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Solution Branching and Dive Plane Reversal of Submarines at
Low Speeds

Fotis A. Papoulias’ and Jeffery S. Riedel’

The problem of multiple steady-state solutions in the dive plane of submarines under depth control at
low speeds is analyzed. This phenomenon occurs regardless of the particular means used for depth
control, manual or automatic, and linear or nonlinear. It is shown that the primary bifurcation parameter
is a Froude-like number based on the vehicle speed and metacentric height. Generic solution branching
is shown to occur below a critical Froude number. Singularity theory techniques are employed to quan-
tify the effects that various vehicle geometric properties and hydrodynamic characteristics have on steady-
state motion. It is demonstrated that a comprehensive bifurcation study provides a systematic and ef-
fective way of predicting the phenomenon of dive plane reversal at low speeds. A complete charac-
terization of the parameters in the problem, both in deep water and at periscope depth, is achieved
through the organizing center of the pitchfork singularity.

1. Introduction

ONE OF THE most critical functions of a submersible ve-
hicle is accurate depth keeping at the commanded depth. Such
a function can be carried out either manually or automati-
cally, especially in cases where human intervention is im-
possible or undesirable. Due to the technological signifi-
cance of the problem and the numerous scientific applications
of submersible vehicle systems, design of appropriate depth
keeping control laws has received wide attention. Such de-
signs include linear and nonlinear controllers [Lindgren et
al (1967)],  [Gueler (1989)],  model-based compensators [Healey
(1992)],  adaptive control [Goheen et al (1987)],  and sliding
mode control laws [Yoerger & Slotine (1985)],  [Cristi et al
(1991)].  Response accuracy and stability are the primary
considerations in designing a depth keeping control law. Of
paramount importance here are the robustness properties of
the particular design; i.e., its ability to maintain accuracy
and stability in the presence of incomplete sensor and en-
vironmental information, as well as actual/mathematical
model mismatch. The scope of the work reported in this pa-
per is to demonstrate a potential loss of stability that may
occur when a submersible is operating at low speeds. This
is a static loss of stability and should not be confused with
the dynamic loss of stability that is usually associated with
higher speeds. It is shown that such a loss of stability is ac-
companied by a slow divergence of trajectories away from
the commanded path. Solution branching occurs in the form
of generic pitchfork bifurcations [Golubitsky & Schaeffer
(1985)]. A complete characterization of the problem is given
utilizing singularity theory techniques, which have been
proven very useful in the analysis of similar problems [Pa-
poulias (1988, 1992)]. The use of bifurcation theory allows
us to determine the crucial vehicle parameters that govern
the problem of solution branching, and to develop guidelines
to prevent its occurrence.

Finally, we present a new look at the problem of dive plane
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reversal [Clayton & Bishop (1982)] based on solution
branching results. The term “dive plane reversal” refers to
a well-known phenomenon in submarine operations where
during low-speed depth keeping there is a need for reversing
the direction of dive plane deflection in order to execute a
given change in depth. Physically, this can be explained by
considering the relative magnitude of the hydrodynamic and
hydrostatic forces. At moderate and high speeds, the normal
force on the submarine’s hull due to the angle of attack ex-
ceeds the normal dive plane force and the boat responds to
ordered dive plane angles as expected. The phenomenon of
dive plane reversal occurs at speeds below a certain critical
speed in which the normal hull force is less than the normal
dive plane force and the response of the boat is reversed.
Vehicle modeling in this work follows standard notation
[Gertler & Hagen  (1967)]  and numerical results are pre-
sented for the DARPA SUBOFF model [Roddy (1990)]  for
which a set of hydrodynamic coefficients and geometric
properties is available. Special emphasis is given in identi-
fying the proper nondimensional parameters in the problem,
so that extension of the results to full-scale models and other
designs is possible using a minimal set of experimental data
and/or analytical results. Unless otherwise mentioned, all
results are presented in standard nondimensional forms with
the exception of angular deflections, which are shown in de-
grees.

2. Problem formulation
Equations of motion

Assuming that vehicle motion is restricted in the vertical
plane, the mathematical model consists of the coupled non-
linear heave and pitch equations of motion. In a moving CO-
ordinate frame fixed at the vehicle’s geometrical center,
Newton’s equations of motion for a port/starboard symme-
tric vehicle are expressed as follows:

m(ti - Uq - zcq”  - xGQ) = Z& + Z,ti

I
“OX

+ z,uq  + ZJJW - c,
b(x) (w - w)”  &

tail lw - xql

+ (W - B) cos  8 + lJ2Lz,~S,  + Z&) (1)
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+ MJq + M,Uw - Co b(x) (w - xq)3  x ak
tall Iw - 4

- (rcW - x&) cos 8 - (.zoW - z&l) sin 8

+ U2(Mbs 6, + W+ sb) c2)

