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Preface

Thesenoteswere developed in order to supplem ent the lectures for the M E 4811, a course on
state space analysis and design of control system s. T he contents re°ect the in°uence from
other prerequisite courses as well electives in the D ynam ics and Control G roup of the M E
D epartm ent. Them aterial of the course is tailored around one academ ic quarter (11 weeks)
with 5 contact hours (4 for lectures and 1 for exam ples) per week.
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1 INTRODUCTION

Unlike \classical control" theory (M E 3801) which is based on Laplace transform repre-
sentations, \m odern control" deals directly w ith system s described in ordinary di®erential
equation form . W e assum e that given a physical system , we have already developed our
equationsofm otion, in other words the m odeling partiscom plete. The goalhere is to a@ect
the dynam ic response of the system such that it perforn s a speci ¢ task in a satisfactory
way. The rstthing we have to do is to rew rite our di®erential equations ofm otion in their
state space form .

1.1 State Variable System D escription

The state is a set of quantities such that given initial conditions x (t;) and all future inputs
u(t),allfuture response x (t) fort> tyisuniquely determ ined. Ifnotenough initialconditions
are speci ed, then m ore than one responses m ay he obtained; if too m any initial conditions
are speci ed, then a solution may not be possible. Therefore, we can see that for any
dynam ical system the num ber of states is unique; the choice, how ever, isnot.

The state equations are a coupled set of rst{order linear di®erential equations in the
state variables; i.e.,
X=Ax+ Bu;

where

X : state vector;nf 1;

A : open{loop dynam icsm atrix; n £ n ;
u : controlvector;m £ 1;
B : controldistribution m atrix;nf£ m ;

along with the output equation
y=Cx;

where

y : outputvector;rf 1;
C : sensor calibration m atrix; rf n :

Physically, for m echanical system s, x represents the collection of positions and velocities of
the body (so fora com plete description thism usthe tw ice the num berofdegreesoffreedom ),
u is the various actuators (such as thrusters, rudders, propulsors), and y the outputs (w hat
Is available to us through observation or m easurem ents).

A'san exam ple, consider the spring{m ass{dam per system shown in Figure 1. T he equa-
tions of m otion are

mala + KaXat CaXat Ci(Xai X)) = F(O);
mohp+ KpXp+ CoXp+ Ci(Xpi Xa) = 0
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If we take as states the position and velocity of each m ass

X1 = Xa,
X2 = Xa;
X3 = Xp,
Xe = Xp,

we have the equations in state form as

X1 = X2,
k C,t C c 1
Xo = i —Xpj Xyt =Xyt —F ;
ma ma a ma
X3 = X4,
Kp Cht Cg 1
X4 = i —X3i 4t —Xo
mp My My
and the A ,B m atrices are
2 3
0 1 0 0
 ka Cat C1 c
I — 1 —
A: ma a ma
0 0 0 1 ’
0 c ~ ky Cpt Cp
mnp Imb : mny
and 2 3
0
1
B=anmn, Z:
0
0

It should be em phasized that here we treat the external force f as our control input, this
Is of course legitim ate if we can and are willing to change f at will so that we can a@ect
the response of the system . Thisisnot always the case of course; there are external forces
that aBect a given system and they act despite our w illor even know ledge. T hese are called
disturbances, and a m ore general form of the state equations is

X=AXx+Bu+ jw;
where
w - disturbance vector;d£f 1 ;

i . disturbance distribution m atrix;n £ d :

The above equations are linear;m any dynam ical system s, how ever, yield nonlinear equa-
tions of m otion. The control design problem s signi cantly sim pli ed when dealing w ith



linear equations and in such a case we need to linearize the original nonlinear equations
about a nom inal operating point. This nom inal point is physically de ned usually by the
designer and, roughly speaking, should be the condition where the system 1is expected to
spend m ost of its life at. U sually, this is som e sort of static equilibrium of the system w hich
corresponds to a speci ed value for the control e@ort.

To form alize things say we have a nonlinear system of state equations
x = f(x;u):
Fix the controlvector u = uo, then
x = F(X;up):
Solve the nonlinear coupled algebraic set ofequations
f(x;u0)= 0;

to get the solution x = xo. Thisisournom inalpoint,and solution of this set ofequations is
the most dit cult part of the linearization process. 0 nce xo hasbeen obtained, we linearize
x = f(x;u) around the nom inal point (x;u) = (Xo;up). To do this we expand in Taylor
series and keep the rstorder term sonly,

LT
[}

foo: = Wit T2 @)

X (xo3uo) u (xosuo)

[s=>)

(=)
[<=>)

Then by assum ing the change in coordinates

X 1 X Xq:

u ! uj ug;
the linearized system becom es

X=Ax+ Bu;

where A and B are the constant Jacobian m atrices of partial derivatives evaluated at the
nom malpoint (Xo;up)

A = ME ;
@Xfo:uo)
g - o=
@U (Xo3uo)

The elem ents of A are given by

[s=>)

f;

A = [a;]; where aj= "
j

(=)

and sim ilarly for B .



