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On the Nonlinear Dynamics of Pursuit Guidance

for Marine Vehicles

Fotis A. Papoulias'

A theoretical analysis of the nonlinear dynamic phenomena involved in pure pursuit guidance of marine
vehicles is performed. Nomoto's model (Crane et al 1989) is used to provide the basis for the main
vehicle tuming lag. Results obtained in closed-form expressions demonstrate the existence of bifur-
cations to periodic solutions. The center manifold of the system is evaluated to within a third-order
approximation. Third- and fifth-order expansions are utilized in order to provide information on limit cycle
existence and stability. Recommendations regarding the appropriate selection of control design param-

eters are provided.

Introduction

SOFTWARE organization of a marine vehicle under auto-
matic path control consists of a number of dynamical sys-
tems which, besides having their own specific response char-
acteristics, exchange information and interact with each other
(Byrnes et al 1992). At the heart of the vehicle software there
exist three mutually interacting loops, namely navigation,
guidance, and control (Healey et al 1990), as is schemati-
cally depicted in Fig. 1. The navigation loop processes po-
sitional information, determines the actual geographical lo-
cation of the vehicle and compares it to the commanded path
which is generated by the path planning operations. This
loop has its own dynamics but it operates at a rather slow
rate since the mission requirements usually vary slowly
compared to the vehicle dynamics. The guidance loop ac-
cepts navigational information and generates appropriate
commands which in turn become the input to the vehicle
autopilot systems, and these determine the necessary vehi-
cle actuator signals. For accurate path keeping, the guid-
ance and autopilot functions have similar dynamic response
characteristics and this may create stability problems once
the two systems are coupled together (Papoulias 1993a). In
this work we concentrate on the analytical aspects of the
loss of stability of straight line motion in the case of ori-
entation control and pursuit guidance laws. In this scheme,
the guidance law commands a heading angle which the au-
topilot is called upon to deliver. The initial loss of stability
is evaluated analytically in terms of the autopilot damping
ratio and natural frequency, and the guidance preview dis-
tance. Curved path, positional time lag, and hydrostatic re-
storing moment effects on stability are also analyzed. Non-
linear analysis and bifurcation theory (Guckenheimer &
Holmes 1983) techniques are utilized in order to assess the
dynamics of the system after loss of stability. We use a third-
order expansion in the equations of motion to reduce the sys-
tem to an equivalent second-order model. The method of av-
eraging (Chow & Mallet-Paret 1977) is utilized to predict
the existence and stability properties of the resulting peri-
odic solutions. Techniques based on the formulas presented
in Hassard & Wan (1978) gave identical results with the
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ones obtained here. The existence of supercritical and sub-
critical Poincaré-Andronov-Hopf (PAH) bifurcations is fur-
ther analyzed via fifth-order approximations of the equa-
tions of motion and consistent center manifold reductions.
The results reveal the existence of double limit cycles, one
stable and one unstable, with significant consequences on
the domain of attraction of straight line motion. An unstable
limit cycle reduces the stability domain considerably before
the nominal level flight path becomes unstable. It is shown
that this situation is directly related to the amount of damp-
ing selected in the autopilot design. All computations in this
work are performed for the Naval Postgraduate School test-
bed autonomous vehicle for which a fairly accurate set of
hydrodynamic coefficients and geometric properties is avail-
able (Warner 1991, Bahrke 1992). All results are presented
in standard dimensionless form by nondimensionalizing with
respect to the vehicle length and forward speed.

1. Problem formulation

In this section we introduce the vehicle equations of mo-
tion and their simplification which leads to the design of a
heading autopilot. The guidance law which is used to pro-
vide path keeping along straight line segments is then pre-
sented.

Model reduction

The maneuvering equations of motion of an ocean vehicle
in the horizontal plane are written in dimensionless form as

mo+rt+tag =Y+ Y0+ Y r+Yup+Y;3 + Y3,

- f Coh®w + &nv + &rlde (1)
tail

Li + maglv + ) = Noi + N + Nor+ N,v + Ny 3, + Ng,dy
- f Cph(®)(v + &nv + &rlede (2)
tail

where only the coefficients that have nonzero values in the
present model have been kept and the symbols are explained
in the Nomenclature. The cross flow integral drag terms in
the equations of motion become very important for hovering
operations or low-speed maneuvering, whereas at higher for-
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Fig. 1 Navigation, guidance, and control system diagram

ward speeds the angle of attack with respect to the water
becomes progressively smaller and the steering response is
predominantly linear. Furthermore, for maximum maneu-
verability, the vehicle bow rudder is deflected at the same
amount and opposite to the stern rudder; i.e., § = 8, = —8,.
Although some moderate bow rudder stall has been observed
in tight turning experiments, there has been no need for sep-
arate rudder control thus far.