In equations (1) and (2), W is the vehicle weight, B the buoy-
ancy, (.Q,zG) the coordinates of the center of gravity, (xs,zs)
the coordinates of the center of buoyancy, 6, the stern plane
angle, and 8b the bow plane angle [Papoulias  (1993)].  The
cross flow integral terms in the above equations become im-
portant during hovering operations or low-speed maneuver-
ing, whereas at high speeds U (and consequently low angles
of attack with respect to the water) their effect is minimal.
The drag coefficient, CD, is assumed for simplicity to be con-
stant throughout the vehicle length. This does not affect sig-
nificantly the results that follow. The remaining symbols in
(1) and (2) follow standard notation and are explained in the
Nomenclature. We use U for the vehicle forward speed in-
stead of the standard symbol u [Gertler & Hagen  (1967)]  in
order to emphasize the fact that propulsion dynamics are as-
sumed decoupled from the basic model and the forward speed
remains constant in the equations of motion. All changes in
the forward speed are assumed to be quasi-static, which is
consistent with standard bifurcation theory assumptions.

The vehicle pitch rate is

e=q (3)

and the rate of change of depth

F= -UsinO+  wcos8 (4)

where 0 is the pitch angle with respect to the nominal hor-
izontal direction. The vehicle geometry and definitions for
most of the above symbols are shown in Fig. 1. The forward
velocity U is assumed to be kept constant by the propulsion
control during depth keeping. Any changes in U are as-
sumed to take place in a quasi-steady way, i.e., at a rate
much slower than vehicle motions in the dive plane.

Control law

Equations (1) through (4) can be written as a set of four
nonlinear coupled differential equations in the form

e=q (5)

ti = alI Uw + aI2 Uq + aI3 zGB  sin 0

+ b111J2 6, + blzU2 fib + d,(w,  q) + c~tw, q) (6)

4 = azl Uw + az2  Uq + az3  zGB  sin 0

+ bzl U2 6, + bzzU2  86 + d&w, q) + cz(w,  q) (7)

i= -UsinO+  wcos0 (8)

where

D, = (m - Z,) (1, - it&) - (mxG + Z,) h.x~ + MA

alID, = (Iy - MJ 2, + (mxc + 2,) M,

a12Dv = (Z, - M,) (m + Z,) + (mtG + ZJ CM,  - m%)

alA = -bzxG + Z,) W

bnD,  = (Z, - M,) Za, + (I?WCC:  + Z,) MS,

b,A = (Z, - MJ Z,, + (mxc + Z,) Msb

azlDu = Cm - Z,) M,,, + (mx~ + MA Z,

azzDu = (m - Z,) (M4 - mxG) + (mxc  + MJ Cm + Z,)

a2aDu = -(m -Z,) W

b2Pu  = Cm - Z,) Mas + hx~ + M,) Za,

b&, = Cm - Z,) Ma6  + (mx~ + MJ ZS,

d,(w,  q) D, = (1, - M,) 1, + (m% + Z,) 1,

d&w, q) D, = (m - Z,) Z, + h.xc + Md I,

cl(w,  q) D, = (Z, - MJ mzGq2  ~ (mrc + Z,) m.+wq

c2(w,  q) D, = -(m - Z,) mzowq  + (mxc  f M,) mzGq2

In equations (5) through (8), the vehicle is assumed to be
neutrally buoyant (W = B), level (xc = Q), and statically
stable (zc > zB). The terms 1u and Z, represent the cross flow

Nomenclature
a = dummy independent

variable
a = bow plane to stern plane

deflection ratio
b(x) = local beam of the hull

p = nondimensional value of
%X3,

= -+g/lf
CD = quadratic drag

coefficient
y = bifurcation unfolding

parameter related to
CD

&, = bow plane deflection
6,,6  = stern plane deflection
Fn = Froude number based on

vehicle speed and
metacentric height

Fn, = critical value of Fn
I, = vehicle mass moment of

inertia
k k. k, k = controller gains in 0, zu,I, 2, 3, 4

9, and z, respectively
X = Froude number, Fn,

squared
m = vehicle mass
M = pitch moment

M, = derivative of M with
respect to a

9 = pitch rate
8 = vehicle pitch angle

U = vehicle forward speed
U, = critical value of U
U, = nominal forward speed
w = heave velocity

(xB,zB) = body-fixed coordinates of
vehicle center of
buoyancy

(nc,zc)  = body-fixed coordinates of
vehicle center of
gravity

xGB  = center of gravity/center
of buoyancy
separation, xG - xR

z = deviation off commanded
depth

z(:~  = vehicle metacentric
height, zG - zB

Z = heave force
Z, = derivative of Z with

respect to a
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Fig. 1 Vehicle geometry and definitions of symbols
\

drag integrals in (1) and (21, and zGB = zG - zB is the me-
I

k 1 i IO i2 14 16 18 20

tacentric  height. Without loss in generality we can assume t
ZB to be zero, SO that zGB = zG.

