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Control of a modern submarine is a multi-dimensional dynamical problem cou-
pling considerations of initial static stability, hydrodynamic performance, and con-
trol system response. In this work, the loss of stability at moderate-to-high speeds
is examined using a nonlinear Hopf bifurcation analysis. Complete linear state

. feedback is used for demonstration purposes for depth control at level attitude

and for a fixed nominal speed. The control time constant, the nominal and ac-
tual speeds, the metacentric height, and the stern-to-bow-plane ratio are used as
the main bifurcation parameters. A complete local bifurcation mapping provides
a systematic method for evaluating the bounds of controllability for the control
system design parameters for a vehicle with a given set of hydrodynamic coef-
ficients. The submarine and its potential design modifications are verified with
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direct numerical simulations.

NOMENCLATURE XGB Center of gravity/center of buoyancy sep-
a Dummy independent variable aration, xg — xp
ao Steady-state value of a z Deviation off the commanded depth
A Linearized matrix of the system in its z State variable vector in canonical form
nominal state 71, 23 Critical variables of z
b(x) Local beam of the hull 73, Z4 Stable coordinates of z
Cp Quadratic drag coefficient ZGB Vehicle metacentric height, zg — zg
I Vehicle mass’s moment of inertia Z Heave force .
ki, k2, k3, ks Controller gains in 8, w, ¢ and z, respec- Zy Derivative of Z with respect to a
tively
m Vehicle mass Greek symbols
M Pitch moment & Bow-plane-to-stern-plane deflection ratio
M, Derivative of M with respect to a o Center manifold expansion coefficients of
q Pitch rate z3
T Period of oscillation Bi Center manifold expansion coefficients of
T Matrix of eigenvectors of A evaluated at Z .
the bifurcation point 0 Vehicle pitch angle
Tc Control time constant Ob Bow plane deflection
U Vehicle’s forward speed 8, 8 Stern plane deflection
Uc Critical value of U & Stern plane angle including saturation
Us Nominal forward speed Osat Saturation value of &
w Heave velocity wy Imaginary part of eigenvalues at the bi-
X State variable vector, x = [0, w, ¢, z] furcation point
(xB, zB) Body-fixed coordinates of vehicle’s center | INTRODUCTION
of buoyancy ) _
(xG, 2G) Body-fixed coordinates of vehicle’s center The fundamental goal of submarine control is to reach

of gravity
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and maintain the ordered depth. Any design that does not

meet this goal,

in the face of the inherent complexities, is
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not overly useful in a practical vessel. Current evaluation
schemes involve extensive model testing and system iden-
tification.! The end result is usually a set of coefficients
that describe, in terms of a polynomial regression, the
hydrodynamic force and moment on the hull.2 Although
this representation is adequate for most ordinary maneu-
vers, the ultimate goal is to develop an analytical method
to determine the stability and performance of a potential
design. Much work has been done on depth control and
modeling of submarines in the vertical plane.*”’ The sta-
bility of a particular design has a significant impact on
its responsiveness. A vehicle with a large margin of sta-
bility will not be very responsive. The problem becomes
one of determining how close to the margins we can get
without a total loss of stability. By expanding the scope
of our research to include nonlinear terms, we are able
to define the limits of stability and therefore the margins.
Nonlinear dynamics and bifurcation theory provides us
with the tools for solving this problem.®?

At low forward speeds, a submersible using stern planes
for attitude and depth control can experience a loss of
stability in the form of stern planes reversal.'’ This is
a pitchfork bifurcation that can be predicted!! and can
be accounted for in the control design. The purpose of
this work is to develop a methodology for evaluating the
limits of stability for a submarine at moderate-to-high
speeds. Once these limits are mapped, the nature of the
loss of stability must be determined. For this we use a
Hopf bifurcation analysis which consists of third-order
Taylor series expansions,'? center manifold approxima-
tions,!? and integral averaging.'*1* After the stability lim-
its are determined, we are able to define the control sys-
tem design parameters and evaluate the controllability of
the design. Vehicle modeling in this work follows stan-
dard notation,!® while full linear state feedback is used for
demonstration purposes to achieve depth control.!” Nu-
merical results are presented for the DARPA SUBOFF
vehicle, for which a set of hydrodynamic coefficients and
geometric properties is available.! All results are shown
in standard dimensionless form with respect to vehicle
length L = 4.26 m, and nominal speed.

