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Inverted Pendulum Stabilization of Submarines in Free Positive

Buoyancy Ascent

Fotis A. Papoulias' and Brian D. McKinley'

The problem of steady-state vertical ascent of a submarine with excess buoyancy is analyzed. All pos-
sible vertical plane solutions are computed and their stability is established in both in-plane and out-
of-plane perturbations. Divergence of trajectories, sensitivity of solutions to initial conditions, and stable
inverted pendulum configurations are shown to exist for certain ranges of parameters.

Introduction

TRADITIONAL methods of analysis in ship stability concen-
trate mainly on static stability in roll and directional sta-
bility in sway and yaw. Lateral motions in sway and yaw
can be strongly coupled with roll, although techniques exist
where these can be decoupled. Even with these approxima-
tions, roll motion remains a highly nonlinear problem which
can be best studied using recently developed techniques in
nonlinear dynamics and global analysis (Falzarano et al 1992).

Similar studies can be carried out for submarines with the
inclusion of vertical plane stability. Submarines tend to be
more stable in the vertical plane due to the nonzero meta-
centric height, and the limiting criterion is usually horizon-
tal plane controls fixed stability. The assumptions that are
implicit in this analysis scheme are that hydrodynamic forces
and moments can be expressed in a series form in terms of
the vehicle velocities and accelerations (Abkowitz 1969,
Gertler & Hagen 1967), and that the coupling between hor-
izontal and vertical plane motions is fairly weak. For sub-
marines where high amplitude motions may take place in
all six degrees-of-freedom, nonlinear interactions between
the various modes of motion may become more pronounced.
In particular, there is growing evidence of bifurcation phe-
nomena during high-speed maneuvering and emergency as-
cent scenarios such as recovery from a dive plane jam. In
these cases it is no longer true that decoupled linear anal-
ysis techniques are sufficient and one is forced to consider
the true character of six degrees-of-freedom motions. In this
paper we study the coupled steady state and motion stability
analysis problem of a submarine during a free positive buoy-
ancy ascent. This poses significant differences with respect
to the neutrally buoyant case and may give rise to certain
pathological situations where counter-intuitive stable mo-
tions develop. The problem has received limited attention in
the past, mainly by Booth (1977) where the response was
distinguished into either a nearly vertical ascent or a pre-
dominantly forward motion. It is found here that this dis-
tinction is not always meaningful as a result of the many
parameters that affect the problem. As a first step into a
more critical examination, criteria are developed which al-
low for steady state vertical plane ascent. Stability analysis
is performed for both vertical and horizontal plane motions.
A divergent type of instability is observed for certain ranges
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of parameters, as well as an inverted pendulum stabilization
which is accompanied by an extreme sensitivity of the re-
sponse to the initial conditions. Physically, this inverted
pendulum stabilization corresponds to a vehicle which re-
mains dynamically stable in a keel-up configuration, even
though such a position is statically unstable! This inverted
pendulum stabilization occurs in the absence of time-depen-
dent external excitation, so that it is of a different nature
than vibrational stabilization. Numerical integration stud-
ies are performed which indicate that the inverted pendu-
lum stabilization persists under continuously acting distur-
bances. It is argued that the phenomenon is due to coupling
between roll and lateral (sway and yaw) motions. All com-
putations in this work are performed for the Swimmer De-
livery Vehicle (SDV), a 17.4 ft vehicle, for which a complete
set of hydrodynamic and geometric properties is available
(Smith et al 1978). Unless specified otherwise, all results in
this work are presented in dimensional form, linear dimen-
sions in feet, velocities in feet per second, angular deflec-
tions in degrees, and time in seconds.

1. Problem formulation

In this section we present the vehicle dynamic equations
of motion along with the kinematic relations. The system is
then placed in state space form and some general topological
properties of solutions are discussed.

Equations of motion

The six-degrees-of-freedom equations of motion for a sub-
marine in surge, sway, heave, roll, pitch, and yaw, respec-
tively, are

mli — vr + wg — x5(q% + r®) + velpg — P + z6pr + @]
=Xp+Xw+Xe (D
mlv + ur — wp + x6(pq + 1) = yo(p* + 1) + 26(qr — p)l
=Yg+ Yy+¥Ye (2
ml ~ uq + vp + xolpr — ) + yolgr + p) = 260" + ¢*)]
=Zy+Zyt+Zc Q)
Lp + (.~ L)gr + Lypr — ¢) — L{q" = 1) — L{pg + )
+ mlygh — uq + vp) — 260 + ur — wp)]
=Ky+Ky+Kc 4)
Lg + (I~ Lpr = L(qr + p) + Lpg = 1) + L(p* = )
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— mixgtv — ug + vp) — 26l — vr + wq)l
= M H + M w + MC (5)
L+ U, - L)pq — L(p* — ¢°) — L.(pr + ¢) + L.(gr - p)
+ mlxg(d + ur — wp) — yelu — vr + wq)l
= N H + N w + N fol (6)
where the left-hand sides represent inertial forces and mo-
ments (Newton’s Law) and the right-hand sides model the
external forces. Subscript H reflects hydrodynamic contri-
butions, W buoyancy and weight effects, C forces arising from
control surface (rudders, dive planes, and bow planes) ac-
tions, and the rest of the symbols are based on standard no-

tation and explained in the Nomenclature. The hydrody-
namic radiation and viscous forces are expressed as