During most cruising operations, effective depth control Fig. 2 Simulation results for different values of forward speed (time scale is

can be achieved by using the linearized version of equations x 100 for U = 1.885 ft/sec, x30 for U = 2 ft/sec, and as is for

(5) through (8). where the linearization is nerformed  around U = 5 ft/sec

level flight  path at the commanded depth. ?he linear system
of equations that is then utilized for depth control law de-
sign is

k=q (9)
gains selection generates a fast response and rejection of the
initial disturbance as shown in Fig. 2. where we nlot  the

ti = alllJow + alpUOq  + algGBO + b,lJi6 C1O~ dimensionless depth deviation (in vihicie  lengths) versus di-
mensionless time (one unit is the time it takes to travel a

cj = azlUOw  + azJJOq  + u2&&  + bJJ$ (11) vehicle length). When the vehicle speed is reduced, the re-

i = -u,e + w
sponse is more sluggish, as expected, due to the reduction of

(12) the forces and moments produced by the control surfaces.

where U, is the nominal speed for gain selection, a is defined Nevertheless, convergence to the commanded value is still

as the bow plane to dive plane deflection ratio, and we have observed. Further reduction in the forward speed U, how-

denoted ever, results in marginal convergence or even divergence away
from the commanded level flight path, as Fig. 2 demon-

6, = 6, 86 = cus strates. It appears from extensive simulation results that be-
bl = bll + ablz, b2 = bzl + ab22 (13) low a certain critical speed, UC,  the vehicle stabilizes to a

A linear full state feedback control law has the form [Fried-
nonzero  steady state off the commanded set point. Prelimi-

land (198611
nary studies of the problem in this section are conducted
through steady-state, eigenvalue, and controllability anal-

6 = Iz10  + k2w + k3q + k,z ( 14 )  yses.

where the gains kl, k2, kS, k4 are computed such that the Steady-state solutions
closed loop system (9) through (14) has the desired dynam-
ics. If the desired characteristic equation has the general form, Since we maintain the assumption xG = xB, it is expected

A4 + a,A3 + uzA2  + cX_lX  + cxg = 0
that at steady state the heave velocity w will be small and,

(15) consequently, the cross flow integral drag terms Z,, Z, can

the controller gains can be computed by equating coeffl-
be neglected. Steady state solutions are computed from 0 =

cients  of the actual and desired characteristic equations,
ti = 4 = i = 0, and using equations (5) through (8) we get

blUikz  + b&k,  = -ct3  - (alI + az,)UO (16) q = o

b&k,  + (b,a,, - blazJU~kz  + (b,a21  - bzaldUik3 allUw  + u~~zGB  sin 0 + bllJ% = 0

+ blU& = -a2 - a23zGB + (ul1a22 - a21a12) (17) uslUw  + ++zGB  sin 0 f bJJ% = 0
@,a,, - bla2JU%  + &a,3 - b+&c&kz

+  Cb2 + blazz - b2a12)U~k4
w cos 8 - U sin 0 = 0

= 011  + (a13a21 - ~23a&GBuO (18)  or

[(blazl  - bzalJU$ + (blu23  - b2a&d&$k4  = a0 (19) w = Utan0

3. Solution branching
S=

kk3k - a23allkGB .
sin 0 (20)

Numerical simulations (b2~ - bladU2

For demonstration purposes, assume that gain selection in where 0 is a solution to
(14) is based on a nominal speed U, = 5 ft/sec and a control
time constant 3 dimensionless seconds. The control gains are (allb2  - u2,b,W2 tan 8 + (a13bz  - a23bl)zGR  sin 0 = 0 (21)
computed from (16) through (191, while all initial conditions
in the simulations are zero with the exception of depth, which Equation (21) admits the trivial solution 0 = 0 always, which
is given an initial offset. The above set of nominal speed and results in w = 6 = z = 0, i.e., level steady-state motion at
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the commanded depth. Besides 8 = 0, (21) may produce two
more symmetric solutions in 0 given by

bllb2  - a21b1)U2
cos I3 = (a,,b, - cQ3b&B

Equation (22) is meaningful if lcos 01  5 1, which yields

(22)

Substituting the expressions for ati,  bi in (23) we can find
the critical value of the forward speed

where we have denoted

2s = .&is + d,,, MS = Mss + ciM,,

For values of U % U,,  three steady-state solutions exist, the
trivial solution at the commanded path and two solutions
symmetrically located with respect to the trivial solution.
Substituting the values (Y = 0, ZoB = 0.1 ft in (241, we find
U, = 1.898 ft/sec, which is in agreement with the simula-
tion results of Fig. 2.