In this way the linearized equations of motion (1) and (2)
are written in the form

where

Day, = (I, - NJY, — (maxg — YN,

Day, = (I, ~ N)(Y, — m) — (mxg — YN, — mag)

Day; = (m = YN, — (mag — N))Y,

Dayy = (m — Y )N, — mxg) — (mxg — N XY, — m)
by = (I, — NX(Ys, = Ys,) — (mxg — Y (N, — Ni)

Dby = (m — Y )(N5, — N;,) — (mxg — N)(Y5, — Ys,)
D =, — NJ)m = Y;) — (mxg — Y )(mxg — N,)

The transfer function between rudder angle 3 and turning
rate r is obtained from equations (3) and (4) as

r _ bys + (ag by — ayby) 5)

2
8 " —{an t+ agns + (@11020 — a10a;)

This second-order transfer function can be simplified for low-
frequency maneuvering motions by rewriting it as 8/r, ex-
panding in Taylor series in s, and keeping the first-order
terms only. This procedure yields

r b

- = or r=ar+ bd (6)
d s—-a

where

(@11892 — Q12021 )(@2:b1 — a11Dy)

a=
(a1 + az)anby — ay1by) + bylai1ass — a1202;)

(@b — anbz)z

(a1 + aga)ag by — ayyby) + byla11as; — @12091)

Equation (6), which is sometimes called Nomoto’s first-order

U= a0+ apr + bid ) model, captures the fundamental characteristics of vehicle

turning and is particularly useful in control system design

F = QgU + Qgor + b3d (4) since no sway velocity feedback is necessary. For autono-
Nomenclature

a = dummy independent variable, or
yaw rate coefficient in No-
moto’s model

a, = equivalent spring restoring mo-
ment coefficient

A = linearized system matrix

b = rudder angle coefficient in No-
moto’s model

Cp, = drag coefficient
d = guidance law preview distance
doi = critical value of d for stability
d%, = value of d.., for a curved refer-
ence path
GPS = Global Positional System
I, = vehicle mass moment of inertia
INS = Inertial Navigational System
¥ = cubic stability coefficient
k,, k, = controller gains
¥ = quintic stability coefficient
m = vehicle mass
N = yaw moment
N, = derivative of N with respect to a
PAH = Poincare-Andronov-Hopf bifur-
cation
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r = yaw rate
R = radius of curvature of nominal
path, or polar coordinate of
transformed reduced system
t = time
T = matrix of eigenvectors of A
T = limit cycle period, or positional
information time lag
v = sway velocity
x = state variables vector
x; = body fixed coordinate of vehicle
center of gravity
y = deviation off commanded path
Y = sway force
Y, = derivative of Y with respect to a
z = state variables vector in canon-
ical form
2, 2, = critical variables of z
z; = stable coordinate of z

Greek symbols

o = real part of critical pair of ei-
genvalues

o' = derivative of « with respect to d
evaluated at d;,
a; = coefficients in center manifold
expansion of z;
B = Floquet exponent of limit cycles
8, 8, = stern rudder angle
8, = bow rudder angle
8, = linearized rudder angle control
law
8. = saturation level of rudder angle
€ = criticality difference d — d.,;,
{ = damping ratio of heading angle
Lerie = critical value of { for limit cycle
stability
6 = polar coordinate of transformed
reduced system
Y = vehicle heading angle
Y. = commanded heading angle
w, = natural frequency of heading re-
sponse
imaginary part of critical pair of
eigenvalues
' = derivative of w with respect to d
evaluated at d..;.

€
1
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mous vehicles where space is at a premium this is important
because it eliminates the need for side slip angle sensors.

Control law

A linear heading feedback control law based on equation
(6) has the form

8o = kb — ) + kor (7

where s, is the commanded heading angle. The system char-
acteristic equation is obtained from (6), (7), and

=r (8)
as

s —(a + bky)s — bk, =0 9)

If the desired characteristic equation is
2+ 2w,s + 02 =0 (10)

the controller gains are computed from

wn

ky = oy 1mn
ky = —a—+:—cﬁ 12

The natural frequency w, and damping ratio { are selected
based on general guidelines for second-order system tran-
sient response (Friedland 1986). In order to capture the ef-
fect of rudder saturation, the commanded rudder angle is

given by
8o
$ = 8. tanh| —
Ssat

where 8, is the slope of & at the origin given by (7), and &,
is the saturation limit on 3 typically set at 0.4 radians. The
hyperbolic tangent function (13) is used instead of a hard
saturation function because of its analyticity properties.
Furthermore, the time response of the system remains ef-
fectively the same regardless of which function is actually
used. What is important is the slope of the function at zero
3¢, and the actual saturation limit 3.

(13)

Guidance scheme

Since the previous control law stabilizes the vehicle to any
commanded heading angle, it must be coupled with an ap-
propriate orientation guidance law to provide path keeping
and path changing capabilities. Unlike the autopilot which
is based on the vehicle turning rate lag (6) and heading rate
(8), the guidance law is based on the inertial deviation rate
from the commanded path

y =sin{ (14)

The simplest orientation guidance law is pure pursuit guid-
ance accomplished as illustrated in Fig. 2. The vehicle is lo-
cated at (x, ¥) and attempts to point its longitudinal axis
towards a target point D located ahead of the vehicle at a
constant preview distance d on the nominal straight line path.
Pure pursuit guidance is achieved by commanding a head-
ing angle U, equal to the line of sight angle o,

LY
d

It can be easily seen (Papoulias 1993b) that if the vehicle
were infinitely responsive, in other words if |, = W, the above
guidance law would be globally asymptotically stable. Smaller
values of the preview distance d result in faster guidance

y, = —tan (15)
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Fig. 2 Vehicle geometry and definitions of symbols

law response. On the other hand, the autopilot has a limited
reaction time according to the specified natural frequency w,
and damping ratio {, the vehicle natural time constant —1/a,
and the actuator strength b. For this reason, stability of the
combined guidance and control scheme is no longer guar-
anteed and the problem then becomes how to assess the dy-
namic response of the system in the (d, {, w,) parameter space.

2. Loss of stability

Although the control law guarantees stability for a con-
stant commanded heading angle {,, this is no longer the case
when 1, is a function of the vehicle response through the
guidance law (15). In this section we analyze the linear sta-
bility properties of the trivial equilibrium solution charac-
terized by

y=r=y=0 (16)
which corresponds to straight line motion at the commanded
path.