Xy = prp2 + quq2 + X2+ X,pr+ X + X, ,wq

+ vavp + Xurvr + quv2 + waw2 - CDOu2 (7)
Yy=Yp+Yis+Yupqg+ Yqr+ Y

+ Yup + Yur + Y,uq + Ywp + Y,wr

1
+ Yuv + Y, ow — Ep f [Cp Alx)v + xr)?

v+ ar)
Uix)

+ Cp,b@)(w — xq)?] dx (8)

Zy=2,G+Zpp" + Zppr + Z,r* + Zo + Zyuq
1
+ Zpop + Zyor + Zuw + Z 0 - 5 p f [Cp,Alx)v

. (w — xq)
+ x0? + Cpb0(w — xg)%] Tx)q dx ©)

Ky=Kp+ K7+ Kypq + K .qr + Ko + Kup

+ Kur + K,vq + K,,wp + K,,wr + Kuv + K,,ow  (10)

Ay = linearized horizontal plane sys-
tem matrix
Ay = linearized vertical plane sys-
tem matrix
B = vehicle buoyancy

B;; = mass matrix in horizontal plane
By = mass matrix in vertical plane
Cpy = drag coefficient in sway W = vehicle weight

Cp, = drag coefficient in heave

e = combined degree of stability

ey = degree of stability in horizontal
plane

ey = degree of stability in vertical
plane

K = roll moment

L = vehicle length

M = pitch moment

vector
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Nomenclature

N = yaw moment

p = roll angular velocity

q = pitch angular velocity

r = yaw angular velocity

u = surge translational velocity
v = sway translational velocity
w = heave translational velocity

X = surge force
xy = horizontal plane state vari-
ables vector
x6(xp) = x-coordinate of center of grav-
ity (buoyancy)
x¢3 = LCG/LCB separation
xy = vertical plane state variables

My =M,

q

g+ M,p* + M,pr+ M,r* + M, + M,ugq

1
+ M,up + M,or + Muw + M,0° + 2P f

w — xq)

[Cp hx)(v + xr)? + Cp bx)w — xq)*] ( xdx (11)
U Ax)

Ny=Ngp + N4+ Nppq + Nygr+ Ny
+ Nup + Nur + N,vg + N,wp + N,wr + Nuv

1
+ N, vw — 2P f [Cp A + xr)*

(v + xr)
U £x)

These are given in the customary form of series expansions
in terms of the hydrodynamic coefficients and cross flow in-
tegral terms which are integrated over the entire length of
the body and represent quadratic drag forces. The cross-flow
velocity U, is

+ Cpb@)(w — x¢)*] xdx (12)

Uys= [+ xr)® + (w — 2¢)*)'"* (13)

Hydrostatic restoring forces and moments are due to the ve-
hicle weight W and buoyancy B, and are given by

Xw=-(W-B)sin6 (14)
Yw=(W - B)cos6sin ¢ (15)
Zyw = (W — B) cos 0 cos & (16)
Ky = (yoW ~ ypB) cos 0 cos ¢

— (zgW — 2B) cos 0 sin ¢ amn
My = —(xGW — xgB) cos 8 cos ¢ — (oW — zgB) sin 6 (18)
Nw = (xgW — x5B) cos 8 sin & + (yoW — ygB) sin 0 (19)

Forces and moments due to control surface deflections are
reflected as added drag in surge, while in sway, heave, pitch,

Y = sway force
Z = heave force
26(zp) = z-coordinate of center of grav-
ity (buoyancy)
zee = metacentric height

Greek symbols

3, = bow plane angle
3B = excess buoyancy
3, = rudder angle
3. = dive plane angle
A& = horizontal plane eigenvalue
Ay = vertical plane eigenvalue
6 = pitch angle
¢ = roll angle
¥ = yaw angle
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and yaw they are directly proportional to the control surface
deflection

Xo = ug(Xys8s + Xg5,80) + X urd, + X5 uvd,
+ uw(X,59, + X.5,00)

+ 1A X, 8% + X, 8% + X087 (20)
Yo = Yo u®, 21
Ze = uNZ 5, + Zs,5) (22)
Kc=0 (23)
M = M3, + M58y (24)
N¢ = N u®, (25)

Usually, control surface deflections are kept intentionally
small, and the linearity assumption in (21), (22), (24), and
(25) remains valid. Unlike the surface ship case, the roll mo-
ment K, is zero for a submersible since the rudder is cen-
tered with the vehicle centerplane. The hydrodynamic coef-
ficients in equations (7-12) are functions of the frequency
of motion, or what amounts to the same thing, functions of
the maneuver at hand. In this paper we study slowly vary-
ing reference motions and we can, therefore, assume that
they remain constant and equal to their zero frequency limit
(Abkowitz 1969). This has been shown to result in negligible
errors compared to more accurate simulations incorporating
the time history of motion through convolution integrals
(Tinker 1978). It should be emphasized, though, that the
constant coefficient assumption would break down in studies
related to fast motions under the action of first-order wave
forces in the case of a nearly surfaced submarine. Another
important assumption in this study is that they are assumed
to be constant throughout the range of vehicle angle of at-
tack. Ordinary maneuvering models are usually validated
for angles of attack between +15 deg. For higher angles of
attack the cross-flow drag terms Cp, and Cp dominate the
response and they are functions of the side slip angle and
angle of attack. Considering them to be constant does not,
however, alter significantly the behavioral characteristics
and qualitative bifurcation results that are derived. Simi-
larly, Cp, and Cp, are functions of speed due to the Reynolds
number effect on cross-flow drag (Humphreys 1990). This is
more pronounced in small-size, unmanned, untethered ve-
hicles, whereas for submarines the cross-flow drag terms re-
main relatively constant over the entire speed range. The
methods developed in this work can easily accommodate an-
gle of attack and speed dependence, if desired.