Asan exam ple,consider the sim ple pendulum shown in Figure 2. Theequation ofm otion

IS .
m2h+ mgsinp= T ;
or
i 2 win |1 - i 2 9.
f+ 12siny= — ; 12z 2
Select as state variab les
X1 = Do
Xo = |k
T he state equations are then
Xp = laXg; T
_ 2gin XL
Xy = i :, S W 2
Forequilibrium (w ith no excitation,T = 0)
Sln— 0 ) (X1)o= 0 or (Xi)o= ¥ ;
-nX2- 0 ) (X2)o=0:
Ifwe choose the down position to linearize we get
X1 X1
sin —= —
I,
and the linearized equations are
Xl - !nXZ ]
- | T
X2 - | .nX1+ m_\Z ]
or . H# o # # 2 0 3

X2 I{Z}
- I—{7—} l-fz_} ,_{7_}

Exam ple: Consider the follow ing equations of m otion for a subm arine in the dive plane
(refer to Figure 3)

MiZywi @otrnxe)a=ZyUw+ Zg+tm)g+mzgq?
+ (W j B)cosp+ Z.U %%
(yi Wqi M+ mxg)=MyUw+ (qimxe)lg
i (xgW j xgB)cospi (zgW j zgB)sinpj mzgwg+ M LU 2%t ;
= q;
z= jUsinp+ wcosy;



where

U = forward speed ;
= heave velocity ;
q = pitch rate ;
i = pitch angle ;
t = diveplane angle ;
z = depth;
W = weight;
B = buoyancy ;
m = mass;
Iy, = massmomentofinertia ;
(Xxg;zg) = coordinates ofcenter ofgravity ;
(xg;zs) = coordinatesofcenterofbuoyancy ;
Z, = heave force hydrodynam ic coet cient ;
M = pitch momenthydrodynam ic coet cient:

Now say wewantto linearize these equations for a level °ight path when the dive plane angle
ISzero,ty = 0. Then by setting all tin e derivatives to zero (this corresponds to equilibrium )
we get

ZyUwo+ (W j B)cosy, =
MwUwoi (x¢W j xgB)cospoij (zgW j zgB)sinpy =

Qo =
i Usinpgt WoCOS|p =

o O o o

Ifwe assum e that the boat isneutrally buoyant x; = xz and W = B ,we have

LyUwy = 0;
M wUwoi (ze i zs)B sing 0;
i U sinjgt woCoSHp 0;

from which we can get the nom inal position

1
o

Wo= (o= 0; and sinyp=

which means
lo= 073 or (o= "4%:

T hese correspond to the two possible static equilibrium positions, like a regular or like an
inverted pendulum .

Ifwe choose to linearize around the o = 0 equilibrium we have
¢° = (2q)g=0;
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Wq Wo)g+ (o)w = 0;
sinj = (cospo)u = i ;
W cosy (i wosinpp)u+ (CoSpp)w = w :

The linear equations ofm otion are then w ritten as

M i ZyW i @gtnxg)e=Z,Uw+ Zq+tm)Nag+ Z.U%;
(i WQLi Ot mxg =W Uw+ O gi mxgUqi (zei s pt W .U%;
k= q;
zZ= i lUptw:
In state space form these are w ritten as
2 3 2

" 0 0 1 0°
§W_ z_ 5813255 811U 812U 0 zg z §b1U2 z
05 Aanzgy anl apl 0 b2U2 |‘tz}
z iU 1 0 0
&= | A{7 }I—‘?—} |—{7—}
X

where the coet cients ajj, b; are given by

Dv = (i Z)Uyi Wi (mxeg+ Z)Mmxe + M y);

ayDy = (lyi WDZy+ (mxg+ ZHU
apdy = (lyi WM+ Zg)+ (Mxg + Zg)(M qi MXg);
a0y = P (mxgt ZOW

by = (yi M QZet (MXg + ZOM 5

aDy = (| Zw_)M vt xe M w_)zw ;
agDy = i Z,)Mgi mxg)t (nxg+ MM+ Zg);
agDy = (i Z W

b0y = (M Zw_)M £+ (mXxg + M w_)zt;

and zgp = zg | zg is the metacentric height. W e will use the above equations of m otion
asourmain exam ple case in these notes. It should be noted that the equations correspond
to SwimmerDelivery Vehicle 17:5 feet in length. Thisisnot needed in the calculations that
follow but it gives an idea of the sizes involved. O ne thing we have to em phasize is that in
the subm arine exam ples in these notes U is the forward speed (not control). T he control is
designated by £; this is standard notation (see M E 4823 form ore details).