Critical preview distance

The complete system is given by
b=r
1 Y
F = ar + bd, tanh 8_ ki ¥ + tan ?d_ + kyr an

sat
y =sin{§
or in compact form
x=fx), x=[ry" (18)

It can be easily seen that (16) is the only equilibrium state
of (18), so that no steady-state bifurcations are expected here
unlike the vertical plane case (Papoulias 1992b). Lineariza-
tion of equations (18) in the vicinity of (16) produces the lin-
ear system

x = Ax (19)
where A is the Jacobian matrix of f(x)
0 1 0
bk,
A=|bk, a+ bk, —d— (20)
1 0 0

Local stability properties of (16) are then established by the
eigenvalues of (20). Writing out the characteristic equation
of A we get
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3 2 bk,
—\° + (a + bky)N + bR + 7 =0 (21)
It can be seen that in the absence of guidance law (d — «),
the dynamics of (21) reduce to the dynamics selected from
the control law design through the desired characteristic
equation (10), with the additional pole at the origin corre-
sponding to y = const.

Applying Routh’s criterion to the cubic (21) we get

bk,
(a + bky)bk, + 7 =0

from which the critical preview distance is determined as
1

dcrit = 5.
2o,

(22)

For d > d.; all roots of (21) have negative real parts which
means that the combined guidance and control law provides
asymptotic stability for (16). Although no other equilibrium
states exist, the above asymptotic stability is not necessarily
global, as other attractors such as limit cycles may exist in
the state space. Existence and stability of these limit cycles
are analyzed in Section 3.

Interpretation

The loss of stability of the guidance and control scheme is
explained as follows: For d < d,, the guidance law has dy-
namics faster than the autopilot closed loop dynamics and
as a result the control law is inadequate in following the
commanded heading angle. It is the fact that this com-
manded heading is obtained through the intermediate closed
loop depicted in Fig. 1 which results in a loss of stability. If
the commanded heading were a (possibly rapidly varying)
function of time only, a sufficiently high bandwidth con-
troller should guarantee both stability and reasonable steady-
state accuracy.

To arrive at a physical interpretation of the critical pre-
view distance, consider the equations of motion (6), (8), and
(14), along with a simplified control law of the form & = k(y
~ \s.). It can be easily seen that any negative value of the
gain k guarantees heading control stability. When s, is given
by (15) the critical value d, is

1

dcrit ==
a

(23)

The ratio —1/a is the time constant of the vehicle turning
dynamics, whereas d is the inverse time constant of the
guidance law from (14) and (15). It follows then that loss of
stability occurs when the time constant of the guidance law
is smaller than the time constant of the vehicle dynamics.
It should be emphasized that this loss of stability is en-
tirely due to the interaction of guidance and control dynam-
ics and not due to the use of a linear controller for a non-
linear system. Indeed, the nonlinear steering model is

i=r

k
F=ar+ cr® + bd,, tanh —‘b

sat

where both rudder saturation and nonlinear (» — 8) dynam-
ics have been included. We have already seen that £ < 0
guarantees stability through linearization. To show stability
for the nonlinear system consider the Lyapunov function

r? b, ks
V=-——-~—1In|cosh—
2a k

sat.
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which is simply the sum of the kinetic

r2

2a
and the potential energy

ks
—b3,, | tanh — dy

sat

The time derivative of V is

V=—ri_ d rt<0
a
for every (¢, r) # (0, 0) except on the -axis. Still, in such a
case V can be slightly modified such that V is negative def-
inite for all (§, r) # (0, 0) (Guckenheimer & Holmes 1983).

Curvature effects

For obstacle avoidance and terrain following tasks, it is
necessary that the vehicle must be able to follow a curved
reference path. Without loss of generality we can assume
that the curved path is discretized into a series of circular
paths with constant radius of curvature R (Papoulias 1991),
Fig. 2. The control law is written as

6= kl(‘b =) + kar + kg (24)

where the feedforward term %, is used to guarantee steady-
state path accuracy and the feedforward terms k,, &, are the
same as before since the linearized vehicle turning dynamics
do not change significantly from the nominal straight-line
motion case. The commanded heading angle in (24) is the
line of sight angle (Papoulias 1991)

yx* + ¥ — R[y cos(d/R) — x sin(d/R)]
x(x® + y9" — Rlx cos(d/R) + y sin(d/R)]

At steady state the vehicle assumes a turning rate r, = 1/R,
and x, = R cos(ry), y, = R sin(rg) where we have assumed
that the steady-state cross track error deviation from the
circular path is zero. Substituting into (25) we get

sin(d/R) ) 1
1 — cos(d/R)

tan ¥, = (25)

J, = tan™! +—t
(W), an ( R

The steady-state control effort is then determined by

sin(d/R) k
—k; tan”! (———-—/—) + = k=
1 — cos(d/R) R bR
where the left-hand side is obtained from (24), and the right-
hand side from the equation of motion 7 = ar + b5. Equation
(26) can be used to evaluate the appropriate feedforward term
k().
If we introduce a coordinate frame moving along the above
circular path with the vehicle at steady state, the equations
of motion become

Uy =r

(26)

Py = ar; + b3y, 31 = kil — 0y) + kory, 01 =Y " Yo
Y1 = sin 27
where
sin(d/R) R sin(d/R)
tan y, = ——-/——-, tany = / (28)
1 — cos(d/R) R + y{ — R cos(d/R)

subscript 1 corresponds to the state variables in the moving
reference frame, and ¥, = (x* + ¥ — R is the cross track
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error off the circular path. Loss of stability of (27) and (28)
occurs at

dcri
d® = 9R tan™ (?) 29)

where d.; = !/2lw, is the critical preview distance for a
straight line path, R — <. Equation (29) shows that

Ay < derie (30)

in other words, a stable guidance and control law for straight
line segments will guarantee stability along curved paths as
well. This result was observed numerically in Papoulias
(1991).