To complete the model, we need the expressions for the
Euler angles rates of change

b=p+gsindtand + rcos dtan @ (26)

§=qgcosd —rsind 27

. sin cos

b=gq sin 0 +r o (28)
cos 0 cos 8

Notice that the transformation matrix embedded in (26—28)
is singular for a pitch angle of 8 = =90 deg. In such a case,
the kinematic equations can be described by two Euler angle
representations with different singularities (Fossen 1991).
As an alternative to the Euler angle representation, one could
employ a four-parameter method based on the Cayley-Klein
parameters (Kane et al 1983).

Finally, it is assumed that propulsion is inoperative and
the propeller is rotating freely. For this reason, propulsive
forces are not included in equations (1-6). The driving
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mechanism for the vehicle is its excess buoyancy, B — W >
0. The problem then is to assess the asymptotic dynamic
characteristics of the system during this condition of free
positive buoyancy ascent.

State space representation

The model presented in the previous subsection can be
written in its Cauchy standard form by selecting as state
variables

X1 = Uy Xy = U, X3 = W, Xq = Py
(29)

where the first six describe the system motion and the last
two its geometry. Notice that the yaw angle  does not affect
directly the equations of motion and is, therefore, not in-
cluded in (29). Angle s can be computed from (28) once the
time histories of the state variables (29) have been obtained.

In a compact vector form the state equations can be writ-
ten as

X5 = @, X =T1,% =&, x5 = 0

x=fx),f:M—->TM (30)

where bold face indicates a vector, M is the eight-dimen-
sional smooth manifold R® x S' x S' where the circular
component S = R (modulo 27) reflects the periodicity of the
vector field f in xj, xs, and TM is the tangent bundle of M.
Local analysis of properties of the state equations (30) can
be performed in the Eucledean space R® which is locally
homeomorphic to M. With x € M it can be easily seen that
f € C' and thus f is locally Lipschitz continuous in x. There-
fore, (30) has a unique solution over some time interval and
this solution depends continuously on the initial state. Since
we are working on a noncompact state space, however, global
existence or boundedness of solutions cannot be established
without further investigation (Guckenheimer & Holmes 1983).
In our case this can be easily verified by letting x; — », i =
1, ..., 6 and noting that the corresponding right-hand sides
of (30) are all negative since they represent damping due to
viscous and radiation effects. Therefore, %, are negative and
x; are bounded. Finally, the last two components of vector x,
%7 and xg are defined on the torus S* x S' which is a compact
two-manifold, and x;, xg cannot escape for any t € R,.

2. Equilibrium solutions

The first step in analyzing local properties of solutions of
(30) is to establish the equilibrium solutions where the vec-
tor field f vanishes. Stability analysis of these equilibrium
solutions is the subject of Section 3.

Steady-state conditions

Steady-state conditions are achieved when the submers-
ible reaches constant linear and angular velocities which must
assume finite values following the discussion of the State
space representation section. Therefore, the body-fixed lin-
ear accelerations (i,0,00) and the body-fixed angular accel-
erations (p,g,) will be zero. Likewise, the vehicle will have
reached constant angles of roll ¢ and pitch 8, making the
derivatives ¢ = 8 = 0. These steady state solutions can be
computed by solving the system of eight coupled nonlinear
algebraic equations

fx)=0 (31

where the overbar denotes an equilibrium solution. Substi-
tuting & = 6 = 0 in equations (26—28) we can get the steady-
state values of the angular velocities as

p= —{sin 0
g = U sin ¢ cos 8

r = cos & cos 9 (32)
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where the overbar has been dropped from the notation for
convenience. Substituting (32) into (31) then yields a re-
duced system of six equations to be solved for the steady state
values of u, v, w, &, 0, and ¢. This is a highly nonlinear
system of equations and it may exhibit solution branching
and/or multiple solutions (Golubitsky & Schaeffer 1985). In
order to gain some insight into the problem we make the
additional assumption & = 0 at steady state: This forces a
constant yaw angle at equilibrium and as a result it restricts
the equilibrium set in the vertical plane.

Vertical plane analysis

We define the amount of excess buoyancy as 8B = B — W,
the longitudinal center of buoyancy/gravity separation xgg
= x; — xp, the lateral center of buoyancy/gravity separation
Yeg = Yo — ¥, and the metacentric height zgg = 25 — 2.
Using these definitions, the expression (zaW — z3B) may be
written as (zggW — 250B). Similarly, xcW — xzB = xggW —
%508 and yoW — ygB = yosW — yp3B. Since ¢ = 0, equations
(32) result in p = ¢ = r = 0, and the complete steady state
characterization is obtained from equations (1-6) which take
the form

X, 0% + Xoptt® — Cpoti® + X508, + uw(X,5,8; + X,is,85)