1.2 From B lock D jagram s to State Equations

The transition between block diagram form (what we were using in M E 3801) and state
equations (what we are using in M E 4811) is relatively sim ple and can be divided into a
series of di@erent cases.
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1. State equations from block diagranm

Suppose we have the block diagram shown in Figure 4,and we want to write a set of state
equations for thissystem . W e observe that the system is third order (it has three integrators,
so its characteristic equation will be third order). T herefore, we need three state equations
and three states. 0 ne choice iIs to take as states the outputs of the integrator blocks. This
way we get

X1 = X2
Xa = X3
Xsg = jb6xyj llxpj 6x3+ 6U;

and the output equation

y= X
TheA,B ,and C m atrices are
2 3 2 3
0 1 0 0 h i
A=80 0 1 5:8=804%; c= 100
i6 j11 6 6

W enote that the above choice of states isnot unigque, we could have selected as states the
outputs of the three feedback blocks; thiswould have produced a di®erent but equivalent
(w ith the sam e imput{output relationship) system of state equations.

2.Block diagram from state equations

Consider the follow ing system of state equations

X1 = A Xt apXyt bu;
X2 = axXit axnXst bu ;
Yy = CiXpt CoXp ©

TheA,B,C matrices here are
. # .oy )
h i
d11  dr by
A = A : C= ¢ ¢ :
dy1  dp b, b

Theblock diagram is constructed as shown in Figure 5.
3.B lock diagram and state equations from di@erential equation

Consider the transfer function between inputu and outputy

X b13 u bo

U s34+ a,82+ a;S+ ag

which isequivalent to the di®erential equation
yU+ ah+ ary+ agy = b+ bou :
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Thisisa third order system ,so we need three states. Let our rst state be
X1=Y,

S0 2 3
h i X1

y= 100 2x, %
X3

Substitute x; = y into the equation,
(iii) ¥ _ .
X1 4 @Ryt aiXot agy = biu+ bou :
To lower the order let
X1 = X, ; thisisour rststate equation

and substitute again
Ao+ aXpt @1Xp+ agX1 = DU+ bl :

Now if we substitute x; = x, we see that the u term in the equation will survive, and
this goes against our general state space form x = Ax + Bu. To elim inate the u term we
substitu te

X3 X2 i b1U or

Xy + bu  thisisour second state equation

X2
Onenoresubstitution w ill then result in
X3+ DU+ aXxs+ axbiu+ agxyo+ agXy = bl + bou ;

or
X3= jaX3 i aiXzi apXqt+ (Dpi azbi)u;
which is the third state equation.

T he state equations are

2 3 2 32 3 2 3
X1 0 1 0 X1 0
2)(_2 %: 2 0 0 1 gg X7 g‘*‘ 2 b1 EU ;
X3 ido idr ja X3 bo i azhy
and the output equation > 3
h i X1
y= 100 3x, 5:
X3

Theabove form ofthe A m atrix iscalled a com panion form (negative coet cients in the last
row ,and ones in the superdiagonal).

Theblock diagram appearsasshown in Figure 6.
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1.3 From State Equations to Transfer Function

Consider the standard state space system
X = Ax+Bu;
y = Cx:
In the Laplace dom ain (w ith zero initial conditions) this becom es
sX () = AX(s)+ BU(s);
Y() = CX(9);
or
(slj A)X =BU =) X =(sljA)BU;
Y = C(sljA)i'BU :
Ifwe com pare the last expression w ith
Y ()= G(s)U(s); whereG (s) is the transfer function

we can see that
G(s)=C(slj A)i'B ;

Is the transfer function of the system . This is of the fam iliar M E 3801 form only in the
case ofa single inputsingle output (SISO ) system (i.e.,both u and y are scalars instead of
vectors). In the m ore general case ofa multiple inputmultiple output system (M IM 0), it
Is a transfer function m atrix and its individual elem ents consist of transfer functions in the
usualsense. It can be thoughtofasamatrix of in®uence coet cients (the ij elem ent of the
m atrix depicts the transfer function between the i{th output and the j{input).