Time lag effects

Implementation of the previously developed guidance and
control law requires inertial position information at the same
rate as heading angle and turning rate. In the confined space
of an autonomous vehicle where accurate Inertial Naviga-
tional System (INS) cannot be installed, position estimation
can be achieved by an improved dead reckoning scheme
(Warner 1991), the incorporation of Global Positional Sys-
tem (GPS) and INS (Kwak et al 1992), and the use of the
vehicle sonars (Brutzman 1992). Dead reckoning provides an
estimate of position only and it cannot recover the true ve-
hicle position. This is accomplished by GPS/INS and sonar
data but at a slower rate than the autopilot functions, due
to surfacing requirements for GPS and the significant sonar
data analysis and reduction required. To analyze the sta-
bility effects of such positional information lags we write the
linearized system of equations in the form

v=r
w2
F= o = 2wy - —yt = T) 31
y=v
where T is the time lag.
The characteristic equation of (31) is
2
%+ 2w, + wls + %’-’ e =0 (32)

A first estimate of the critical preview distance d for sta-
bility of (32) can be found by using the approximation e T
=1 — Ts. In such a case, d must satisfy the condition

d> +T 33)

Cw"

and it can be seen that a nonzero T may result in a signif-
icant enlargement of the region of instability.

The exact value of d for stability can be computed by re-
casting (32) in the form

2 ~Ts
1 wye

14— = 34
d s(s* + 2w,s + 0d) (34)

The magnitude and phase angle of the open-loop transfer
function of (34) are

2
0,

|Gliw)| = (35)
md\/(—(.o2 + ©2)? + (2tow,)?
1 L 2w,

¢ = —gﬂ—wT—tan m (36)
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The phase crossover frequency w, is the value of w such that
¢ = —. Using (36) this is computed from

2

02 — 0? — 2w, tan(o,T) = 0 37

The critical value of d is then computed from |G(iw,)| = 1,
or

W,

2w?V1 + tan®(w,T)

Steady-state bifurcations

d

(38)

As was mentioned in the section on critical preview dis-
tance, it is not possible for this system to experience mul-
tiple equilibrium states or steady-state bifurcations unlike
the dive plane case studied in Papoulias (1992b). In this sec-
tion we show that this is directly related to the existence of
hydrostatic restoring moments. Consider the system

) 3
b=r, Fr=ar+ay + stat tanh (8—0> (39)

sat.

where @, represents a linearized hydrostatic restoring mo-
ment coefficient. If the heading system is characterized
through its natural frequency w, and damping ratio {, the
gains in the control law (7) are given by

b = L a+ 2w,
1 b ’ 2 b

Pursuit guidance is then obtained through equations (14) and
(15) as before. The characteristic equation of the combined
guidance and control system is then

a1+m,2[

a; + w2
& — Uw,s® — wls + - y 20 (40)
Loss of stability of equation (40) occurs at
a, + (J.),Zl
d=—— 41)
2o,

when a pair of complex conjugate roots of (40) crosses the
imaginary axis, or at

a,+wi=0 or k=0 (42)

when a real root of (40) crosses zero. Conditions (41) and (42)
cannot occur simultaneously since this would suggest d = 0
which is physically not realizable.

The resulting steady state when k; crosses zero is char-
acterized by ¢ = const., r = 0, and y = const,; i.e., linearly
increasing path deviation in time, and it can be shown to be
asymptotically stable regardless of the value of the preview
distance d (Papoulias 1993b). In view of (42) it can be seen
that this divergent instability is possible only if a; < 0, or
when the hydrostatic restoring moment is stabilizing. For
horizontal plane motions this might occur in cases like that
of a vehicle propelled via a tether. In cases where a hydro-
static restoring moment is either nonexistent or destabiliz-
ing (wall proximity effects, for example), the above form of
instability cannot occur.

3. Bifurcations to periodic solutions

As the preview distance d crosses the critical value (22),
one pair of complex conjugate eigenvalues of the linearized
system matrix (20) crosses transversally the imaginary axis.
In this generic Poincaré-Andronov-Hopf (PAH) bifurcation a
family of periodic solutions coexists with the stable/unsta-
ble nominal equilibrium state. Locally, as d approaches d..;,
the above periodic solutions are located on the two-dimen-
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sional Euclidean plane spanned by the eigenvectors of (20)
which correspond to the critical pair of eigenvalues. In order
to establish the stability properties of these periodic solu-
tions first we proceed as follows:

« Isolate the main nonlinear terms that dominate the dy-
namics of (18).

» Rewrite the system of equations in its normal coordinate
form.

* Use the center manifold theorem to reduce the system
into a two-dimensional system.

+ Apply the method of averaging on the reduced system.

» Introduce polar coordinates on the averaged system to
reveal the existence of limit cycles.