+ UKy 552 + Xy, + X509 + 0B sin0 =0 (33)
Youw + Yoow - J [Co hx)? + Cpbw?] Ui dx
of
+ YﬁruZS, —dBcosbsind =0 (34)
) w
Zuw + Z,08 — j [Cph(x* + Cp bx)w?] T dx
of
+ u¥(Zs8, + Z5,3) — 3B cosbeosdb =0 (35)
K,uv + K,,vw + (ycgW — ygdB) cos 6 cos ¢
— (2ggW — 239B) cos sind =0  (36)
w
M uw + M, 0% - f[CDyh(ac)v2 + Cp,blx)w? T." dx
cf
+ Ui (M 3, + My,5,) — (xgeW — x53B) cos 6 cos &
- (ZGBW - ZBSB) Sin =0 (37)
Nuv + N,,ow — j [Cp Aax)? + Cpbx)w?] Uix dx
of
+ Ny, u®, + (xgpW — xp3B) cos 8 sin ¢
+ (yggW — yg8B) sin6 =0 (38)

where the drag coefficients Cp,, Cp, have been redefined to
absorb the 0.5p term for convenience.

The six equations (33—38) have only five unknowns, namely
u, v, w, ¢, and 0. Therefore, a solution, in general, does not
exist. This is because of the previous condition ¢ = 0 which
restricts motion in the dive plane. This restriction requires
that v = sin ¢ = 0 as well. Then the sway equation (34)
requires that

3, =0
and the roll equation (36) that
YasW — ygdB = 0 (40)

while the yaw equation (38) does not furnish any additional
requirements. The last two conditions (39), or rudder at zero,
and (40), or center of gravity /buoyancy “symmetry” with re-

(39
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spect to the centerplane, are the two necessary conditions to
allow motion in the vertical plane only.

The system which describes steady-state solutions in the
vertical plane is then

Xpow® — Cpotl® + uw(X 5.8, + Xs,58)

+ Ul (X5 5,82 + X5,5,00) + 8Bsin0 =0 (41

Zuw + WHZS + Z3,8) — CpuwlwlA,
~3Bcosbcosd =0 (42)

Myuw + ul(My 8, + My,3,) — CpwlwlxaA,
— (xggW — x53B) cos 6 cos ¢
~ (zcgW — zgdB)sin 6 =0 (43)
where we have defined

A, = f (b(x)dx, X4 = ;ll— f xb(x)dx (44)

and the drag coefficient Cp, is assumed to be constant
throughout the length of the body. In equations (42) and (43),
cos ¢ can take the values +1 only because for motion to be
restricted in the vertical plane the roll angle ¢ is either zero
or w. If (41) and (42) are solved for sin 6 and cos 6, respec-
tively, and the result is substituted in (43) we get

ww| + aw® + buw + cu® =0 (45)
where
P X
T CoAup. + 14B)
MB3B — p. Z, + pXupBs + Xus,)
B CoAu(ps + x25B)

c= BB(Msaﬁs + Mabﬁb) +PZ(X55558§ + Xsbabai - CDO) +px(ZasSs + Z5b8b)

b

CpA.(p,+x40B)
(46)
and we have introduced the parameters
Px = xggW — x50B 47
p. = zggW — 2p3B (48)

Following Booth (1977) we divide (45) by u* and we get a
single equation in x = w/u, the nondimensional steady state

heave velocity, as
zxlxl +ax® + bx+¢=0 (49)

where the plus sign is used when u is positive, and the mi-
nus sign when u is negative. The pitch angle 8 can then be
evaluated from

Xip00 + X,6,98 — Cpo + x(X 5.8 + Xou5,8) + X, x
[2Cp A xlx| — Zx ~ (Z:8; + Z5,85)] cos &

tan 6 =

(50)

where the same agreement concerning the * signs as in (49)
is understood. The steady state velocity u is then computed
from (41) as
5B sin 0
— X = Ko B2 + X5,5,88) — X ds + X, 86
(51)

With these equations, the steady state vehicle response in
the vertical plane is completely determined.

ut =

Cpo
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Fig. 1 Steady-state vertical plane solutions for surge velocity for xg =
—1%L (solid line) and xgzg = +1%L (dotted line)

Typical results

Figures 1 through 3 show typical steady state solutions
for surge velocity u, in ft/sec, heave velocity w, in ft/sec,
and pitch angle 60, in deg, as a function of dive plane angle
3, in deg. Two cases are shown which are distinguished by
the LCB/LCG separation: the first case, in solid curves, is
for xgg = —1% of the vehicle length L, and the second case,
in dotted curves, is for xgg = +1%L. The following param-
eters were kept the same for both cases: excess buoyancy 8B
= 2% of the vehicle weight W, deflection of bow planes &, =
0, location of horizontal and vertical centers of buoyancy xp
= zg = 0, and location of vertical center of gravity zqgz = 0.1
feet.

As is evident from equation (49), four solutions exist in
general. For two of the solutions, the magnitudes of the surge
velocities are large while the magnitudes of the correspond-
ing heave velocities are relatively small. This has been de-
scribed as “predominantly forward motion” (Booth 1977). The
other two solutions have small surge velocity magnitudes
and large heave velocity magnitudes, and they are termed
as “nearly vertical ascents.” This distinction is for zero dive
plane angle only, while for nonzero plane deflections all four
solutions have similar magnitudes. It should be noted that

2.5

-2.5 s L . . L N n
-20 -15 -10 -5 0 5 10 15 20

bs

Fig. 2 Steady-state vertical plane solutions for heave velocity for xgz =
—1%L (solid line) and xgg = +1%L (dotted line)
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-100| 1