A zero eigenvalue

The closed-loop linearized system at any forward speed U
is given by

i=q

ti = (alli + blU2kZ)w  + (aJJ + blU2k3)q

+ (a13zGB  + blU”kJe + blU2k4z

cj = (azlU + b,U2k,)w  + (az2U + b2U2k3)q

+ (a&GB  + b2U2k1)8  + b,U2k,z

i=-ue+w
with characteristic equation of the form

AA4+Bh3+Ch2+DA+E=0 (25)

Comparing equation (25) and equations (16) through (191,
we can see that the coefficient E is given by

E = [(b,a,, - b2alJU4  + (ha23 - b2adz,d21k4 (26)

A real eigenvalue of (25) crosses zero when E = 0, which
yields the same critical value U, as (24). This is a typical
pitchfork bifurcation which generically occurs in certain dy-
namical systems when a real eigenvalue of the linearized
system crosses zero [Guckenheimer & Holmes (198311.  At the
pitchfork bifurcation point, the trivial equilibrium solution
becomes unstable and two symmetric equilibrium positions
appear. These pitchfork bifurcations are classified as super-
critical if the two symmetric solutions appear after the triv-
ial solution loses its stability, and in such a case they are
asymptotically stable. In case that the opposite is true and
that the new solutions are unstable and coexist with the sta-
ble trivial equilibrium solution, the pitchfork is said to be
subcritical [Stewart & Thompson (198611.  Although our nu-
merical integrations suggest that the pitchfork bifurcations
in this problem are supercritical, a detailed investigation of
this along with practical implications and asymmetry effects
is undertaken in Section 4.
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a

Fig. 3 Critical Froude number versus bow to dive plane deflection ratio

Results and discussion

Equation (24) suggests that the critical parameter that
governs loss of stability and solution branching is a Froude-
like number based on the metacentric height

U
Fn = 7 (27)

v\/gzGB

The critical Froude number is then

-GW
1

l/2

Fn, =
WV-.%MJg

(28)

Although the use of the term “Froude” number for a fully
submerged body may seem questionable, it should be borne
in mind that the current problem is totally different than
flow prediction or resistance calculations. The concept of a
Froude number signifies a relationship between hydrody-
namic and hydrostatic forces, and that is exactly what equa-
tion (28) reflects. In fact, it is natural to expect that a Froude
number based on the metacentric height will govern dive
plane reversal since the phenomenon occurs as a certain bal-
ance between inertial (angle of attack) and gravitational
(metacentric restoring) moments is achieved. A plot of the
critical Froude number, Fn,, versus the bow plane to dive
plane deflection ratio, a, is shown in Fig. 3. The nonzero
solutions in 8 are computed from (22), the steady-state dive
plane angle from (20),  and the depth deviation from the con-
trol law (14). These computations are valid if the value of 6
is less than its saturation limit S,,,, which is typically set at
+0.4 radians. In case where the computed 6 exceeds Ssat, the
nonzero  equilibrium pitch angle cannot be determined from
(22). This means that i # 0 at steady state, and the simplest
condition is then i = const.  [Papoulias (19?3)1. This allows
for a semi-equilibrium state in which i: = 8 = Q = ti = 0.
The steady-state solutions can then be computed from

allUw  + a13zGB  sin 8 + blU26,,,  = 0

aP1lJw + aZ3zGB sin 8 + b2U2& = 0

sin e = @,a,,  - blanW2Ssat
ha21  - a23%l)%B

(29)

A plot of the steady state value of e versus Fn is shown in
Fig. 4, where it can be seen that the saturation limit Ssat  is
quickly reached. The critical Froude number for which 6 =
6,,, is shown by the dotted curve in Fig. 3. The fact that
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these values are located very close to Fn, means that the

1.07

steady-state values of 8 will appear locally in the vicinity of
U, as almost vertical in U. This result is directly related to
the problem of dive plane reversal as discussed in Section 5.

Controllability

The controllability matrix [Friedland (198611 of the linear,
time invariant, single-input system

i=Ax+ bS (30)

is the square matrix

% = [b, Ab, A’b, A3bl (31)

As long as % is a nonsingular matrix, system (30) is state
controllable, which means that an arbitrary change in the
state vector .X in finite time is possible through the use of a
certain amount of control effort 6. In our case we have

I- 0 0 1 01 r  01

A plot of the determinant of % versus Fn for (Y = 0 is shown
in Fig. 5, where it can be seen that the critical speed could
also have been defined as the speed at which the closed-loop
system (30) becomes uncontrollable. Therefore, we can sum-

n a=0

8

-41 I I I
'1.04 1.045 1.05 1.055 1.06-e 1.08

Fll

Fig. 5 Determrnant  of controllability matrix versus Fn for a = 0

marize our findings by stating that there exists a vehicle
critical speed for which (i) the straight-line level flight path
becomes unstable, (ii) additional nonzero  symmetric stable
equilibrium positions appear, and (iii) the closed-loop depth
control system is uncontrollable.