Third-order expansions
System (18) is written in the form

X = Ax + g(x) (43)
where
0 1 0
2
A=|-02 2w, —— (44)
1 0 0

and g(x) contains all nonlinear terms of equations (17). We
expand g(x) in a Taylor series in x and we keep the first
non-vanishing coefficients only. Due to the port/starboard
symmetry of the equations, the second-order terms in the
Taylor expansion of g(x) automatically vanish, and we get

x=Ax +g? (x) (45)
where g®(x) contains third-order terms only
g =0
b
3 — _ 83
B 3886t
g5 = - (46)

The 8 term in (46) is computed as

3
83 = (kﬂy + hor + b tan! %)

5 %4
= k3® + E3r® + 3E2k%r + 3k, k3pr? +d—y +3—¢y

kik2 k2R, kS k2R,
+37r 6—Ll;ry+3 lby +3d2

ry2

where terms higher than third-order have been eliminated.

Coordinate transformations

At the bifurcation point d = '/z{w,, matrix A has the ei-
genvalues

)\1 = _wni’ )\2 = ‘-oni’ )\3 = —2§wn (47)

If we introduce the transformation matrix
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1 0 1
T=]10 -0, -2,
1 1
* e T
the transformation
x=Tz, z=TXx (48)
transforms system (45) into its normal coordinate form
z=T ATz + T 'g® (T2 (49)
where _
F4§2 +1 1
it ®,
2 w,
2 1
T!= 2_{ 0 - 2w,
r+1 2w,
1
0 -— -,
(’-)n
and - -
0 -w, 0
T'AT=]w, 0 0
0 0 2w,

The relation between the physical variables , r, y, and the
transformed variables z,, 2, z3 follows from (48)

b=2 +2

r=—wy2y — 2{w,23 (50)
1 1

y= —u)_,,zz - ﬂza

The coordinate z3 corresponds to the negative eigenvalue
A; and, therefore, the flow of (43) in the direction of z; con-
verges to zero. All interesting bifurcation phenomena are lo-
cally restricted on a two-dimensional manifold that de-
scribes the time evolution of the critical coordinates z,, z5;
this is the center manifold of (43). According to the center
manifold theorem (Guckenheimer & Holmes 1983), the sta-
ble coordinate z; can be expressed as a function of the crit-
ical coordinates z;, 25, and this relationship is at least of qua-
dratic order. Therefore, z; does not affect the third-order
expansions in (49), and we can write

1

U =2z, r= T2 y=""2 (51)
Wy
Substitution of (51) into (49) results in
21 = —wp2y + 2} + rigziz, + rigzizs + ries (52)
3= +wn2y + 12l + rm2iey + rwaizi + raz;  (53)

which describes the suspended flow of (49) on its center
manifold. Expressions for the terms r; in (52) and (53) are
computed from (46) and (51) at the bifurcation point d =
1Js{w,, and are presented at the end of this section.

For values of d close to its critical value, equations (52)
and (53) become

3 2
— (0, + 0'€)2y + rzs + r2ize + riziz: + rigzs

(54)

L= a'ezl
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) 3 2
2y = (w, + welzy + a'ezy + ryzy + repzize res2125 + ryzy

(565)
where € is the difference between d and d,
1
d=—+e¢€ (56)
2w,

The terms o’ (') denote the derivative of the real (imagi-
nary) part of the critical pair of eigenvalues with respect to
d evaluated at d = d., and are computed from a pertur-
bation series approach as follows. The characteristic equa-
tion of (44) is

2
Wy,

A+ 2w N+ wIN + 7" 0 (57)
and using (56) this is written as
AP+ 200,07 + 02\ + 2lwi(1 — 2elw,) = 0 (58)

where terms of order €? and higher have been neglected. The
eigenvalues of (58) are expressed as

}\23 = (X'E F ((1),1 + m'e)i (59)
Substitution of (59) into (58) yields
2%,
P (60)
42+ 1
, Al
® = (61)
4r +1

With these last two expressions, the center manifold reduc-
tion of our system in the form of (54) and (55) is complete.
Finally, the expressions for the r; terms in (54) and (55)

are
2{w, o} 1
T (_38§atb2 i E)
2 wia
M2T TS B 1 1)
2 wia?
T8 T SR 0Pl + 1)
20wia®
14T T3S 0%AL + 1)
—2{w, W,
T (C T zgsi:’atﬁ)
ota
2T 52 b4l + 1)
w3a?
BT T8 WAl + 1)
wid®
"2 T 352 6%40 + 1)
Averaging

We write equations (54) and (55) in the form
(62)
(63)

where the F,, F, functions contain the third-order expansion

2 =a'ez; — (0, + w'e)zg + Fi{zy, 29)

2y = (w, + 0'€)z; + a'ezy + Falzy, 29)
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terms. These are evaluated at € = 0 since terms of the form
ez} are higher order compared to 2? and can be neglected. If
we introduce polar coordinates in the form

z; = R cos 6, 2, = Rsin 6 (64)

equations (62) and (63) are written as

R =a'eR + F,(R cos 0, R sin 6) cos 0
+ Fy(R cos 9, R sin 0) sin 6 (65)
RO = (0, + 0'©R + Fy(R cos 8, R sin 0) cos
— Fy(R cos 0, R sin 6) sin 6 (66)
Equation (65) is written in the form

R = «'eR + P(O)R? (67)

where the function %(6) is 2w-periodic in the angular coor-
dinate 6

P(0) = ry; cos*® + 15 cos8 sin 6 + ry5c08°0 sin®g
+ 1y, €OS 0 5IN%0 + 1y 050 8in O + roy c0s%0 sin0
+ rg3 008 0 8in®0 + ray sin0

