—! by,

T=[myl, T =[nyl, (30)
then
dy
T g®(Tz)= | da |,
ds

where expressions for dj, ds, d3, and the coefficients
¢;; are given in Papadimitriou (1994).
Equation (29) then becomes

z3 = pz3 +ds, (31)

and substituting (26) and the expression for d3 into
(31) we get,
z3 = (pai + nazlas + nazlss)z?
+(pa12 + n3alos + n33lse) 2122
+(pagy + naalor + nazlar)zs . (32)

Comparing coefficients of (28) and (32) we get a sys-
tem of linear equations which yields the coeflicients in
the center manifold expansion (26).

Using the previous Taylor expansions and cen-
ter manifold approximations, we can write the re-
duced two—dimensional system that describes the cen-
ter manifold flow of (24) in the form,

21 = d'ez; — (wo+w'e)zg + Fi(z1,22) ,
29 = (wo+w'e)zr +a'eza + Falz1, 22) ,

where Fy, Fy are cubic polynomials in z; and zs.
If we introduce polar coordinates in the form,

z1 = Rcos¢, z9=Rsing,

we can produce an equation describing the rate of
change of the radial coordinate R,

R=o/eR+P(¢)R*+Q(¢)R* .

This equation contains one variable, R, which is slowly
varying in time, and another variable, ¢, which is a
fast variable. Therefore, it can be averaged over one
complete cycle in ¢ to produce an equation with con-
stant coefficients and similar stability properties,

R=oa'eR+ KR®>+ LR?,

where

1 2

K = o P(¢)de
T Jo

= 1(ri +ri3+ra+3raa),

1 27

L = o Q(4)dp =0.
™ Jo

Therefore, the averaged equation becomes
R=co'eR+ KR3. (33)

Equation (33) admits two steady state solutions,
one at R = 0 which corresponds to the trivial equilib-
rium solution at zero, and one at

Rg=14/——¢€. (34)

This equilibrium solution corresponds to a periodic
solution or limit cycle in the cartesian coordinates 21,
zg9. For this limit cycle to exist, the quantity Ro must
be a real number. In our case o’ is always positive,
since the system loses its stability; i.e., the real part of
the critical pair of eigenvalues changes from negative
to positive, for increasing . Therefore, existence of
these periodic solutions depends on the value of K.
Specifically,

e if K < 0, periodic solutions exist for ¢ > 0 or
u > U, and

e if K > 0, periodic solutions exist for ¢ < 0 or
u < Ue-

The characteristic root of (33) in the vicinity of (34)
is
B =—2de, (35)

and we can see that

o if periodic solutions exist for v > u. they are sta-
ble, and

e if periodic solutions exist for v < u, they are un-
stable.

Results and Discussion

Typical results of the nonlinear stability coefficient
K are shown in Figures 8 and 9. The same scale has
been maintained in both figures in order to facilitate
direct comparison of the results. Figure 8 presents a
plot of K - v versus zg for z¢ = 0.015, F, = 0.3,
F,, = 0.4, and for different values of the quadratic
drag coefficient Cp. It should be emphasized that the
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Figure 8: Nonlinear stability coefficient versus z¢ for
F, =10.3, F,, = 0.6, and different values of Cp
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Figure 9: Nonlinear stability coefficient versus z¢ for
Fp = 0.3, F,, = 0.4, different values of Cp

use of K -+ is more meaningful than the use of K, since
it properly accounts for the use of the regularization
parameter y. Numerical evidence suggests that all
curves K - versus z¢g converge for v — 0. For prac-
tical purposes, values of v smaller than 0.001 produce
identical results. The results of Figure 8 demonstrate
the profound effect that the quadratic drag coefficient
Cp has on stability of limit cycles. All Hopf bifur-
cations are supercritical (K < 0), and they become
stronger supercritical as C'p is increased. It is worth
noting that results for Cp = 0 produce subcritical
behavior, K > 0, which is clearly incorrect. Thus, ne-
glecting the effects of C'p would have produce entirely
wrong results in the present problem. Additional re-
sults show that the bifurcations become stronger su-
percritical as initial stability z¢ is increased. Figure 9
presents similar results with the only difference being
the value of mid-body fraction F,,, = 0.6. It can be
seen that smaller F,, for the same F,, which results
in longer body tail, may be beneficial for stability in
the linear sense but it also generates less supercritical
bifurcations. This can probably be attributed to the
increased responsiveness of the vehicle. It should be
emphasized, however, that altering the fore and aft
body lengths might influence the values of C'p which,
as we pointed out, is the single most important pa-
rameter for the nonlinear nature of the bifurcations.

CONCLUDING REMARKS

This work presented a comprehensive nonlinear
study of straight line stability of motion of sub-
mersibles in the dive plane under open loop conditions.
A systematic perturbation analysis demonstrated that
the effects of surge in heave/pitch are small and can
be neglected. Primary loss of stability was shown to
occur in the form of Hopf bifurcations to periodic so-
lutions. The critical speed were instability occurs was
computed in terms of metacentric height, longitudinal
separation of the centers of buoyancy and gravity, and
the dive plane angle. Analysis of the periodic solutions
that resulted from the Hopf bifurcations was accom-
plished through Taylor expansions, up to third order,
of the equations of motion. A consistent approxima-
tion, utilizing the generalized gradient, was used to
study the non-analytic quadratic cross flow integral
drag terms. The main results of this study are sum-
marized below:

1. The critical speed of loss of stability is a monoton-
ically increasing function of both vertical and lon-
gitudinal LCG/LCB separation. This means that



a vehicle which is stable when properly trimmed
will remain stable for off-trim conditions.

2. Loss of stability occurs always in the form of su-
percritical Hopf bifurcations with the generatin
of stable limit cycles. It was found that this
is mainly due to the stabilizing effects of the
quadratic drag forces.

3. Even though the quadratic drag forces do not in-
fluence the initial loss of stability, they have a
significant effect on post—loss of stability stabi-
lization.

4. In general, longer aft body sections seemed to in-
crease the range of linear stability but influence
adversely the resulting limit cycles upon the ini-
tial loss of stability.

It should be emphasized that the occurrence of super-
critical Hopf bifurcations is an attribute of the open
loop system only. Under closed loop control, it is pos-
sible to experience either supercritical or strongly sub-
critical Hopf bifurcations, as shown in [Papoulias et al
(1995)]. The latter are particularly severe in practice
since self-sustained vehicle oscillations may be initi-
ated prior to loss of stability, depending on the level
of external excitation or the initial conditions.
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