—150

~200 . L " . s n .
-20 -15 -10 -5 ] 5 10 15 20

bs

Fig. 3 Steady-state vertical plane solutions for pitch angle xgs = — 1%L
(solid line) and xgzg = + 1%L (dotted line)

in all cases the vehicle steady state solution represents
physically ascent towards the surface; the positive or neg-
ative nature of the velocities are associated with the value
of pitch angle. Positive surge velocity is forward, negative
heave is up, and positive pitch angle is bow up. It can be
seen from the figures that positive heave velocities are as-
sociated with pitch angles greater than 90 deg, that is, the
vehicle would be ascending in a keel-up orientation. All so-
lutions shown in the figures correspond to roll angle ¢ = 0.
When ¢ = 180 deg, z and w remain the same while the steady
state pitch angle 6 is the supplement of the ¢ = 0 solution,
as can be seen from equation (50). This introduces four more
solutions in 0, as shown in Fig. 4 for the xgp = —1%L case.
This demonstrates that a solution for 6 less than 90 deg is
always present.

Although the steady state analysis of this section com-
putes all possible solutions in the vertical plane, it gives no
indication as to which of the solutions are stable, if any.
Physically, one would expect that solutions in 6 > 0.57 would
be unstable since they correspond to an inverted pendulum
case with an equivalent negative metacentric height. This
problem of stability analysis is the subject of the following
section.

—100 B

-150

~200 N n N L L N
-20 -15 -10 -5 0 5 10 15 20

bs

Fig. 4 Steady-state pitch angle for & = 0 {solid line) and ¢ = = (dotted line)
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Fig. 5 Stable vertical plane pitch angle

3. Stability of motion

Dynamic stability of motion of (30) around its nominal so-
lution (29) can be established by Lyapunov’s linearization
method (Hahn 1967). Local perturbation of (30) in the neigh-
borhood of % produces a linear system

x=AXx-X)

where A is the Jacobian matrix of first partial derivatives
of f(x) with respect to x evaluated at x. Provided all eigen-
values of A have negative real parts, X is asymptotically sta-
ble, and if at least one eigenvalue of A is positive X is un-
stable. Motion stability is assessed in this section first by
analyzing the vertical plane dynamics and then proceeding
to six degrees-of-freedom.

Vertical plane

In order to establish stability properties in the vertical plane
we set all state variables equal to zero except for u, w, g,
and 6. In this way we get a system of four first-order non-
linear coupled differential equations, and upon linearization
we get the linear system

Byxy = Ayxy (52)

where xy = [u, w, g, 8] is the state vector in the vertical
plane, and the elements of matrices Ay, By are presented in
the Appendix. Vertical plane stability can be established based
on the solutions to the generalized eigenvalue problem

'Av - Xva’ =0 (53)

where Ay denotes a vertical plane eigenvalue.

Typical results are shown in Fig. 5 for the two cases xgz
= *1%L analyzed in Figs. 1-4. It can be seen that of the
four solutions, one is in general stable. Depending on the
value of xgg and J,, this stable solution in 6§ may exceed 90
deg. The degree of stability in the vertical plane, ey, is de-
fined as the largest real part of all eigenvalues Ay and is
shown in Fig. 6. This represents a certain measure of the
smallest rate of exponential convergence to the nominal value
of solutions when negative, and the largest rate of exponen-
tial divergence of solutions when positive.

In the last two figures and all similar figures that follow,
we present the stable steady state solutions in 6 (in deg) ver-
sus the dive plane angle 3, (in deg) for & = 0. The reason is
that the stability properties of the supplement solution = —
9 for & =  are identical. To see this consider the Ay matrix
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-0.01

—-0.02

-0.03
zgg =+1% L

-0.04
2%
-0.05

~0.06+
PGB = —l%L

-0.07}

-0.08 N L . " . s .
-20 -15 -10 -5 0 5 10 15 20

bs

Fig. 6 Degree of stability in vertical plane

in (52). Based on the expressions given in the Appendix, Ay
takes the form

Q1 Gz A1z Q14€

Qg1 Q2 Q23 (A24€

Qg1 Gg2 QAzz A3€

0 0 e 0

where € = +1 for (0,4) = (8,0) and e = —1 for (8,0) = (7w —
,m). It can be easily seen that the characteristic equation
of Ay is even in e and since By is constant, it follows that
the eigenvalues Ay remain the same for e = *1. This means
that a stable “inverted pendulum” solution in the vertical
plane exists always.

Six degrees of freedom

The previous analysis was valid for motions restricted in
the vertical plane. In order to evaluate the complete motion
stability properties we proceed with linearization of the full
8 x 8 system (30). If we rearrange the state variables (29)
in the form

where xy = [u,w,q,0] refers to vertical plane, and xg =
{p,d,v,r] to horizontal plane variables, we get a linearized
system in the form

ol S el el
0 BH XH 0 AH XH
in other words, within linearity, the horizontal and vertical
plane dynamics are decoupled. The vertical plane eigenval-

ues remain the same as in (53), while the horizontal plane
eigenvalues are computed from

|Ag — A\gBy/ = 0 (54)

where the elements of Ay, By are given in the Appendix.
The six-degrees-of-freedom stability indices are then simply
the union of Ay and Ay.