T he above helps in constructing com pact generic block diagram s, as shown in Figure 7.

x=Ax+Bu; y=20x

1.4 Polesand Zeros

Recall that for a system in the form
X=Ax+ Bu,; y=Cx
its transfer function is w ritten as
G(s)=C(slj A)i'B :

The pols of the transfer function are de ned as those values of s where the denom inator
goes to zero. Thism eans that

(sl'i A)isasingularm atrix, or
det[sl | A]= Oor
s = eigenvalue ofA :
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The zeros of the transfer function are usually de ned for SISO system s. In such a case
we have

h o, 0
6 (s)= det C (slj A)i'B ;
and using properties of the determ inant we get

_ : _det[sl j AJcedetC (sl j A)i'B]
detc (sl j A)i'B] = et 1 4]
sliA B
C 0
det[sl j A]

det

where we used the fact that |

det é g - detA ¢detD j CA'B]:
T herefore, the zeros of G (s) are solutions of
. 4
sli A §B _ .
det c 0 =0:
A'san exam ple,say we have the systen
X1 = Qi3Xpt Xpt U
X, = 2U;
y = Xgo:
ThematricesA,B ,C are
Tis 1 R h i
- | - -
A = 0 0 B = ) c= 10

Thepolesofthe system are

det[sl | A]= det S+03 i =s(s+3)=0=) s=10;i3;

and the zeros

. 2 3
ol i A _B# s+3 1 1
det > 0T T - get® 0 s 282 2+s=0=) s=j2;:
¢ 0 1 0 0

To verify this, let's get 6 (s) using classical m ethods:

Y= j3y+t Xt Uu; or
W= j3y+ 2u+ u; or
W+ 3y = u+ 2u; or

Y (s2+ 3s)= U(s+ 2); or
Y() s+2

UG) s(s+ 3)°
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which agrees w ith the poles and zeros from state space. T hese poles and zeros are usually
called open bop poles and zeros since no feedback controlaction has been de ned yet.

Exam ple: Consider the state equations for the subm arine exam ple, where the state vector

IS

x = [uswsgl;

the output vector is the pitch angle
y= i3
and the control inputu is the dive plane angle ¢

U= +=:

T he state equations are the sam e as before. Typical values for the coet cients are

a1y

d

i 0:064390823 ;
0:025208820 ;
b, = 0:0012883232 ;
Zgg = 0:1ft;

a;p = j 0:1420481 ;
a,0 = j 0:1479027 ;
b, = j0:0034266096 ;
Sft=sec :

ap3 = 0:1353290 ;
ay3 = j 0:3599404 ;

U =

Using M ATLAB and the above valueswe can nd the transfer function

"
t

and we can see that the open

T hese are also given by the eigenvalues of m atrix A . Notice that the system

i 0:0857sj 0:0235 ]
s3+ 1:0615s2+ 0:3636s+ 0:0099 °

loop polesare simply the rootsofthe denom inatorpolynonm ial
i 0:51598 0:25841; 1 0:0297 :

IS open loop

stable. Thismeans thatwith no controlaction £, ifan initial disturbance is introduced in
the angle p, it will go back to zero asym ptotically. A s the m etacentric height z; 5 gets closer
to zero, one open loop pole goes to zero. (Can you see this from the form ofthe A m atrix?
W hat is the physical signi cance of a zero pole?) The open loop zero is the root of the
num erator of the transfer function

T he transfer function can

i 0:2742 :

also be com puted by starting w ith the equations ofm otion

k= 03
W= anZes Pt anlw + aplg+ bl %t
Q = axnZgght anUw + aplg+ byl %t ;

constructing the block diagram from £ to |, and reducing it,aswe did in Section 1.2.

15



1.5 TimeResponse Using State Equations

There are two ways to com pute the tim e response of a system using the state equations:
num erical and analytical.

I.Nunmerical

State equations are naturally used in digrtal com puter sim ulation. For exam ple, ifwe use
Euler's integration: given x(0) and u(0) at t= 0, then

x(t+ ¢ )= x(t)+ x(t)¢ t:

¢ tis the integration tim e step which must be selected sm all enough (w ith respect to the
natural tim e constant of the system ) for results to be valid; and x(t) = Ax(t)+ B u(t), in
other words we evaluate x using the current value of x and u. Continuing the scheme, we
get

x(¢ t)
x(2¢ t)

x(0)+ [Ax(0)+ Bu(0)]¢ t;
x(C+ Ax(@Et+ Bu(t )¢ t;

and so on. A Ithough Euler'sm ethod is the sim plestand m ost inaccurate num erical integra-
tion technique available, it is good enough for naval engineering problem s where things do
not change very fast in tim e.