4. Pitchfork bifurcations

Pitchfork recognition

In the general case, steady-state solutions are computed
from equations (1) through (4). A straight forward algebraic
reduction process results in a single equation in w:

(-%df,  - Mw&)Uw  - C,A,(M, - xAZ8)w(w(

+ [W - BM, + (XCW  - XBB)Z6]  cos 8

+ &(zGw - zgB)  sin a = 0 (33)

where,

sin 0 = V&, cos e = vw&

A ,  =  b ( x ) &
r

It is clear that equation (33) may admit multiple solutions
in w. The remaining state variables are uniquely deter-
mined from w as

Q = 0,

pJ  ZY tan-’ u0u
S= & G‘LW~W~ - ZJJW - (W - B) cos  01

s

The most interesting case in applications is for a neutrally
buoyant vehicle, W = B. The case W - B f 0 is examined
in Section 5. With the assumption W = B, equation (33) be-
comes

(ZJf~ - Mm.WJw - C&AM, -xJ,)wlwl

+xGBB,,~& + Z~GBB v&=O (34)

where zos  iS the metacentric height and XoB = xo - XB the
LCG/LCB separation.

Our goal is to analyze (34), which we refer to in compact
form as

G(w, U, zGB, X& = 0

in terms of the pitchfork singularity

f(w,  A) = w2 + hw
In particular, we need to show that there exists a unique
point (w,,U,,X&  which belongs to a set of physically ac-
cepted parameter values such that the primary bifurcation
problem G(w,U,.x,)  = 0 is equivalent to the pitchfork w3 +
Xw = 0 in a neighborhood of (w,, U,). According to bifur-
cation theory [Golubitsky & Schaeffer  (197911 we must show
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that there exists a unique solution to the system of equa-
tions

G=G,=G”=G,,=O (35)

in the three unknowns w,U,xoe.  The main difficulty in solv-
ing (35) directly lies in the fact that the dependence on w of
the derivatives is highly nonlinear. We deal with this dif-
ficulty as follows.

We use Taylor series expansions to 0(w*) order

u 21J2  - w2 W 2wu2  ~ w3

and we write (34) in the form

w3 + yhwlwl  - 2U2(1 + <h)w + 2pu2x  + 8hW2 + 0 (36)

where we have introduced the parameters

A=?!-
@GE

p=_xs

U2

y = 2UCDA,(M8  - x..&,)  -&
z&B

g(Z,M, - MuZ,)
<= zg

The primary bifurcation parameter, A, remains the same as
before, i.e., a Froude number squared based on the meta-
centric height. The remaining three unfolding parameters
have their origins in distinct physical properties. Parameter
8 represents another Froude-like number based on the LCG/
LCB separation and is related to the vessel’s trim and bal-
last conditions. Parameter y is directly proportional to the
quadratic drag coefficient CD, while < summarizes the effects
of the vehicle/planes linear hydrodynamics. One of the main
motivations for using bifurcation theory is the ability to re-
duce the effect of all physical parameters to a small set of
four coefficients, namely A, 8, y, and 5.

The symmetric case, rGB = 0 or 8 = 0, results in

w3 + yhwlwl  - 2U2(1 + <A)w = 0 (37)

or g(w,  A) = 0. Obviously, w = 0 is a solution of g(w,  A) =
0 for all A. This solution loses its stability at a critical value
Ae such that

1 + [A, = 0 or A, = - i

which, using the definitions for 5, A, produces the same crit-
ical Froude number as (28). For values of A below A,, equa-
tion (37) admits two nonzero  solutions in w.

For nonzero  values of 8, a simplified pitchfork can be ob-
tained from (36) by neglecting the higher-order terms
Awlwl,Aw2:

or

w3 - 2U2(1 + <A)w + 2PU”A = 0 (38)

h(w, A, 8) = 0

To find the critical (A, 8) curve we have to solve the system

h(w, A, 8) = h,(w, A, 8) = 0 (39)

Writing out (39) and eliminating w, we obtain

27p2A2  = 8U2(1  + (A)3 (40)
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An approximate solution of (40) can be found by rewriting
it as 8’ = f(A) and expanding in Taylor series in A in the
vicinity of the critical value A, = -l/c for 8 = 0. This pro-
cedure yields

l/3

(41)

Equation (411 provides an approximation to the critical (A, 8)
curve for small values of 8 and for A located close to its sym-
metric critical value -l/c. It can be seen that this curve
takes the form of a symmetric cusp with its origin located
at 8 = 0. For values of the parameters (A, l3) inside the cusp
curve, equation (38) admits three solutions in w, one of which
is unstable and two stable. By suitable smooth variable
changes, (38) can be written as

w3 + A’w + p’ = 0 (42)

which is recognized as a subtle pitchfork bifurcation [Stew-
art & Thompson (198611.  This completes the recognition
problem.