If equation (67) is averaged over one cycle in 6, we get an
equation with constant coefficients

R = o'eR + XR® (68)
where
1 27
H = ——f P(0)do (69)
27 Jo
Evaluating the integral in (69) we get
1
H= g (3ry1 + rig T rog + 3rgy)
and using the values for r;,
gy = ZLondad® + wilw] + (2o, + a) 0

852, b2 (42 + 1)

Similar averaging can be performed for equation (66) which
has the form

= o, + w'e+ FOR® (71)
where
F(0) = ry; S0 + rop cOs 0 sin O + ryg cos®0 sin®e
+ roq cos 0 sin®0 — 71, cos®0 sin 8 — ry, cos®0 sin0
— 113 cos 0 sin®8 — ri, sin’0

and we have assumed R # 0. The averaged form of (71) is

O =ow,+o'ct+ MR? (72)
where
1 (7 1
M=— F(0) dO = —(8ro; + rog — ryp — 3ryy)
2w Jo 8
and using the values for ry,
20 0}d5, b” + wplwn + a)(2a — 0,)
_ {"0;,05a1 wy(w a” ) 2¢ ® 73)

862, 242+ 1
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Limit cycle analysis

Equation (68) has two steady-state solutions, one at R =
0 which corresponds to the trivial equilibrium solution at
zero, and one at

’

[s3
Ri=——¢

X )

This equilibrium solution corresponds to a periodic solution
or limit cycle in the Cartesian coordinates z,, z, from (64).
Since o’ as seen by (60) is always negative, existence of these
periodic solutions depends on the value of K. Specifically,

« if H < 0, periodic solutions exist for € < 0 or d < d,
and
« if # > 0, periodic solutions exist for € > 0 or d > d .

The Floquét exponent of (68) in the vicinity of (74) is

B=—2ua'e (75)

and we can see that

» if periodic solutions exist for d < d.,;; they are stable,
and
» if periodic solutions exist for d > d.; they are unstable.

We refer to the first case as the supercritical PAH bifurca-
tion and to the second case as the subcritical PAH bifurca-
tion.

The period of these limit cycles is computed by substitut-
ing (74) in (72),

2% _217 (1 o'H —a'M

T=——""=7=
w,+w'e+ MR o,

e) + O ®  (76)

W,

The amplitude of the limit cycles is computed from (74) and
(64), and in terms of the path deviation y which is the most
important physical parameter in our problem, we have

_IR_l( a')”z
y_(un O_m,, 3‘(6

We can see that in the supercritical case, on loss of stability
of equilibrium the steady state becomes a periodic oscilla-
tory state, the amplitude of the oscillation being propor-
tional to the square root of the criticality e, the difference of
the preview distance from the critical value at which sta-
bility of equilibrium is lost. This form of loss of stability is
called “soft” loss of stability since the oscillating state for
small e differs little from the equilibrium state. In the sub-
critical case, before the steady state loses stability the do-
main of attraction becomes very small as is bounded by the
amplitudes of the unstable limit cycles, and a random dis-
turbance can throw the system off its equilibrium state even
before its domain of attraction has completely disappeared.
This form of loss of stability is called “hard”. Here the sys-
tem leaves its steady state with a jump to a different state
of motion which in our case is most likely to be a stable
oscillation with a locally discontinuous increase in the am-

(77)

plitude.
For supercritical PAH bifurcations ¥ < 0, we must have
g = gcrit (78)
where (. is evaluated from % = 0, or
o,a(0? + a?)
Ccrit = 2 (79)

o2, b% - 202w + o)

Numerical results

A plot of the critical preview distance d..; from (22) versus
w, and with the damping ratio { as the parameter is shown
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in Fig. 3. For higher values of w, the heading autopilot be-
comes more responsive as evidenced from the expressions for
the gains (11) and (12). As a result, it is possible to tolerate
smaller values of d without loss of stability of straight line
motion. For the bifurcation points of Fig. 3, the correspond-
ing values of the cubic coefficient K are shown in Fig. 4 ver-
sus o, for different values of { and for &, = 0.4 radians. It
can be seen that for lower values of w, (softer control law),
the corresponding PAH bifurcations are supercritical while
they become subcritical for w, beyond a critical value. Sim-
ilar results hold for a fixed w, and varying damping ratios
{. The effects of the saturation level 8,,; are shown in Fig. 5
where ¥ is presented versus w, for { = 0.7 and different val-
ues of d.,. It can be seen that although 8., has no effect on
initial loss of stability of straight-line motion, it is directly
related to the nominal state’s domain of attraction and the
stability of the resulting limit cycles. As §,,, — o« all PAH
bifurcations are supercritical as is also seen from equation
(70). The critical value of {, ., for transition between su-
percritical and subcritical bifurcations is presented in Fig.
6 and is increasing for increasing 8, or decreasing w,.
Theoretical predictions of stable and unstable limit cycles
are verified in Figs. 7 through 9 from direct numerical in-
tegrations of the equations of motion (17). Results in terms
of the path deviation y versus d for { = 0.5, w,, = 1, and 3,
= 0.4, are shown in Fig. 7 where a solid line corresponds to
a stable, and a dotted line to an unstable attractor. The nom-
inal straight-line motion loses its stability for d,;, = 1 and
the amplitudes of the stable steady-state periodic motions
are plotted versus d. Equation (77) predicts for this case