2. Analytical

W ewant the transient solution for
x = Ax; x(t)= x(Q0);

where x isthen £ 1 state vector,A isthen£ n open loop dynam icsm atrix, and x(0) is the
nf 1vectorofinitial conditions. Recallthat fora rst{order system (n = 1)wewould have

X = ax ; X(t)= x(0):

Ifwe assum e
X = 0e";
we get
xjax=0 or
Best(sj a)= 0 or
s= a; an eigenvalue :

T herefore, the solution is
x = Qedt:

Theunknown constant ® can be com puted from the initial cond ition

x(t) = 0 = x(0);
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giving
8 = x(0)ef®™ :

The solution is then
X (t) = e2i®y () ;

where

pattit) = 14 a(ti ©)  RB(ti ©)F [ati |to)]3

+ CC¢
11 21 3

W hen the solution is extended to a m atrix system (n > 1), the results are com pletely
parallel,

x= Ax;
w ith solution
- A(tjt .
W e
vector vector

where the m atrix exponential is de ned through a series expansion analogously to its scalar
counterpart

1! 2! 3!
Thisis called the state transition m atrix denoted by

+ CC¢

O(ti t) etCit):

T he state transition m atrix expresses how the state is changed from its value at t; to the
state at t by the system w ith open loop dynam ics given by A

x(©) = 0(ti to)x(t):

W e can obtain the com plete solution with a control input u(t) as:

2 3
—hei“x(t)i: ei“§ 'Ax(t)é: et B u(L):
it (o '
x(t)=Ax+Bu
Integrating, -

t
et ()= efhBu(y)ds+ c;
to

where c isa vector constant of integration. N ow att= t, we have
eifttx(0)= c;
vin
gving _ z, _
eif ()= efhBu(y)de + eifx(0):
to
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M ultiplying through by et
Zt
x(®) = et CTOx )+ IR UE)d s t, b

5
to

Zt
x (1) = @i(ti E)X(O b O(ti ¢)Bu()de -
L2 P

; I 7 3
transient steady state

or

In m ost cases
transient = response due to initial state

and thisw ill go to zero for a stable system ,w hile
steady state = response due to input

Isgiven by the above convolution integral. For linear system s, the total response is ofcourse
the sum ofthe two responses.

The m atrix exponential e*t can be com puted using a couple ofdi®erent ways.

2 Oneway iswith the above power series expansion

WY, (v’
21 3!

This is et cient only num erically when the series can be truncated to an arbitrary
degree of accuracy. In general, these Taylor series are used to de ne rather than to
com pute functions ofa m atrix (takea 2£ 2 m atrix and try to nd its cosine using the
appropriate series expansion; then check your answer using M ATLAB).

At
At _ .
e = |+—1!+ + ¢¢C :

2 IfA can be diagonalized; i.e., ifo = T AT where T is the m atrix of eigenvectors of
A and o the diagonalm atrix of the eigenvalues of A,

o = diagf,1;,2;::05,00 3

then
where n o

W e can easily see from the last expression why if at least one of the eigenvalues , ; of
A s positive, the system willbe unstable.

For tim e varying system s of the form

x= A(x;

18



the state transition m atrix is denoted by
0 (L) ;

and the solution is given by
x(t) = 0 (t;t)x(0) :

N otice that the state transition m atrix for tim e varying system s is function of both the
current tim e t and initial tim e ty, unlike the tim e invariant system case where € was a
function of one variable only, tj t,, the time interval between t and t,. W hat ismore
unfortunate is the fact that closed form expression for © (t;t;) does not exist which m akes
analysisand controloftim e varying system sm uch m ore dit cult than tim e invariant system s
considered here. Asa word of caution, in general,

R o,
0 (t:t,) 6 etoA(c)dc;

. R .
exceptwhen the m atrices A (t) and A (t)dt com m ute; i.e.,when

(Sv4 1T nz Al
A() A()dt = A(t)dt A(t):

Som e general properties of the state transition m atrix © (t;t,) are

1. It satis es the di®erential equation w ith identity initial cond itions,

G(tty)
0 (t; 1)

A0 (6t);
| :

2. It satis es the sem i{group property,
6 (tty) = O (t;t)0 (ty:t) :

3. Itisalwaysnonsingular,
01 (t;t) = O (to;t):

4. Ithasa computable determ inant,

det@ (t.to) - e 1 traceA ((,)d(; .
Themain advantages ofusing the state transition m atrix in system dynam ics are two:

2 Helps in proving other theoren s.

2 Onceithasheen determ ined, itm akes calculation of the particular solution in response
to som e initial conditions and input,m uch faster.
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In general, the analytic m ethod of solution is em ployed only for theoretic purposes or in
special circum stances; in aln ost all cases we obtain the solutions num erically. This has
the added advantage that it is not restricted to linear system s, nonlinear system s can be
sin ulated num erically in much the sam e way.

Exam ple: Consider the subm arine linear equations ofm otion

= Q;
W= anZes Pt anlw + aplg+ bl %t
Q = axnZggft anUw + anplg+ byl %t ;
where we assum e a dive plane de°ection £+ = j 0:2 radians (j 1135 degrees). A sim ulation

algorithm using Euler's integration is as follow s:

2 Step 1: Choose integration tin e step ¢ tand initial conditions o, W, Go. Seti= 0.
2 Step 2: Using the values of i, wi,qi, com pute yi, w i, q; from the equations ofm otion.