The degree of stability ey in the horizontal plane is shown
in Fig. 7 along with the combined degree of stability e =
max(ey,ey) in Fig. 8 for the same two cases depicted in Figs.
5 and 6. It can be seen that the xsz = +1%L case is stable
regardless of the value of & while for xgg = —1%L there ex-
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Fig. 7 Degree of stability in horizontal plane

ists a value of &, which renders the nominal point unstable.
This is a horizontal plane instability and as was observed in
all numerical experiments in this work, horizontal plane
stability dominated the overall six-degrees-of-freedom sta-
bility of the system. This is generally true for submarines
where unless the forward speed is very high, the vehicle is
significantly more stable in vertical plane than horizontal
plane motions. Figures 5 and 8 demonstrate that the in-
verted pendulum stabilization is indeed possible in six-de-
grees-of-freedom motions. It should be mentioned that the
magnitudes of the degree of stability indices shown in Figs.
6—8 are of the same order of magnitude as the stability in-
dices for the neutrally buoyant vehicle (McKinley 1991).

_ The entries of matrix Ay are identical for (6,0) = (7 —
8,7) as for (0,6) = (8,0) so that their stability properties are
the same. As can be seen from Fig. 4, an inverted pendulum
solution exists and is dynamically stable for positive dive
plane deflections as well. It follows that, in general, two ver-
tical plane solutions are stable in all six-degrees-of-freedom
motions and one of these solutions resembles an inverted
pendulum stable ascent.

Results and discussion

A systematic sensitivity analysis is performed here in or-
der to evaluate the influence of several parameters on sys-

0.1
Tep = —1% L B

0.02 i

0
-0.02}
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_0-04 | \\/-
_0'06 1 n 1 1 1 L A
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Fig. 8 Combined degree of stability in six degrees of freedom
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Fig. 9 Stable pitch angle solutions for variations in xgg (in %L)

tem response. The dynamic stability analysis included in this
subsection considers stability in all six degrees of freedom.
As was mentioned previously, horizontal plane stability gen-
erally dictates overall vehicle stability.

Figure 9 shows how changing the longitudinal center of
gravity, xgg, affects the dynamic response of the vehicle. For
these cases, the amount of excess buoyancy, 8B, is 2% of
weight, W, the bow plane deflection angle, 3, is zero, the
metacentric height, zgg, is 0.1 ft, and the longitudinal and
vertical centers of buoyancy are both zero. The parameter
xgs parametrizes the curves in the figure and is varied from
-2 to +2% of vehicle length. It can be seen that when xgp
is positive; i.e., center of gravity forward of center of buoy-
ancy, there are stable solutions for the full range of dive plane
angles, and these occur in the form of nearly vertical as-
cents. As the center of gravity moves aft of the center of
buoyancy, xgg < 0, stable solutions begin to take the form
of predominantly forward motions and exist only for a lim-
ited range of 8.

Figure 10 shows the stable pitch angles versus 8, with the
amount of excess buoyancy, 5B, as a parameter (in %W). For
all these cases 8, = 0, xgg = —0.5%L, zgg = 0.1 ft, and xz
=z = 0. As 8B is varied, the character of solutions changes
between nearly vertical ascents and predominantly forward
motions. For high values of 3B, no stable solutions in the
vertical plane exist throughout the range of 3,.

-20f, “\ 2.5

-40 . - . -24 L
-20 -10 0 10 20 -20 -10 0
63 63

Fig. 10 Stable pitch angle solutions for variations in 88 (in %W)

10 20

JOURNAL OF SHIP RESEARCH 77



The metacentric height effect is shown in Fig. 11 where
2gg (in ft) is the parameter in the curves, and 8B = 2%W,
xgg = —0.5% L, 3, = 0, xz = zg = 0. Although no qualitative
changes in the form of the solutions are detected, increased
zgp strengthens motion stability, as expected.

Figure 12 depicts the effects of variations in the longitu-
dinal center of buoyancy. The parameter xz parametrizes the
curves and is varied from +2 to —9% of vehicle length. For
all curves 8, = 0, 8B = 2%W, xgp = —~0.5%L, zqg = 0.1 ft,
and zz = 0. The general trend shown in the figure is that
positive values of xp tend to produce stable solutions for pos-
itive dive plane angles. Similarly, negative values of x5 tend
to have stable solutions for negative dive plane angles.

Finally, the effect of a nonzero bow plane angle 3, is shown
in Fig. 13. In this case, 8B = 2%W, xgg = —0.5%L, 265 =
0.1 ft, and xz = zz = 0. The bow plane deflection is —20 deg.
The significance of these results is the existence of two sta-
ble solutions over a range of 8,. Following the discussion of
the previous subsection, two more stable solutions exist,
namely the supplementary solutions (6,) = (w — 8,m).

Simulation results

The previous stability analysis results are verified here by
simulations using direct numerical integrations of the full
six degrees-of-freedom equations of motion for the SDV.
Simulations are performed for 3, = 0, 3B = 2%W, xgp =
+1%L, 265 = 0.1 ft, x5 = 23 = 0, and 8, = —15 deg or -7
deg, so that direct comparison with the theoretical results of
Figs. 1-8 is possible.