Bifurcation sets

A comparison of the previous cusp curves is shown in Fig.
6 in the (fi,

2
) parameter space and for y = 0 (or Ca = 0).

The use of A = Fn is employed so that direct comparison
with the results of Section 3 is possible. The four cusp curves
of Fig. 6 correspond to the bifurcation sets of the exact equa-
tion (34), its pitchfork approximation (36), the simplified
pitchfork (401, and its analytic approximation (41).  It can be
seen that all four curves exhibit similar qualitative features
in the vicinity of l3 = 0, namely the existence of a symmetric
cusp located at 6 = 0. For higher values of 8, the above ap-
proximations are no longer accurate and only the exact cusp
curves should be utilized. The exact cusp curves for different
values of the quadratic drag coefficient CD are compared in
Fig. 7. It can be seen that the effect of increasing CD is to
decrease the critical Froude number for a given value of 8.

For a given nonzero  value of 8 (or xoa), the exact solution
set (0, Fn) is computed from equation (34) using w = U tan
0. Typical results are presented by the solid curves of Fig. 8
for CD = 0, zGB  = 0.1 ft, and xoa = O.Ol%L.  Comparing Fig.
8, with Fig. 4, which was obtained for xcs = 0, we can see
that the previous pitchfork bifurcation is highly nonpersis-
tent. Slight nonzero  variations in xoa,  one hundredth of 1%
of the vehicle length in this case, destroy the degenerate graph
of Fig. 4 in favor of the asymmetry observed in Fig. 8. The
original pitchfork point becomes now a turning point at a
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Fig. 7 Exact cusp curves for different values of CD

critical Froude number considerably smaller than the crit-
ical value for xGB  = 0. The stability properties of the steady-
state solutions remain the same as before; that is, for values
of Fn below its critical value the two outer solutions are sta-
ble while the innermost solution is unstable. This biased
pitchfork bifurcation is frequently called a saddle-node bi-
furcation [Guckenheimer & Holmes (198311 since at the crit-
ical point a stable equilibrium (a node) coalesces with an
unstable equilibrium (a saddle), resulting in their mutual
destruction.

Since control surface saturation is not included in (34),  the
steady-state solutions in 8 are allowed to reach unrealisti-
cally high values. In the case where 6 = S,,,, we have w #
U tan 8, and steady-state values of w, 8 can be computed
from

ZJJW  - CnAwwjwJ  + ZJJ2Ssat = 0 (43)

M,Uw - Cg~~A~wlwl- x,,B case
- z,&l sin 8 + M81J26,, = 0 (44)

where we use Snat = 10.4 radians. These solutions are pre-
sented in Fig. 8 by the dashed curves, where it can be seen
that the main result of control surface saturation is to sig-
nificantly limit the steady state pitch angle. Unlike the
symmetric case studied in Section 3, the Froude number at
which control surface saturation occurs is not necessarily less
than the critical Froude number at the turning point. This
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Fig. 9 Solution set (0, Fn) for xGs = O.Ol%L  and CD = 0
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Fig. 9 Solution sets (0, Fn) for different values of xes  in %L and CD = 0

is further demonstrated by the solution sets of Fig. 9 which
are computed for CD = 0, different values of xGB,  and include
saturation effects. The effect of quadratic drag related terms,
CD # 0, is examined later in this section. Figure 9 suggests
that the critical Froude number where multiple solutions
appear may be different when saturation occurs. In order to
modify the previous cusp curves by including saturation ef-
fects, we proceed as follows. We eliminate w from (43) and
(44) and we get, with CD = 0

x&Z, cos 0 + z&Z, sin 8

+ (ZaM, - M,Z,)U26,,, = 0 (45)

If control surface saturation does not occur, the steady-state
value for 0 is computed from

x&Z, cos 0 + zcsBZB  sin 8

+ (Z,M, - M,Zs)U2  tan8 = 0 (46)

Elimination of 8 from (45) and (46) produces the critical
(U,x&  curve for a given value of Saat.  The elimination pro-
cess produces an equation of the form

x,,BZ, - zrd%Ssat  + VkWc - iW2U2Lt

[I + ($S&)z]1’2  = 0 (471

in terms of the physical variables (U,x&,  or

(48)

in terms of the bifurcation parameters (h, p). The saturation
cusp curve (47) is plotted in Fig. 10 (solid curve) along with
the exact bifurcation cusp curve (dashed curve) in the (Fn,
xoa)  parameter plane. The number of steady-state solutions
of our system can be obtained from these cusp curves in the
following way:

l Region A: one stable solution in 8 with 6 < S,,,.
l Region B: one stable solution in B with 6 = Ssat.
l Region C: three solutions in 8, two stable and one un-
stable, and 6 < S,,, for all.
l Region D: three solutions in 8,S = Ssat for the two stable
solutions, and 6 < S,,, for the third unstable solution.
The case of CD # 0 can be analyzed similarly. The satu-