2 PROBLEM FORMULATION
2.1 Equations of motion

Assuming that vehicle motion is restricted in the vertical
plane, the mathematical model consists of the coupled
nonlinear heave and pitch equations of motion. In a mov-
ing coordinate frame fixed at the vehicle’s geometrical
center, Newton’s equations of motion for a port/starboard
symmetric vehicle are expressed as follows

mw — Uq = z6¢* — xG4)
=Zg+Zyw+ Z,Uqg+ Z,Uw

nose

- CD J b(x)
tail

+ (W — B)cos0 + U*(Z5,65 + Zs,00) (1)

(w— xq)}
lw— xq|

dx

Lg + mzgwg — mxg(w — Ugq)
= M;q+ Myw+ M,Ug+ M, Uw

nose

- CD J b(x)
tail

— (xgW — xgB) cos 0 — (zgW — zgB) sin 0

+ U (M5,65 + M, 5p) )

Ineqns (1) and (2), W is the vehicle weight, B the buoy-
ancy, (xg, zg) the coordinates of the center of gravity,
(xp, zp) the coordinates of the center of buoyancy, &
the stern plane angle, and dy the bow plane angle. The
cross-flow integral terms in the above equations become
important during hovering operations or low-speed ma-
neuvering, whereas at high speeds, U (and consequently
low angles of attack with respect to the water), their ef-
fect is minimal. The drag coefficient, Cp, is assumed to
be constant along the entire vehicle length for simplicity.
This does not significantly affect the results that follow.
The remaining symbols in eqns (1) and (2) follow stan-
dard notation and are explained in the Nomenclature. It
should be noted that the symbol U in this work desig-
nates the constant forward speed along the vehicle’s lon-
gitudinal axis, and not the resultant vehicle speed.

The vehicle pitch rate is

0=¢ (3)
and the rate of change of depth is

(w = xq)°
[w = xq|

x dx

Z=-Usin@+wcos0 “

where 0 is the pitch angle with respect to the nominal
horizontal direction. The vehicle’s geometry and defini-
tions for most of the above symbols are shown in Fig. 1.
The forward velocity U is assumed to be kept constant
by the propulsion control system during depth keeping.
Any changes in U are assumed to take place in a quasi-
steady way, i.e. at a rate much slower than the vehicle’s
motion in the dive plane.

2.2 Control law

Equations (1)-(4) can be written as a set of four nonlinear
coupled differential equations in the form

0=gq (%)

w=anUw+ anUg + aizzgs sin 0 + b11U25S
+ b12U%Sy + dulw, @) + c1(w, ) (6)

q =g Uw+ azqu + az3ZGR sin 0 + b21U255
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Fig. 1. Vehicle geometry and definitions of symbols.
+ bzzUz(sb + dq(w, q) + c(w, q) (7)
z=-Usin@ + wcos 0 8
where

D, = (m—-Zy)(l, — M)
— (mxg + Zy) (mxg + My)
anD, = (I, - M)} Z,, + (mxg + Zj)M,,
apD, = (I, - My (m+ Z,)
+ (mxg + Z;) (M, — mxg)
a;3Dy=—(mxg + Zy) W
b]]DV = (Iy - Mq)Z(;S + (mxg + Z,})]M(sS
b;aD, = (Iy - M,})Zdh + (mxg + Zq)Mah
anD,=(m—Zy)M,, + (mxg + My)Z,,
apD, = (m— Zw)(Mq — mxg)
+ (mxg + My)(m+ Z,)
apD,=~(m—Z;,)W
buD, = (m—Zy)Ms, + (mxg + M) Zs,
bpD, = (m—Zy)Ms, + (mxg + My)Zs,
dyw, @)Dy = (I, — ML, + (mxg + Zy}l,
dy(w, @)Dy = (m — Z) Iy + (mxg + M)l
c1(w, @)Dy = (I, — My)mzgq* — (mxg + Zy)mzgwq
e(w, @)D, = —(m — Zy)mzgwq + (mxg + My)mzaq’
In eqns (5)—(8), the vehicle is assumed to be neutrally
buoyant (W = B), level (xg = x1,), and statically stable
(zg > zp). The terms I, and I, represent the cross-flow
drag integrals in eqns (1) and (2), and zgp = zg — zv 18
the metacentric height. Without loss of generality, we can
assume zy, to be zero, so that zgp = zg.

During most cruising operations, effective depth con-
trol can be achieved by using the linearized version of
eqns (5)—(8), where the linearization is performed around
a level flight path at the commanded depth. The linear

system of equations then used for depth control law de-
sign is:

0=gq ©9)

W =a11U0w+a12U0q+a13zGBG+b1U026 (10)
q = gy Uyw + azzqu + ax3zgp0 + sz026 (1 1)
z==-Up0+w (12)

where U is the nominal speed for gain selection, « is
defined as the bow-plane-to-dive-plane deflection ratio,
and we have denoted

65=6

51, = oo

by=by + abpp

by = br1 + by (13)

A linear full state feedback control law has the form'’
(5=k19+k2w+k3q+k4z (14)

where the gains &y, k3, k3, k4 are computed such that the
closed-loop system [eqns (9)—(14)] has the desired dynam-
ics. If the desired characteristic equation has the general
form