2 Step 3: Com pute

Hi+ 1 Hi t ll-i¢¢t;
Wi 1 Wit w;¢et;
Oi+1 = 0Qit q_|¢¢t

2 Step 4:Seti= i1+ 1and go back to Step 2.

Typical results of the sim ulation in term s of the pitch angle y are shown in Figure 8. As
with any num erical results, however, the real question is: are they correct? The answer to
thisborders between art and science, and in the context of system sim ulations here is a set
ofa few checks:

1. In this particular sin ulation we used a time step ¢ t = 0:01 seconds. Is this sm all
enough? The easiest way to check this is to reduce (or increase) ¢ t,say by a factor of
10, and re{run the program . If the results do not change, the above choice for ¢ twas
good. A more rationalway to do the sam e thing would be to look at the natural tin e
constant of the dynam ics of the system . The system poles were found i page 18. It
seem s that the fastest pole of the system hasrealpartj 0:5159, and the tim e constant
that corresponds to this isabout 1=0:35 or 2 seconds. Thism eans that it takes a couple
of seconds for the boat to \listen™ to its dive planes, so ¢ t = 0:01 should give very
accurate results. In fact in this case we could go asfaras¢ t= 0:5 and we would still
be reasonably accurate.

2. Look again at the system eigenvalues: one of them is certainly dom inant, j 0:0297,
so the response should approxin ate that ofa rst order system w ith a tim e constant
1=0:0297, or about 33:5 seconds. N ow look at the response of the gure: does it take
approxim ately 3335 seconds to go up to 60% ofits nalvalue?

20



3.Bynow weareconvinced that the transient response we see in the gure agreesw ith our
engineering intuition. H ow about the nalor steady state value of the response? This
IS som ething we can com pute exactly. A t steady state we should have, b= w = q= 0,
so that our equations becom e at steady state:

qg=0;
a13Zep P+ aytUw + apl g+ bl %t
a3Zgg L+ anUw + axnlq+ bU2t:

Using g= 0, the second and third equations give

i b Zi;
i byU 24 :

araZep It agglw
azsZgp It alw

Substituting £ = j 022 and using the values from page 17 we nd
L= 0476 radians or 27:3 degrees ;

a result which agrees w ith the gure.

Simulation of a nonlinear set of equations proceeds in a sim ilar m anner. Let"s assum e
that theonly im portantnonlinearities in our exam ple com e from the trigonom etric functions
and not the hydrodynam ic forces and m om ents; in other words the nonlinear equations of
m otion are

IERN
W_ = Qa13Z¢s sin Ht aptUw + agU qt b1U 2i ;
qQ = a3lgs sin Ht axUw + al qt bQU 2i :

T henum erical integration proceeds in exactly the sam e way as before; the only di®erence iIs
that here the values for w_and g are com puted from the new equations. Typical results are
shown in the previous gurewhere the di®erence between linearand nonlinear sin ulations is
also shown. Naturally, whenever possible, sim ulationsmust be perform ed for the nonlinear
system s since these m odel the underlying physics m ore accurately. T he steady state value
for u can be com puted from the nonlinear equations in the sam e way as before, the algebra
Iseasy in the exam ple case but keep in m ind that for generalnonlinear equations it m ay be
very dit cult. Here we can nd

sinp= 0:476 or p= 285 degrees:

1.6 CanonicalForm s

Consider the general state equations

Ax+ Bu;
Cx:

X
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W e can introduce a sim ilarity transform ation w hich w ill transorm the system into a new set
of state variables; the eigenvalues willbe unchanged:

x = Tx9;

x = Tx%

where xOis the new set of state variables, and T is the transform ation m atrix. W e can
substitute now into the state equations to get

Tx% ATx% Bu;

or
X% THATX% THBu ;

and
y= CTx°:

The task is to choose T such that T i'AT looks \nice".
If the m atrix A has distinct eigenvalues ,; w ith associated eigenvectors v, we have
A Vi= Vi,i,

and we can group these together colum n by colum n to get
2 3

o

v

O e e e .

h i h i
A vy vy ¢ C C v, = vy vy € ¢ C v,
! § 54

©

T

v
O e e e 9O
o e o e o o
o e o o o o

e e o © o

N

Drhgggggg

o

T isthemodalmatrix ofeigenvectors,and o is the diagonalm atrix ofeigenvaluesofA . W e
then have
AT =To; or THAT = o :

Ifwe use the modal m atrix as the trensform ation m atrix T, we will produce the norm al
coordinate form :

xO= THATX% THBu=0ox%BY;
y= CTx% ¢%°;

where
BO= Tilg and €O CT :

Thereare other \nice" form spossible. Two ofthem are particularly attractive in control
system s.