ration cusp curve can be computed from (43) and (44) with
w = U tan 8. In this case, analytic reduction is not possible
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Fig. 10 Cusp curves in the (xGB, Fn) parameter space, including saturation
effects, with C, = 0

any more. Instead, equation (43) is first solved for 8, and
then equation (44) produces the critical value for 3cGB.  Typ-
ical results are presented in Fig. 11 for different values of
the quadratic drag coefficient C,. Since regions A and B are
not associated with a change in the number of steady-state
solutions, they do not appear explicitly in the figure. Fur-
thermore, it can be seen that in reality it is the saturation
cusp that dominates the character of the solution set, and in
the following figures it is the only curve that is presented
in the graphs.

Cusp catastrophe and path formulation

The cusp curve depicted in Fig. 10 can be utilized to pre-
dict the solution set for any physically realizable path in the
(zGB, Fn) parameter space. The cusp catastrophe is a term
extensively used in singularity theor

T
where it represents

the universal unfolding of the curve x and is given by x3 -
Bx + A = 0. A projection of this surface onto the unfolding
space, i.e., the (A&plane,  produces the cusp curve 27A2  =
4B3.  This curve separates those (A&  regions where r3 - Bx
+ A = 0 has three or one real solutions in x. Although in
our case the steady-state solutions are characterized by an
equation considerably more complicated than x3 - Bx + A
= 0, it has been shown that the corresponding parameter
regions in the (_~a, Fn) space are separated by a similar cusp
curve. We have already seen the corresponding solution sets
for variations in the forward speed while keeping 3cGB  con-

Fn

ZGB xllr

Fig. 11 Cusp curves in the (xss, Fn) parameter space for different
values of C,
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Fig. 12 Hysterisis unfolding for two paths through the cusp

stant. Of practical importance are “horizontal” paths through
the cusp as well, i.e., keeping speed constant and changing
the loading condition, XoB.  Consider two such paths where
xGB  is varied between ?O.O3%L and for two different speeds
corresponding to Froude numbers Fn = 1.1 and Fn = 1.0.
In the first case the path is located outside of the cusp, and
the solution set, presented in terms of 0 in Fig. 12, remains
a single valued function for all values of xGB.  Smoothness of
the solution set is destroyed when the outer saturation curves
are crossed but this is not associated with any kind of bi-
furcation phenomena. The second path, corresponding to Fn
= 1.0, cuts through the cusp and exhibits a typical hyster-
esis curve. Between the two extreme values of xGB of the in-
ner saturation curve of Fig. 10, the solution set is a triple-
valued function in xGB. The two outer solutions are asymp-
totically stable while the inner is unstable. This may give
rise to sudden jump phenomena in the response as the weight
distribution of the boat is slowly varying. Solution sets for
more complicated paths, obtained by varying both speed, U,
and ballast conditions, xGB, as well as Co f 0, can also be
easily predicted by drawing the appropriate curve and ob-
serving its intersections with the cusp.

5. Dive plane reversal

A brief description of the need for dive plane reversal was
given in the Introduction in terms of the relative magni-
tudes of control surface and hull-generated hydrodynamic
forces. The phenomenon is usually described in terms of the
neutral angles as well. This is a plot of the pitch angle and
stern plane deflection required for straight and level flight
versus the ship speed, and for a given loading condition, XoB.
At high speeds these neutral angles remain essentially con-
stant. Both the pitch angle, 0, and the dive plane angle, S,,
have the same sign and they can generate enough lift to
counter the hydrostatic imbalance moment. As the speed is
decreased, it becomes increasingly difficult to maintain the
pitch angle on the hull and counteract the metacentric mo-
ment. Below the critical speed both 8 and 6, must reverse
sign to maintain neutral trim. The results that were ob-
tained through the use of bifurcation theory in this work
formalized the above qualitative conclusions and identified
the important nondimensional parameters that govern dive
plane reversal.

Another way of viewing the problem is through the term
k, in the control law (14). This represents a certain measure
of the normal force that is required in order to respond to a
unit change in depth. In terms of the forward speed U,,  this
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Fig. 13 Normal control force required per unit change in depth

term can be directly computed from equation (19). The cor-
responding plot is shown in Fig. 13 in dimensionless values.
It can be seen from both Fig. 13 and equation (19), that K4
approaches infinity at the critical speed U,. This agrees with
our previous conclusions that the systems is uncontrollable
at that precise speed. Furthermore, the sign of K, is reversed
as the critical speed is crossed, which results in the need for
dive plane reversal in order to execute the same ordered depth
change.