Ao oA oA+ =0 (15)

the controller gains can be computed by equating coeffi-
cients of the actual and desired characteristic equations,

b1Ulley + byUdks = —at3 — (an + an) Uy (16)

byUZky + (brary — bran) Ugks
+(b1a21 - b2all)U()3k3 + b] U02k4

= — o — w3izgs + (anaxn — anan) (17

(baay — brax) Uk
+ (b1ax — hharz)zgaUkz
+ (by + biayy — brary) Ugks

= o + (aaz — anain)zesly (18)
[(blaZI — by ) Uy + (byaz; — bzau)ZGBUoz] ks = x(19)

The coefficients «; are selected such that the desired char-
acteristic eqn (15) has real and negative roots located at
—1/T¢. Therefore, Tc is the effective time constant of the
depth regulator system under nominal conditions.

3 STABILITY
3.1 Bifurcation analysis

In system dynamics, the classical definition of stability
states that the real parts of all eigenvalues of the system
must be negative. Therefore, our initial investigations into
the stability of the model were to find those eigenvalues
whose real parts cross the imaginary axis. We concentrate
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Fig. 2. A typical bifurcation map showing the five dis-
tinct regions.

on the crossing of the imaginary axis here, since real axis
crossing has been studied extensively.!! The linearized set
of state equations [egns (9)—(12)] is compactly written in
the form x = Ax + B§, where x is the four-dimensional
state variables vector [8, w, g, z] and & = —Kx is the
state feedback control law as defined in eqn (14). The
eigenvalues of the system at speeds other than nominal
are found by solving

det|A—BK —sI| =0 (20)

In egn (20), K is the gain vector defined in eqn (14), and s
is the Laplace transformation variable. In the local bifur-
cation analysis, a pseudo-root-locus method is employed
where the time constant, T, is fixed. The constant T¢
fixes the placement of the system poles at a given nomi-
nal forward speed, Up. The actual speed, U, is then varied
incrementally with the system eigenvalues calculated at
each speed increment. When the real part of an eigenvalue
changes sign between the limits of a speed increment, a
bisection method is employed to find the speed where the
real part of the eigenvalue equals zero. For each point
where the real part of an eigenvalue crosses the imaginary
axis, the associated T¢ and critical speed Uc are plotted
on a bifurcation map. This map delineates the regions of
linear stability from the regions of instability. A family of
bifurcation maps were generated by varying the nominal
speed, U, initial stability, zgg, and control surface gain,
a.

3.2 Typical results and simulations

Figure 2 shows a typical bifurcation map with its five
distinct regions. Region I is the area of linear stability.
In region 11, there is one real positive eigenvalue which
is indicative of a pitchfork bifurcation as explained in
Papoulias and Riedel.!! Regions III, IV and V have at
least one pair of complex conjugate eigenvalues with a
positive real part. This indicates that unstable oscillatory
behavior is expected from the model in these regions.
An extensive set of simulations were run to verify the

bifurcation map’s prediction of system stability.'® While
the results of the simulations showed the demarcation be-
tween the stable and unstable regions, the simulations also
demonstrated that the linear bifurcation analysis failed
to predict the method of departure from stability. Five
points, a—e, as shown in Fig. 2, were chosen to illustrate
the model’s behavior in the regions of interest. The first
four points a-d correspond to the same control time con-
stant T¢c = 4.75 dimensionless seconds. Table 1 lists the
eigenvalues found at each of these points and Table 2
shows the eigenvalues associated with the exact bifurca-
tion point near points b, ¢ and d. Note that the eigenval-
ues are given in dimensional terms, while all other infor-
mation in the tables are non-dimensionalized.

Point a is in the region of stability and simulations
show a rapid convergence to nominal depth. The agree-
ment between the predicted and observed period of os-
cillation, T, is also very good. The predicted period of
oscillation is based on the imaginary part of the critical
pair of eigenvalues, and it is equal to 27t divided by the
imaginary part. This corresponds to a zeroth-order ap-
proximation of the actual period of oscillation, as pre-
dicted by the center manifold theorem.® The approxima-
tion is valid for parameter values close to the bifurca-
tion point. The critical pair of eigenvalues is that with
the maximum real part, and non-dimensionalized with
respect to vehicle length and actual speed, U. The small
differences in the predicted periods of oscillation in Tables
1 and 2 are due to the different speeds used in the non-
dimensionalization. Small-amplitude oscillatory motions
were observed at the unstable points, b and ¢, with pe-
riods well predicted from the linearized results. The case
of point d is different, however. The amplitude of the os-
cillatory response was found to be considerable larger in
this case, while the predicted period of oscillation was ap-
proximately twice the observed value, as shown in Table
1. The dominant limit cycle period at about 80 s is as-
sociated with the creation of the limit cycle at the exact
bifurcation point as shown in Table 2. This shows that, in
general, the oscillatory component of the response of a
nonlinear system should be evaluated not at the param-
eter point of interest, but at the closest bifurcation point
instead. Finally, a simulation run at point e demonstrated
an unbounded departure from the nominal with no visi-
ble oscillatory component. It is evident, therefore, that a
more detailed investigation of the mechanism of loss of
stability has to be undertaken.