Figure 14 shows a plot of the pitch angle 6 versus time ¢,
for xgg = +1%L and &, = —15 deg. The dotted line marks
the stable steady state solution from Fig. 5, and convergence
of solutions to this value is observed. Similarly, a (6,¢) plot
for xcg = —1%L is shown in Fig. 15 where convergence to
the steady state solution of Fig. 5 is observed. However, this
steady state solution was found to be stable for the vertical
plane only, see Fig. 6. The horizontal plane stability anal-
ysis of Fig. 7 indicated that this would be an unstable so-
lution. The reason for this apparent contradiction in the re-
sults is attributed to the fact that the initial conditions for
all horizontal plane variables p, ¢, v, r were zero in the nu-
merical integration. It is a natural consequence of the port/
starboard symmetry of the equations of motion that this choice
of initial conditions restricts motion in the vertical plane
which is a subspace of the stable manifold of system (30)
{Guckenheimer & Holmes 1983). Adding a small initial roll
angle ¢y = 1 deg caused the vehicle to steady out at a dif-
ferent pitch angle as shown in Fig. 16. This initial roll angle
also caused a nonzero steady state roll angle as shown in
Fig. 17. In turn, this steady-state roll angle caused a nonzero
steady state vehicle yaw rate and motion was not restricted
in the vertical plane any longer. The vehicle experienced a
steady state helical ascent to the surface (Booth 1977,
McKinley 1991). Therefore, numerical integrations demon-
strate a horizontal plane instability as predicted by the sta-
bility analysis.

This instability manifests itself as a divergent instability
and is associated with the existence of a positive real solu-
tion of the generalized horizontal plane eigenvalue problem
(54). Numerical experiments suggest a pitchfork bifurcation
(Golubitsky & Schaeffer 1985) and this is the subject of cur-
rent research. The results of Figs. 16 and 17 demonstrate
also an extreme sensitivity of state trajectories to initial
conditions. Small changes in the initial conditions appear to
generate solutions with divergent characteristics even though
the time histories appear to be identical for a large period
of time before divergence occurs. Since numerical integra-
tions can be carried out only for a limited time, the previous
results show the need for a careful stability and bifurcation
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analysis in order to establish local and global properties of
solutions.

So far, the stability of the system has been assessed in the
sense of Lyapunov. According to this, only an initial distur-
bance is given to the system in the form of initial conditions
other than the system’s equilibrium. It is natural to con-
sider, however, that the vehicle will be under continuously
acting disturbances arising from the environment, vortex
shedding, and unmodeled dynamics. This brings the ques-
tion of stability under permanently acting perturbations, in
particular, stability of the inverted pendulum position under
a random persistent disturbance in roll. It is known (Hahn
1967) that under continuously acting perturbations, the
nominal point (31) of system (30) cannot be asymptotically
stable any longer; however, a bounded persistent distur-
bance will result in a bounded motion in the neighborhood
of the stable solution (31). This, of course, depends on the
bounds of the disturbance.

In order to demonstrate stability under permanently act-
ing perturbations, we consider the case 3, = 0, 3B = 2%W,
xgp = —1%L, zg5 = 0.1 ft, x5 = 2z = 0, and 8, = —7 deg.
According to Fig. 8 this results in a stable inverted pendu-
lum configuration. A zero mean Gaussian noise was injected
on the roll angle during simulations to simulate the effects
of a continuously acting disturbance. This resulted in a ran-
dom roll angle response with standard deviation of 5 deg.
Two time histories in the pitch angle 0 are presented in Fig.
18 with slightly different initial conditions 6. It can be seen
that the inverted pendulum stabilization persists depending
on the initial conditions. The sensitivity of the system to the
initial conditions is also evident from the results of the fig-
ure.

Finally, the results shown in Fig. 19 assess the response
of the vehicle with identical initial conditions and different
root-mean-square levels of random roll disturbance. The up-
per curve which shows the inverted pendulum stabilization
was obtained with a roll standard deviation of 0.5 deg, while
for the lower curve which shows stabilization to the supple-
mentary pitch angle solution, the roll standard deviation was
increased to 1 deg. Once more, the extreme sensitivity of
solutions to random perturbations and the initial conditions
is evident.

Decoupled roll and lateral motions

In order to get some physical interpretation of the counter-
intuitive inverted pendulum stabilization discussed thus far,
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consider the horizontal plane equations of motion and as-
sume that there exists no dynamic coupling between roll and
lateral dynamics in sway and yaw. The linearized (around
¢ = 0) decoupled roll equation of motion then becomes

[Brllp,61” = [ARllp,d]” (55)
where
Bg = [Ix _OKP (1)]
and
Ky + (K,, - mew —(zGW — z3B) cos b
An = [ 1 0 ]

Similarly, the linearized decoupled sway/yaw equations of
motion are

(56)

(BLIw,/1” = [ALllv,r1"

where

[} 100 200 300 400 500 600

t

Fig. 19 Pitch response for xgs = —1%L, 8; = —7 deg, identical initial
conditions, and different levels of persistent roll disturbance
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It can be seen that the eigenvalue problem (55) will always
result in positive solutions if & exceeds 90 deg. Studying roll
motions decoupled from sway and yaw would, therefore, have
missed the inverted pendulum stabilization possibility. A
comparison of the degree of stability as predicted from the
coupled problem (54) and from the decoupled problems (55)
and (56) is shown in Fig. 20, for xgg = —1%L, 8B = 2%W,
zge = 0.1 ft, and 3, = x5 = zz = 0. It can be seen that the
dynamic coupling between roll and sway/yaw shifts the de-
gree of stability curve to the left where, according to Fig. 5,
solutions for 6 greater than 90 deg occur.