22



Say we have a transfer function

_ Y () 1 .
56)= U(s) s%+ a,82+ a;S+ ag

A nice state space form for this system 1is (verify this)
32 3 2 3

2 3 2
X1 0 1 0 X1
9%, 5=90 0o 1 58x, 5+ 90 Su;
X3 ido jar ija X3 1
and 2 3
h i X1
y=100 ngg:
X3

Isshown in Figure 9. This form of the A m atrix is called control

The block diagram form
and isnaturally used in controller design aswe w ill

canonical form ,or rstcom panion form ,
see later.
Consider the sam e transfer function

Y (s) _ 1 :
U(s) s3+ aps?+ asS+ ag

Another nice form for this system is (verify th is)

2 3 2 3 2 3
QXQE 9.a1 0 1%9x2 %+ Qogu;
X3 i do 0 0 X3 1
and 2 3
h i X1
y=100 QXQZ,:
X3

Theblock diagram form isshown in Figure 10. T his form ofthe A m atrix is called observer

canonical form , or second com panion form , and is naturally used in observer design as we

will see later.
M ore generally, assum e that our transfer function isof the form

Y(S) _ b232+ b13+ bo
U(s) s3+ a,S2+ a;S+ ap
T he control canonical form is
2 3 2 32 3 2 3
X1 0 1 0 X1
2)(_2 E:Q 0 0 1 EQXQ %+ Qogu;
X3 ido jar ja X3 1
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and 2 3
h

i X1
y = bo b1 b2 2)(2%;
X3
with the block diagram shown in Figure 11.

The observer canonical form for the sam e system is

2 3 2 32 3 2 3
X_1 ia2 1 0 X1 b2
9)(_2 %:Qial 0 1%9x2 S+ le %u;
X3 i do 0 0 X3 bo
and 2 3
h i X1
y= 100 ng %;
X3

with the block diagram shown in Figure 12.

You should, of course, verify the above form s! The main di®erence bhetween the two
form s is that in the controlcanonical form the B m atrix is \clean™,whereas in the observer
canonical form itis the C m atrix thatappears to be \clean" instead. In both cases, observe
that the characteristic equation ofthe A m atrix can be obtained easily w ithoutany algebra.
Thisisavery nice property ofm atrices in com panion form and is true regardlessofthe order
of the m atrix. Finally, it should be em phasized that both form s represent exactly the sam e
physical system ; the de nitions for the state are di®erent in the two form s. In practice, one
de nition m ay m ake m ore sense than the other physically, and this is the one that should be
chosen. A Ithough de ning convenient states m ay m ake the algebra sim pler, it ism uch m ore
preferable to choose as states variables that m ake sense physically; using M ATLAB m akes
all linear algebra calculations relatively straight forw ard.

1.7 Controllability and 0 bservab ility

Consider the system

(N

lelllallalin
ONNN W
[}
OO N

:

and 2 3

~
[ NSRS I )
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So far, the system looks nice. Let's nd the transfer function:

Y (s)
U(s)
= C(slj A)i'B
(s+ 2)(s+ 3)(s+ 4)
(s+ 1)(s+ 2)(s+ 3)(s+ 4)
1

s+ 1

6 (s)

which is rst order instead of fourth as the original system , due to the m ultiple zero{pole
cancellation. To see whatwent wrong, let's transforn the system to its norm al coordinate
form by diagonalizing A . The m atrix ofeigenvectors of A is

= 0:7071  0:4082  0:0000 0:0000 3

- gi 0:7071 08165 0:4082 00000 %
B 0:0000 0:4082 0:8165 j0:4472 5°
0:0000 0:0000 0:4082  0:8944

T hen using our fam iliar transform ation
x = Tx% or x% Tilx;
the system is transform ed into

A%O+ B Qo
¢ &O:

- I
1

where

1

AO

210 0 o0 3
.80 42 0 oé
T AT‘°‘§0 0 i3 0 5°

0 0 0 4

2 14147

3
il - 0 z
THE = §i2:4495 ’

0
h i
CO%= C¢T= 0:7071 0:4082 0 0

BO

T he state equations are then

x2 = jx9+ 141420 ;
X7 = i 2xg;
X9 = i 3x9j 2:4495u ;
X§ =i 4xg;
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and the output equation
y = 0:7071xPj 0:4082x?:

In block diagram the system in norm al coordinates appears as shown in Figure 13. Looking
atthisblock diagram we can see the follow ing

1. x9:abected by the input;visible in the output;

[N}
>
~O

s una®ected by the input;visible in the output;

wW
>
*0

- aBected by the input;invisible in the output;

B =N
>
=0

suna@ected by the input; invisible in the output.