4 HOPF BIFURCATIONS

4.1 Introduction

By definition, a Hopf bifurcation occurs when a pair
of complex conjugate eigenvalues cross into the right-

hand half plane. When this occurs, the system will devi-
ate from a steady-state solution in an oscillatory manner.
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Table 1. Eigenvalues and periods of points shown in Fig. 2

Points Eigenvalues U Measured T Predicted T
a —-0.4581, —0.0001, —0.0515 = 0.4938 0.500, 4.13 5.00
b —0.6226, —0.0003, 0.0052 + 0.4463 0.62Up 5.59 5.62
c ~0.5888, ~0.0046, 0.0067 + 0.2983 0.94Uq 12.86 12,75
d —0.3000 + 0.2889, 0.0387 = 0.0268 1.030, 80.00 155.4
e —~27.890, —1.7300, 0.7100 « 4.1700 1.5004 NA 1.46
Table 2. Eigenvalues and periods of the exact bifurcation points associated with the points shown in Fig. 2
Points Eigenvalues Uc Measured T Predicted T
b -0.6070, —0.0002, 0.0000 + 0.4506 0.610, 6.11 5.57
c —0.5710, —0.0054, 0.0000 + 0.2884 0.93Up 13.13 13.18
d ~0.2675 = 0.2063, 0.0000 + 0.0558 1.02Up 74.93 74.67

This deviation is typically either supercritical or subcrit-
ical. For the supercritical case, stable limit cycles form
after straight-line stability is lost. Assume that a certain
parameter, w(x), is varying quasi-statically. When the in-
dependent variable x is less than a critical value, Xcrit, all
eigenvalues of the system are located in the left-hand half
plane and the system is nominally stable. At X = Xgit, @
complex conjugate pair moves into the right-hand half
plane and forms a stable limit cycle. As the distance D =
w{x) — w(xqit) increases, the amplitude of the limit cycle
will also increase. If D remains small then the system will
remain near the nominal steady-state solution.

In the subcritical case, unstable limit cycles are gener-
ated prior to the critical point being reached. Thus, as
w(x) approaches w(xcit), the system could deviate from
the nominal steady-state solution and converge to a large-
amplitude limit cycle before the nominal system loses sta-
bility. Here, a random disturbance can cause a nominally
stable system to exhibit oscillatory behavior. Once w(x)
equals w(Xit), the nominal system becomes unstable and
a discontinuous increase in the amplitude of oscillation is
seen. A system design must make a distinction between
these two types of bifurcation because of the disparate
nature of stability loss. Thus, the designer cannot rely
on a linear approximation and must use higher-order ap-
proximations of the equations of motion to adequately
analyze the dynamic system.

4.2 Third-order approximations

The nonlinear equations of motion are expanded using a
third-order Taylor series approximation near the nominal
steady state, x = [0]. The control law is then modeled as,

& =g tanh( J ) @1
6sat

where 8, is the saturation angle of the control plane in-
put. Equation (21) exhibits similar behavior to the fre-
quently used hard saturation function, with the added ad-
vantage of the analyticity properties which are required

for the following Taylor series expansions. Using the same
approximation for the control law as the equations of
motion, &’ becomes

5=5- (slgm‘SB 22)
Therefore, the state equations can now be written as
X = Ax + g(x) (23)
where
x=1[0,w q 217 29

and the higher order terms are

g =0 (25)

1
g2=bU%53(8, w, q z) — 8‘113ZGB93

+cng’ + cawg (26)

1
g3=bU?53(6, w, ¢, 2) - 3“2320393

+ enwg + g’ 27
R SUPC S G
g4 = 2w9 +6U0 (28)

The term &3 contains the third-order expansion terms
derived from substituting § into &'.