The case W - B # 0 can be studied using the same general
approach. The most interesting case here is excess buoyancy,
i.e., W - B > 0. This models, in a simplified way, a system
bias that appears in free-surface suction effects. In such a
case the solution set must be computed from equation (33).
In view of the results of the previous section, however, it can
be concluded that the cusp produced by (33) is of limited
practical value. Instead, we need to consider the saturation
cusp curve. This is produced by the generalization of equa-
tions (43) and (44):

Z,Uw - &,Awwlwl  + (W-B)cos0 + U"Z,S = 0 (49)
MJJw - &,x~A,wlwl  - (noW  - xeB) cos 0

- (zoW  - zeB) sin 0 + U2MsS = 0 (50)
where we allow for W # B. Since we are computing the sat-
uration cusp we can substitute w = U tan 8 and 6 = 8,,, in
these equations. Then (49) can be solved numerically for 8,
and (50) can be used to generate the critical curve. Typical
results are presented in Figs. 14, and 15 for different values
of the quadratic drag coefficient CD and excess buoyancy B
- W. The dramatic effect that a small value of nonzero  bias
force has is evident by studying these curves. The curves are
significantly distorted and multiple intersections with a ver-
tical path through the cusp with varying vehicle forward speed
are possible. This signals transitions from one steady state
to three, then to one, and then back to three in a manner
that is typically associated with the winged cusp singularity
[Golubitsky & Schaeffer  (198511. These patterns are, of course,
very sensitive to the ballast condition or the bias heave force
and pitch moment.

So far we have concentrated on dive pIane  reversal, since
it is more usual in operations. A fairwater plane reversal
can also occur as well, typically at speeds higher than dive
plane reversal. This phenomenon can be studied using the
previously developed techniques; the analysis is virtually
identical. Since we have parameterized the bow plane to stern
plane deflection by a single parameter, o, dive plane usage
corresponds to o = 0 while bow plane usage to a -+ m. There-

XGB XlCP

Fig. 14 Saturation cusp curves for CD = 0 and  different values of excess
buoyancy B - Win %W

fore, if we consider the critical speed in the limit u -+ 30, we
should produce the result for fairwater plane reversal. Al-
ternatively, we could redefine cx as the ratio of stern to bow
plane deflection. Then a = 0 would correspond to fairwater
plane usage and the previous analysis would carry through
in exactly the same way [Riedel (1993)].  This is demon-
strated by the results of Fig. 16 where it can be seen that
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Fig. 15 Saturation cusp curves for B - W  = O.Ol%W  and different
values of CD
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Fig. 16 Fairwater plane reversal: limiting value of critical speed
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by allowing o + 33  we approach the critical speed that cor-
responds to fairwater plane reversal.

6. Concluding remarks

A comprehensive study of multiple steady-state solutions
in the vertical plane and submarine dive plane reversal has
been presented. The analysis demonstrated the occurrence
of supercritical pitchfork bifurcations for speeds below a crit-
ical value. Complete classification of the solution sets for dif-
ferent system parameters was achieved through the cusp.
Numerical computations established the global validity of
the singularity theory results. The main conclusions of this
work can be summarized as follows:

l There exists a critical vehicle speed at which one real
eigenvalue of the closed-loop depth-keeping linearized sys-
tem matrix crosses zero. The nominal equilibrium state be-
comes unstable in a divergent way for speeds less than crit-
ical.

l Below the critical speed, two symmetric stable equilib-
rium positions appear. These are characterized by nonzero
pitch angle and depth. They persist for a very limited speed-
range since at such low speeds, control surface deflections
reach their saturation limits quickly. Further reductions in
the forward speed result in divergent motion with constant
steady-state pitch angle and rate of change of depth.

l The closed-loop depth control system becomes uncon-
trollable at precisely the critical speed. The depth deviation
error gain approaches infinity at that speed and it changes
its sign. This means that as the critical speed is crossed, the
direction of deflection of dive planes must be changed in or-
der to maintain similar depth-changing response.

l The use of bifurcation theory facilitated the identifica-
tion of three basic parameters that govern response. The pri-
mary bifurcation parameter is a Froude-like number based
on vehicle speed and metacentric height. The primary un-
folding parameter is also a Froude-like number based on ve-
hicle speed and the longitudinal center of buoyancy/center
of gravity separation. As secondary unfolding parameters we
used the quadratic drag coefficient  and the amount of excess
buoyancy. The latter can be thought of as modeling the ef-
fects of heave bias, typically associated with near-surface op-
erations.

. Construction of cusp curves in the primary two-dimen-
sional parameter plane allowed the identification of solution
sets for a number of different parameter variations. Pitch-
fork and hysteresis solution sets were shown to occur de-
pending on the particular parameter path through the cusp.

l The two Froude-like numbers that were identified should
be used in order to transition experimental results from

models to full scale. Unlike flow force prediction, the prob-
lem of dive plane reversal of a fully submerged body follows
appropriate Froude scaling.
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