¥ = 157(deis — ™ + Olderit — d)

which agrees qualitatively with the simulated envelope of
Fig. 7. For d = 0.9 the estimated limit cycle amplitude is
0.5 versus the exact 0.55. For w,, = 4 which results in { >
0 and therefore subcritical bifurcations, the corresponding
numerical integration results are shown in Fig. 8. The dot-
ted curves in the figure correspond to unstable limit cycle
amplitudes and numerically they were established by an it-
erative shooting scheme; the initial conditions in y were sys-
tematically varied for convergence to either zero or periodic
motion. The existence of these unstable limit cycles limits
the domain of attraction of the nominal motion for d > d;
as shown in Fig. 9. The results of three numerical integra-
tions are presented in the (y, y) subphase plot for d = 0.4
along with the unstable limit cycle in the dotted curve. The
unstable limit cycle was established here as the outer en-

5 i)
451 §
‘\n
41 ".
3.5}F
3 -
Wy
250
2+
1.5}
1F
0.5 N ~
0 0.1 02 03 04 05 06 0v 08 09 1
erit
Fig. 3 Critical preview distance versus o, for different values of {
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1 1.2 1.4 1.8 1.8 2
W

0.6 0.8

Fig. 4 Cubic coefficient K versus o, for b,y = 0.4 and different values of {

velope of those (y, y) initial conditions that resulted in con-
vergence to zero. Convergence to zero is ensured only for ini-
tial conditions that lie inside the unstable limit cycle. A rather
slow convergence to the stable limit cycle is observed for ini-
tial conditions that lie between the unstable and stable limit
cycles; this is due to the opposing directions of attraction of

0.6 0.8 1 1.2 1.4 1.8 1.8 2
Wn

Fig. 5 Cubic coefficient K versus w, for { = 0.7 and different values of 3

0.6 0.8 1 1.2 14 1.8 1.8 2
Wn

Fig. 6 Critical damping ratio versus w, for different values of 8
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1.5

0.5} 4

-1}

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

d

Fig. 7 Stabie and unstable limit sets for { = 0.5 and w, = 1

the stable equilibrium and the stable limit cycle. Fast con-
vergence to the stable limit cycle is observed for initial con-
ditions that lie outside its envelope; this is because in this
case both stable equilibrium and limit cycle attract state
trajectories in the same direction. The amplitude of the un-
stable limit cycle was established at y = 0.08 from Fig. 9,
while equation (77) predicts a value of y = 0.085(d — o),
or y = 0.033. The agreement is not as good as for the Fig.
7 case, and this is due to the higher difference between d
and d,,;, considered here. The agreement between simulated
and predicted results becomes better as d approaches the
critical value d.

Fifth-order approximations

Transitions between supercritical and subcritical PAH bi-
furcations can only be analyzed by incorporating fifth-order
terms in our previous Taylor series expansions. To this end,
we use

i 1¢3+ L v
1 = —_—— —
sing == 5% * 150

3=39 1 8+
3%, | 1584

8

b =k¢+kr+lE —ﬁyuﬁ
0 1 2 dy 38 5d5y

0.6} 1

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.8

d

Fig. 8 Stable and unstable fimit sets for { = 0.5 and w, = 4
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Fig. 9 Convergence to stable equilibrium and stable limit cycle for { = 0.5,
w, = 4, and d = 0.4

in the equations of motion (18) and we neglect terms of order
higher that five. The transformation matrix T is used as in
(48) to transform the system into its normal coordinate form.
This procedure yields

(80)

21 = —0,23 t Nyghy + nyshs + nyghs + noghg

(81)

for d = d.u. The terms n; represent the elements of T 7,
and the functions A,, ks contain the third- and fifth-order
expansion terms in zj, 2,

Zy = twy2y + Noghy + noghs + nosh + nogh§

hy = 3523)2 (-2} + 3wlaz?z, — 3w,a’222 + a2
+ Bm?lgazfzg + 8m,,§3azzg — 3203%z,23)
’ 15?7 (w2} - 10030282} + 10 wla®22d
+ Botaziz, — Bw,alzzh + a®2d)
hs= lz? + L 25
6 120

where substitutions (51) were used. The key behind these
substitutions is the center manifold theorem which ensures
that the stable coordinate z; is at least of quadratic order in
terms of z;, z,. In our case, because of the symmetry of the
problem, z; is at least of cubic order in z;, z,. Therefore, in
general we can say that

23 = 25 + ag2h + azzizy + 04z 23 (82)
which supplies a local approximation of the center manifold
as a function of the four unknown coefficients «;. Equation
(82) simplified the third-order expansion analysis consider-
ably since it allowed use of (51) instead of (50). This is no
longer possible when we consider fifth-order terms and it is
easy to see that terms of the form 22z, 2223, and 212,24, will
be of fifth-order in z,, z; and they will generate contributions
in the expansions (80) and (81). These extra terms are des-
ignated by A3, A5 since they arise from the center manifold
expansion (82) and are given by
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203 {(a + 2w,
8gat b2

2 2 2
+ (o2 + 010? — 20300,)2522 + (0w + aza® — 20,w,0)2223

c _

2.5 4
5= [aw;27] + (tzw, — 2000)w,2]129

+ (0@ — 2050,)02:25 + asa®23]
§=-3 (12} + 2323 + ogzize + ay2izd)

In this way we arrive at the expanded form of equations (80)
and (81),

2 = w2y + Bsoz} + Pazize + 122125 + Poazi + Pos?l

+ B412[1122 + Bazz?zg + 3232%23 + 3142123 + 30523 (83)
Zp = +w.21 + ¥302i T Ya2ize T V122125 + Vo323 + Yos23

+ 7412%22 + 7322?23 + ’Yzazfzg + 7142123 + 70523 (84)

where the coefficients B, vy, are computable from the pre-
vious expressions.