Defining T as the matrix of eigenvectors of A evaluated
at the Hopf bifurcation point, the transformation

x =Tz (29)
transforms the system into a canonical form,
z2=T 'ATz+ T 'g(Tz) (30)
At the bifurcation point
0 —we 00
T-'AT = | 8 gg 31)
0 0 O0g¢g

with we > 0 and p, ¢ < 0. The coordinates z3 and z4
correspond to the negative eigenvalues p and g and are
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asymptotically stable. Center manifold theory?® states that
the stable coordinates z3, z4 can be expressed as polyno-
mials in the critical coordinates z;, z» and this relation-
ship is at least second order. Therefore, we can write

Z3 = 0(12% + Xyz127 + 0(32% (32)
and
24 = 122 + Bazizy + B3Z5 (33)

The coefficients «;, B; can be computed as follows. We
differentiate eqns (32) and (33) with respect to z

23 = 20012121 + 02(2120 + 2122) + 20032227
24 = 2B12121 + Ba(2122 + 2122) + 2B3z02s
and substitute 2, = —wyz2, and 2, = wygz,. Therefore
23 = 0Qwozi + 2(o3 — ) wpz122 — Cbwezs  (34)
and
23 = BawoZt + 2(B3 — B)woziz: — Pawezy  (35)

The third and fourth equations of (30) are written as
Z'3 | P 0 z3
) [))m

[D] =T 'g,(Tz)

where,

and g,(Tz) contains the second-order terms of g(Tz). We
substitute eqns (32) and (33) into eqn (36) and equate
coefficients with eqns (34) and (35). In this way we get a
linear system of equations in «; and ;. From this we can
write the two-dimensional state space equations as

Z1 = —wopzy + r“zf + 1‘122%22 + r13212% + r14zg
+pnzi + paiz + piaz G37
and
Zy = Wozy + r21z? + rzzZ%Zz + rzgzlz% + r24Z%
+ puzt + pnzizy + puzs (38)

where the coefficients r;; and p;; are derived from eqn
(30).

These equations are only valid exactly at the Hopf bi-
furcation point. For speeds U in a region near the bifur-
cation point, the equations become

2 = &€z — (wo + w'€)zy + Flz1, z) (39

and

Z (wp + (D’G)Z] + 0(’622 + Fé(Z], z2) (40)
where o, w’ are the derivatives with respect to U of the
real and imaginary parts of the critical complex conjugate
pair of eigenvalues evaluated at the bifurcation point; €

is the difference in U from the critical value Ug; and the
nonlinear functions F; and £ are

F =ruzi + maziz + i3z 23
+ruzy + puzi + prazizy + piazh (41)
and
b= mz:f + rzzz%zz + r23zlz%
+ruZi + puzt + puniz + pnz; 42)
Transforming z, and z; to polar coordinates of the form
z1 = Rcos® 43)
7y = Rsin® 44
eqns (39) and (40) become
R=0o'eR+ F (R, 0)cosO + FK(R, ©)sin® (45
and
RO=(w+ we)R+FH(R ) cos®
— F(R 0O)sin® (46)
Equation (45) then yields
R=o'eR+ P(®)R} + Q(O)R? €Y

By averaging eqn (47) over one cycle, we can obtain an
equation with constant coefficients. Defining

1 27
K= I JP(@) de (48)
0
and
| 2m
L=—
- [ 0@ o “9)
0
and carrying out the indicated integrations, we obtain
L=0 (50)
and
K= %(37‘11 +r13+r22+3r24) (51)

which reduces eqn (47) to
R=«&'eR+ KR (52)

The existence and stability of the limit cycles is deter-
mined by analyzing the equilibrium points of the aver-
aged eqn (52), which correspond to periodic solutions in
z; and z; as seen in the coordinate transformation eqns
(43) and (44). From eqn (52) we can see that two condi-
tions exist:

() If & > 0, then:
(a) if K > 0, unstable limit cycles coexist with the
stable equilibrium for € < 0; or
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Fig. 3. A typical bifurcation map for the model.

(b) if K < 0, stable limit cycles coexist with the un-
stable equilibrium for € > 0.
(2) If o <0, then:
(a) if K > 0, unstable limit cycles coexist with the
stable equilibrium for € > 0; or
(b) if K < 0, stable limit cycles coexist with the un-
stable equilibrium for € < 0.
Based on these criteria, by computing the nonlinear sta-
bility coefficient K we can use it to distinguish between
the two different types of Hopf bifurcation:
 supercritical if K < 0; and
« subcritical if K > 0.

4.3 Results

A typical bifurcation map for the SUBOFF model is
shown in Fig. 3. This map is characterized by the pitch-
fork curve (P) and the three Hopf bifurcation curves (H1,
H2 and H3). The nature of curve P has been previously
analyzed!S and those results are reconfirmed in this study.