As a final check, it should be pointed out that the hydro-
dynamic model used in this work has one major difference
than a usual submarine model. Namely, the SDV possesses
a keel instead of a sail, in order to house an extra propeller
used for surface operations. As a result, the roll hydrody-
namic coefficients K, and K, are positive, and K, is nega-
tive. For submarines the opposite is true, K, < 0, K, < 0,
and K,, > 0. This sign change has no effect on the vertical
plane steady state solutions but it does affect their horizon-
tal plane stability indices. For this reason, we changed the
signs of the above hydrodynamic coefficients so that they
correspond to a vehicle with a sail instead of a keel. The
result in terms of the horizontal plane stability index ey is
shown in Fig. 21, where it can be seen that despite the slight
change in the values of ey, the inverted pendulum stabili-
zation persists.

Concluding remarks

The problem of steady-state response and dynamic stabil-
ity analysis of submarines in free positive buoyancy ascent
has been studied. The main parameters affecting response
and stability were the stern and bow plane deflections, amount
of excess buoyancy, and the relative positions of the centers
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of gravity and buoyancy. The main conclusions of this work
can be summarized as follows:

1. Steady-state motion is not, in general, restricted to the
vertical plane unless the rudder is kept at zero, and the cen-
ters of gravity and buoyancy are located “symmetrically” with
respect to the centerplane; i.e., yoW = yzB.

2. Four solutions in the vertical plane exist, some of them
can be sometimes classified as nearly vertical ascents at rel-
atively low speeds and large angles of attack, while others
take the form of predominantly forward motions with high
forward speeds and small angles of attack. Four solutions
were identified with supplementary values for the pitch and
roll angles, thus bringing the total number of steady-state
vertical ascents to eight.

3. Motion stability was shown to naturally decouple into
vertical plane (surge, heave, pitch) and horizontal plane (roll,
sway, yaw) motions. The supplementary solutions were shown
to have identical stability characteristics, and in general, two
solutions were found to be stable.

4, Sensitivity analysis was performed with regards to im-
portant geometric parameters which demonstrated their ef-
fect on system response.

5. One stable solution was found to exhibit characteristics
of an inverted pendulum. The vehicle was shown to be dy-
namically stable in this position, which is naturally stati-
cally unstable since it corresponds to a negative metacentric
height.

6. This inverted pendulum stabilization was found to per-
sist under continuously acting disturbances in roll. It was
shown that the phenomenon can be attributed to the cou-
pling between roll and sway/yaw motions.

7. Numerical integrations suggested an extreme sensitiv-
ity of the system to initial conditions and random distur-
bance levels. This sensitivity of solutions was found to occur
for parameter ranges which allowed for the inverted pen-
dulum stabilization to occur.

Work is continuing in the area to analyze the stability
properties of all system solutions that are not restricted to
the vertical plane. Bifurcation analysis is under current
progress in order to classify the loss-of-stability cases and to
establish boundaries of safe vehicle operations.
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Appendix

The nonzero entries of the mass matrices My and My and the linear-
ized system matrices Ay and Ay are given below. Variables u, w, 6 are
evaluated at equilibrium, the overbars have been dropped for conve-
nience, and cos ¢ = *+1.

For the vertical plane

x, = [u, w, g, 0]

we have
By1,1)=m-X,
By(1,3) = mzg
By(2,2)=m - Z,
By(2,3) = —(Z; + mxg)
By(3,1) = mzg
By(3,2) = —(M,, + mxg)
By33=1I1-M,
By44)=1

and

A1) = ~2uCpy + w(X 5.0, + Xoads) + 20X 5,052 + X8
Av(1,2) = 2X uw + u(X058, + Xous,ds)

Av(1,3) = wX,, — m) + uXpds + Xi5,8s)

Av(1,4) = ~(W — B) cos 8

Av2,1) = Zw + 2u(Zy B, + Z5,5y)

Ay(2,2) = Z,u ~ 2Cp A, fw|

Av(2,3) = uZ, +'m) + 2Cp A xslwl

Ay(2,4) = —(W — B) sin 8 cos ¢

Avi3,1) = M w + 2u(M, 5, + My,5,)
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Av(3,2) = M, u+ 2CDzAu,xA|w| By(4,1) = -N,

Av(3,3) = (M, — maglu — mzgw — 2Cp La|w} By(4,3) = mxg — N,
Ay(3,4) = (xgW — xB) sin 6 cos ¢ — (zgW — z5B) cos By44)=1I — N,
Av(4,3) = cos & and
where Ax(1,D) = Ku + (K, — mzghw
Ay(1,2) = —(26W — 2gB) cos 6 cos ¢
Ia= f bl An(13) = Ko + K0
Ax(1,4) = WK, + mzg) + K,
For the horizontal plane " ¢ ¢ w
Ag2,1)=1
xu = [p,d, v, 7]

Ap(2,4) = tan 0 cos ¢
Ag31)=Y,u+ (Y, + mw
Ay(3,2) = (W — B) cos 6 cos &
Ap33)=Y,u+ Y,w— CpA.ju

we have
B 1, 1=1-K,
By(1,3) = —(K, + mzg)

Bull ) = ~K, An(3,4) = Yow + (Y, — mu — Cp Axslw|
Bu22) =1 A4 = mxow + Nyu + Ny

By(3,1) = ~(Y, + mzg) Ap(4,2) = (xgW — x4B) cos 0 cos b
Bu33)=m-Y, Ay(4,3) = Nau + N w — Cp A xa|lw|
By(3,4) = mx; - Y, An(4,4) = wN, - mxg) + N,,w — Cplaw|
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