The unknown coefficients in the center manifold expan-
sion (82) can be computed as follows: Equation (82) is dif-
ferentiated

. . . 2. .
23 = 30223 + 30223, + 3232y + 20321293,

+ (I4Z§Z‘1 + 2(1421222;2 (85)
Equations (49) can be used in the form
z’l = W2y
Z’z = +(.l)n21
23 = —2lw,zs + 03002§ + Co3ozg + szzfzz + C12021Z% (86)
where
lw, 2w,
Cs00 = 2 - 2 2 72
340" + 1)  3(4L° + 1dg,.b
co— 2lw2a®
0T34 + 1)L
Co — Awia®
PO (4 + 1%,
Awia
Cig =

(48 + 1)8Z,°

Additional terms in (86) do not affect the computations of
a;. If we substitute (82) and (86) into (85) and equate coef-
ficients we find

2,0 + w,a3 = Cyoq

2w, + wuoy = Cogo

—3w,0; + 2w,z + 20,04 = Coyg
30,05 — 2w,03 + 2lw,as = Cigp

Solution of this system produces the desired coefficients in
the center manifold series expansion (82).

In polar coordinates the system of equations (83) and (84)
becomes

R = POR® + 2R
and its averaged form is
R = %R® + ¥R®

(87

(88)

where

JOURNAL OF SHIP RESEARCH 351



1 2w
£=— f 96)do
27 Jo

(89)
Performing the indicated integration in (89) we find
1
£ = 6 (5Bs0 + Baz + Pra t Yar + vas + 5vos) (90)
where
403l
Bso = —— 5 i 52
(4€ + 1)Ssatb
o + {a + 200y Lo ( 1)
——— + {la Jag | ———— -
158%,:b° | Tar 1 \M 60
_ 4w,
B = 1 Dong?
2wla? . )
352 b + {(a + 2{w) (o, + aia” — 2a3a0,)
'sat
_ 4L,
P = “@ 1 Dops?
16 ,, o
“? w "+ 302, + {(a + 2lw, ) oua ~ 20ow,)a
20 wia
S T Do e N@ T Hen(asen, — 2]
_ 202
Y2 T4 + 1)5Rb°
4 . 20ia® R .
gmné BTN + Ua + 2[w,)(0w: + aza” — 2040,0)
sat
s [4 ¢ DT e+ 2o ]
Yos T A+ Dohb? |3 IBeEE o

A plot of the cubic coefficient ¥ and the quintic coefficient
& versus w, for { = 0.5 and 3,,, = 0.4 is shown in Fig. 10.
The existence of a negative coefficient £ when ¥ is positive
generates an additional stable limit cycle surrounding the
unstable limit cycle of the subcritical PAH bifurcation

-0.1F .
-0.2 . L . . .
0.6 0.8 1 1.2 1.4 1.6 1.8 z
(J.’"
Fig. 10 Cubic coefficient K and quintic coefficient & versus w, for { = 0.5

and 8sy4 = 0.4
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(Guckenheimer & Holmes 1983). The existence of this dou-
ble limit cycle was observed numerically in Figs. 8 and 9.
Farther away from the bifurcation point, the £%R5 term over-
powers the H®R> term, and this causes the limit cycle am-
plitudes to veer to the left (i.e., decreasing values of d) and
change their stability as shown in Fig. 8.

Concluding remarks

An analytic investigation of the nonlinear dynamic re-
sponse characteristics of pursuit guidance coupled with ori-
entation control law of marine vehicles has been presented.
Bifurcation theory techniques were utilized in order to as-
sess the behavior of the system upon initial loss of stability.
The main bifurcation parameters were the system damping
ratio, natural frequency, preview distance, and control sat-
uration level. The main conclusions of this research are
summarized as follows:

1. There exists a critical preview distance d..;; for stabil-
ity of straight-line motion. This is inversely proportionai to
the product of the system damping ratio and the natural fre-
quency. For d < d..;; the nominal equilibrium state loses its
stability and the response admits oscillatory characteristics.

2. The critical preview distance is a maximum for straight-
line nominal paths and it is a monotonically decreasing
function of the path radius of curvature. Thus, stability along
straight-line paths guarantees stability along curved paths
as well.

3. The existence of time lags in navigational positional
information results in an increase in the value of d ;. To
first-order approximation, this increase equals the amount
of time lag.

4. Stabilizing positional restoring moments, such as hy-
drostatic or spring constant effects, have a destabilizing ef-
fect on stability of motion of the scheme. This destabilizing
effect manifests itself via a divergent type of instability. De-
stabilizing spring constant moments prohibit this divergent
instability.

5. The occurrence of bifurcations to periodic solutions was
established via a third-order expansion in the equations of
motion. The method of averaging was utilized in order to
predict the existence and stability characteristics of the re-
sulting limit cycles. It was shown that for stable limit cycles
to exist upon initial loss of stability of straight-line motion,
the selected damping ratio for the system must be less than
a certain critical value. Overdamping results in unstable limit
cycles with a progressively smaller region of stability of the
straight-line motion as d — d.

6. Transition between supercritical and subcritical PAH
bifurcations was studied by performing a lengthy fifth-order
expansion in the equations of motion. This task required a
third-order approximation of the center manifold of the sys-
tem at the critical point d.. The quintic coefficient of the
averaged system indicated the local existence of two limit
cycles, one stable and one unstable. The results were veri-
fied by direct numerical integrations.
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