Curve HI is characterized by a weak supercritical
branch (a — b) at low nominal speeds, Up. As U in-
creases, this branch develops a weak-to-moderate sub-
critical behavior with K between 0 and 102. The second
branch of H1 (b — c) has a consistent moderate subcrit-
ical behavior with K of the order of 10%. The cusp point
(C) marks the intersection of curve H2 with curve H3.
The cusp is highly dependent on both Uy and the initial
stability zgp. For a given U, as zgp increases, curve H2
(d — e) shifts from a very weak subcritical nature with X
between 10-2 and 1 to a very weak supercritical nature
with K between —1 and —10~2, With a lower Uy and/or
higher zgg, point e moves down in the time constant and
may not intersect curve H3. Curve H3 (f — g) is a strong
supercritical bifurcation with K values between -10* and
—10°%. The position of H3 is independent of Uj, the initial
stability, and the control surface coordination gain, o
Finally, curve H4 is a strong subcritical branch with X
having values between 10° and 10%. Because of this highly

6 - ¥
= : Zg=04,a=00
i st aib cfia
8 v i . -
g L imfiw Pitchfork bifurcation (—)
:!_: 4,9’ .:
& ) K value < 0 (seeee)
& s 13
g "-_ K value > 0 (++++4)

2 — * -
§ LR + & + + N .
IRt
L c +

] Lesett * F v,
1] 0.5 1.0 1.5 20 2.5 30
Velocity (non-dimensional)

Fig. 4. A plot of the stability coefficient K associated
with Fig. 2.

subcritical behavior, H4 can dominate and obscure the
stable region at speeds greater than U /U = 1.

Figure 4 plots the K values for the representative bi-
furcation map shown in Fig. 2. Note the predicted super-
critical and subcritical branches associated with Fig. 3.
Point a is inside the stable region (I) and numerical sim-
ulations converge to zero. Point b is located in the unsta-
ble region, immediately after a supercritical bifurcation.
As a result, small-amplitude limit cycle oscillations have
developed. The same is true as we move towards point
¢, although we expect a family of unstable limit cycles
around this point as a result of the subcritical bifurca-
tion. As we approach point d, a family of stable limit cy-
cles is generated but its behavior is influenced by the pre-
viously developed unstable limit cycles. The real part of
the critical pair of eigenvalues is becoming positive and
relatively large, which means that the amplitudes of these
stable limit cycles are expected to be significantly higher,
a result which was confirmed by numerical simulations.!®
The imaginary parts of the critical pair of eigenvalues are
also changing very fast in this region. This means that
the period of these limit cycles must be computed based
on the value of the imaginary part right at the bifurca-
tion point, rather than its value at the specific parameter
point. Point e is in the strongly subcritical region V, thus
we see the rapid divergence from stability also observed
in numerical simulations.

4.4 Simulations

The response of the system was simulated using an
Adams-Bashforth integration scheme, the control law
[eqn (14)] and control gains [eqn (16)—(19)]. The nondi-
mensional ship speed U, control time constant 7¢, nom-
inal speed U, initial stability zgs, and control surface
coordination gain o were used as parameter values. A
nominal 0.03 m/s vertical speed was used as the external
initial disturbance in all calculations. The simulations
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Fig. 5. Amplitude response for a speed range encompassing the Hopf bifurcation points shown in Fig. 2.

were used to compare the Hopf bifurcation data in two
ways:
(1) by confirming the subcritial/supercritical behavior
predicted by the values of K; and
(2) by comparing the predicted to the simulated period
of oscillation.

In Fig. 5, we have plotted the stable and unstable equi-
libria and limit cycle amplitudes from our example first
used in Fig. 2. Figure 5 clearly shows the observed sub-
critical or supercritical behavior according to the predic-
tions based on the values of K. The important features
to note in Fig. 5 are:

(1) the unstable limit cycles found with the subcritical
Hopf bifurcation;

(2) the divergence of the amplitudes as the velocity
moves away from the bifurcation critical speed; and

(3) the rapid divergence of the right-most bifurcation
and its quick and abrupt termination.

To see why the abrupt termination occurs we must look
at the root locus plot, parametrized by the speed U, as
shown in Fig. 6. This third Hopf bifurcation persists only
for a small range of forward speeds. Soon after the pair
of complex conjugate eigenvalues crosses the imaginary
axis, a break-in to the real axis occurs. The pair of com-
plex conjugate eigenvalues with positive real parts splits
into two positive eigenvalues, one of which is increasing
while the other one moves towards zero. The periodic so-
lutions gradually change their morphology into a form
of relaxation oscillations.!” In this case, the trajectories
spend most of their time in the vicinity of slowly varying
divergent solutions followed by abrupt changes. The solu-
tions quickly exceed physically realizable values of pitch
angle and in practice the limit cycles cease to exist.

5 APPLICATIONS
5.1 Control parameters

From the typical bifurcation maps we can see that a re-
gion of stability is created between the pitchfork and Hopf
bifurcation boundaries. For the control system designer,
the limits of the parameters must be defined prior to start-
ing the design. By maximizing the region of stability, we
can give the designer the most leeway in his work. There
are three parameters that we can use to change the bifur-
cation maps in this study, namely nominal speed, initial
stability, and control surface coordination coefficient.

Figure 7 summarizes the effects of changing the nom-
inal speed, Uy. Three curves for nominal speeds of 0.9,
2.7 and 4.5 m/s are shown. We can see that although the
pitchfork line moves to the left, in dimensional speeds
this line remains nearly constant with a dimensional stern
plane reversal occurring at 1.2 knots. The high-speed
Hopf boundaries (U /Uy > 1) move apart as the nominal
speed increases. The effectiveness of increasing U is lim-
ited in the upper branch by the fixed position of the H3
curve with the maximum practical T¢ achieved at Uy =
2.7 m/s. In the lower arm there is no increase in the sta-
bility area after Uy = 2.7 m/s, therefore any increase in
U, offers no advantage. For the low-speed Hopf curves
(U /Uy < 1) we quickly lose our margin of stability as Uy
increases thus necessitating further changes to regain the
lost area of stability.

Figure 8 shows the effect of increasing the metacentric
height, zgp from 3 to 12 cm. The subcritical H4 branch re-
mains constant while the upper high-speed Hopf branch
moves down effectively decreasing the area of stability.
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Detailed low speed root locus plot
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Fig. 6. Root-locus plot of the eigenvalues associated with Fig. 5.

The low-speed Hopf curves move up to increase the low-
speed area of stability. We can see that the additional
loss in area is by the movement of the pitchfork line to
the right. At zgg = 12 cm, stern plane reversal occurs
at a dimensional speed of 2.4 knots, which is well within
the currently accepted range of 1.0-3.0 knots for modern
submarines. Therefore, it is desirable to balance the initial
stability, zgp, to maximize the low- and high-speed areas.

An increase in the control surface coordination coef-
ficient, «, is shown in Fig. 9. We recall (see Fig. 1) that
o = 0 implies no bow plane activity, whereas & = 1 im-
plies maximum bow plane activity moving in the opposite
direction to the stern planes to yield maximum pitching
moment. Note that the low- and high-speed Hopf curves
all move up in Tc. While the low-speed Hopf curves give
a large increase in stability, the high-speed curves move
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Fig. 7. The effect of changing the nominal speed, Uy,
on the bifurcation maps.

up proportionally and there is no increase in the stable
area. This allows the designer to shift the range of sta-
ble time constants without a loss of high-speed stability.
The pitchfork line moves to the left until it equals zero
for oo = 1.

In order to examine what happens at the extremes of
the design options we can look at the low nominal speed
(0.9 m/s) bifurcation maps. Figure 10 shows a typical bi-
furcation map such as the one we have previously dis-
cussed. As the metacentric height is increased, there are
significant changes in the nature of the bifurcation curves.
In Fig. 11 we see that the pitchfork line has moved sig-
nificantly to the right and has intersected the low-speed
Hopf bifurcation curve. This intersection along with the
merger of the H2 and H4 curves has combined to reduce
the region of stability to a negligible portion of the map.
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Fig. 8. The effect of changing the initial stability, zgs,
on the bifurcation maps.
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Fig. 10. A low nominal speed bifurcation map.

A further increase in the metacentric height, as shown in
Fig. 12, demonstrates a dramatic change in the nature of
the stability of the model. The low-speed region has two
hyperbola-like Hopf bifurcation curves (the upper curve
occurs well above the region of interest) bounding the
lower and upper limits of stability. For speeds U/Uy >
1, the pitchfork bifurcation line now intersects the H2
curve and has changed from a supercritical to a subcritical
pitchfork. In the supercritical pitchfork, stable secondary
solutions branch out after the primary solution becomes
unstable, as in the case of Euler beam buckling.’ In the
subcritical case, however, the secondary solutions are un-
stable and exist (locally) in the parameter region where
the primary solution is still stable. Therefore the system
tends to be very sensitive to imperfections and external
disturbances, as in the case of the buckling of arcs. Ran-
dom disturbances of sufficient magnitude can destabilize
the system even though the primary equilibrium state is
still theoretically stable. This shows that although initial
stability is necessary for overall stability, if the metacen-
tric height becomes too large it can have an adverse effect
on the performance of the submarine.
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Fig. 11. The effect of an increase in the metacentric
height for low nominal speeds.
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Fig. 12. The transition from supercritical to subcritical
pitchfork bifurcation.
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Fig. 13. Schematic representation of supercritical and
subcritical pitchfork bifurcations.

5.2 Design evaluation

All computations up to this point have been performed
with fixed values of the force and moment coefficients of
the control surfaces. Linear bifurcation methods fail to
predict a change in the system response for changes in
control surface coefficients. The bifurcation maps are ex-
actly the same for a 10:1 range of the control surface co-
efficients, from 0.1x to 1.0X. In other words, the bifurca-
tion points are independent of the size and effectiveness
of the control surfaces. Therefore, we must either resort
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to simulations or examine the values of the nonlinear sta-
bility coefficient, K, in order to distinguish the response
of the model for the different cases.

Figure 14 shows the change in stability for the model
with an increase in the control surface coeffcients. The
area of lost stability is indicated by the shaded portion
of the map, and was obtained through numerical simula-
tions. Calculations of the nonlinear stability coefficient,
K, predict that this loss of stability is caused by the shift
of the H2 curve from weak-to-moderately supercritical to
a strongly subcritical curve. With two strongly subcritical
curves in the high-speed region (U/Uj > 1) the possibil-
ity of subcritical capture is greatly increased. This effect
is confirmed by running an extensive set of simulations
and mapping the change from stable to unstable response.
We must note that this instability occurs in a region that
has four eigenvalues with negative real parts where linear
control system design would not predict an instability.

5.3 Trim effects

In order to analyze trim effects, we assume that xg # xp
in the equations of motion [eqns (1) and (2)]. The quantity

XGB = XG — Xb

determines the static pitching moment. Without loss of
generality, we can assume that the center of buoyancy
coincides with the origin of the reference frame, x;, = 0.
Linearization of the equations of motion, eqns (1) and
(2), is now performed in the vicinity of a new equilib-
rium state which, due to the static pitching moment, dif-
fers from the trivial level flight path. If we denote this
new equilibrium state by the subscript 0, the linearized
equations of motion take the same generic form as eqns
(9)(12), with the additional definitions

anD, = (L, — My)(Z, — 2CpA,U tan 6)
+ (mxg + Z3) (M, + 2CpAyx4U tan 6;)
apD, = ([y - Mq)(m + Zq + 2CpAwx4U tan 0y)

Time constant
o
f
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Fig. 15. Bifurcation map for different values of xgp.

+ (mxg + Z;} (M, — mxg
—mzgUtan Gy — 2Cp A, x4U tan 8y)
anD, = (m— Z,) (M, + 2CpA,x4U tan 8y)
+ (mxg + M)(Z, — 2CpA,U tan 6y)
anDy = (m— Zy) (M, — mxg — mzgU tan 6
—2CpAwx4U tan Gy)
+ (mxg + My)(m+ Z; + 2CpAywx4U tan 6y)

where
L
Ay = J b(x) dx (53)
0
is the ‘waterplane’ area, and
L
X4 = ALW j b(x)x dx (54)
0

is its centroid.

The control law is similar to eqn (14) with the addition
of a feedforward gain to provide the desired steady-state
accuracy

S=ki0+kw+kig+kiz+ky (55)

The feedback gains are determined as before, whereas
the feedforward gain kg is based on steady-state accuracy
requirements.?’ In order to compute this we set all time
derivatives equal to zero, and require that there be no
steady-state depth error, i.e. zg = 0. Therefore, the steady
state can be computed from

(ZyMs — M,Zs) tan 0,
+ xgrBZj5cos 0y + zgrBZ 5 sin 6y
+ CpAw(Ms — x4Z5)tan GgjtanGy| =0  (56)

wg = U tan 6y (57
go=0 (58)



216 FE A. Papoulias et al.

zZo = 0 (59)
The steady-state control effort is computed from
1

S = — Z— (CpAy tan 8yl tan 8y| + Z,,wy) (60)

]
and using eqn (55), we compute the feedforward gain as
k() = 50—k190 —k2W0 (61)

Typical results for the nonzero xgp case are presented
in Fig. 15. We can see that as xgg is increased, two Hopf
bifurcation branches move towards higher speeds and
time constants, and thus increase, in general, the stabil-
ity region. The third, strongly subcritical, branch remains
constant. The other important point we can observe is
that the system may become unstable at nominal speed,
for high time constants. This is unexpected since we are
designing around nominal speed. A more careful exami-
nation of the trimmed case, however, shows that the ac-
tual forward velocity becomes +/u2 + w?. Therefore, the
system may become stable at a value of u other than nom-
inal.

6 CONCLUDING REMARKS

The application of Hopf bifurcation analysis to a subma-
rine design can be an effective tool in the evaluation and
modification phases. These methods, when paired with
methods that generate hydrodynamic coefficients for a ve-
hicle, will save time, effort and money by reducing the
amount of testing necessary to validate a design. Further-
more, this methodology will give the limits of the range
of metacentric heights that will maintain stability for the
full range of speeds of the design. As was shown, changes
in the metacentric height can have a dramatic impact on
dynamic stability of motion. Finally, an evaluation of the
need for bow planes or forward control surfaces neces-
sary to actually maintain depth control can be under-
taken through the use of the coordination coefficient, o,
as discussed in the previous section. If the forward planes
can be eliminated in a design, a potential source of noise
would also be eliminated along with simplifcation of the
structure of the control system.
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