T herefore, it is fair to say that as far as the state variables go:

(I

. x9:wecan control it and we can observe it;
2. x2:wecan notcontrol it butwe can observe it;
3. x9:wecan control it hutwe can not observe it;

4. xQ:wecan notcontrol it and we can notobserve it.
The “nal transfer function, G (s), shows the ~rst subsystem , x9, only.
In general, every system

= Ax+ Bu;
= Cx;

< 1<

can be divided through a series of transform ations into four subsysten s:

(I

. A controllable and observable part.

2. Anuncontrollable and observable part.

w

. A controllable and unobservable part.

4. Anuncontrollable and unobservable part.

Thisisknown asK alm an’sdecom position theorem . T he thing to rem em ber is that the trans-
fer function ofany system isdeterm ined only by the controllable and observable subsysten .
Thatis, the transfer function m ay contain less inform ation than what is actually needed to
model the com plete system .

The precise de nition of controllability is:
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2 A system issaid to be state controllable if any initial state x (ty) can be driven to any
“nalstate x(t¢) using possibly unbounded controlu(t) in nite tine t; < t< tf.

From the state equations

X = lé{z}x+Bu;
ngn

thisshould depend only on A and B . T he test for controllability is as follow s: C om pute the
h i
controllability m atrix C = B ;AB;A?B;::i;A"ilB

and the system iscontrollable ifand only ifthe rank ofC (the num beroflinearly independent
rowsorcolumns)isn.Roughly speaking,C showshow possible it is to change the state ofa
system using the input. Fora single inputsystem B isnf 1 and C isa square m atrix. T he
test is then that C be nonsingular

detC 6 0 :

W e can also test controllability by transform ing to the norm alcoordinate form (w ith distinct
eigenvalues). T he system is then controllable ifB ©= T ilB hasno zero row .

Exam ple: Consider the subm arine equations of m otion
2 3 2 32 3 2 3

" 0 0 1 1 0
QW_ %: 2313255 allU a12U EQW %‘*‘ 2b1U2 %i ;

q a3Zgg  anl  anl q b,U 2

and substituting the values for the coez cients

2 3 2 32 3 2 3
" 0 0 1 1 0

Qu 5= 8 00135 03220 0:7102 S8 w £+ & 020322 s
qQ i 0:0360 0:1260  0:7395 q i 0:0857

The controllability m atrix is

2
0 i 00857 020674

C= 9 00322 00505 ;0:0653 5
i 0:0857 0:0674  0:0404

which isfull rank, 3. T herefore, the system iscontrollable and we can change any state y,w,
or g using the dive planesatwill. N ote, how ever, that som e changesm ay be m practical or
even im possible in practice; for exam ple, even if the system is controllable it is not feasible
to change the pitch angle to, say, 90 degrees! Thiswould require an enorm ous dive plane
strength which isnot available in practice.

The de nition for observability is

2 A system is observable ifany value of the state x (t;) can be exactly determ ined using
a set ofm easurem ents overa nite period t, < t< t.
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0 bservability dependson A and C only,and the test is: Com pute the
2 3

CA
CAZ
observability m atrix 0 = ¢ ;
¢
¢
CA nijl

and the system 1isobservable ifand only if the rank of O isn. Roughly speaking, 0 shows
how possible it is to reconstruct the state, x,ofa system using a lim ited setofm easurem ents,
y.Forasingle outputcaseC is1£ nand O isa squarem atrix. T he test is then that0 be
nonsingular

detO 6 0 :

W e can also test observability by transform ing the system to the norm al coordinate form
(with distinct eigenvalues). The system will then be observable if C©= CT has no zero
column.

Exam ple: Consider the previous subm arine equations ofm otion, and assum e that the only
sensor aboard m easures the pitch angle, . The m easurem ent equation is

2 3
y = hl 00 IQviv1 .
q
Using A and C , the observability m atrix is
i 1 0 0

0=9 o 0 1 5
i 0:0360 0:1260  0:7395

and this has rank 3. T herefore the system is observable: using u m easurem entsonly we can
get an estim ate ofboth heave velocity w and pitch rate g (how to do thiswe will see later).

Now let's say we are interested in depth as well. The linear equation for the rate of
change of subm arine depth, z, is
z= jUptw:

Ifwe incorporate this asour fourth state equation, the new A m atrix isnow 4£ 4 and B is

4£ 1.Keeping the sam e m easurem ent, i only,we have
h i
C= 1000

Ifwe com pute the observabilty m atrix 0 , its rank is 3 instead of4. T herefore, the systen
Isunobsvervable and one state (4§ 3= 1) can notbe estimated by looking at the angle p

only. This is,ofcourse,z. Ifwe assum e thatwe have m easurem ents ofz only,
h i
C= 0001
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Thenew observability m atrix has now full rank (4) which m eans that using a depth sensor
only we should, in principle,be able to guess all the rest: y,w ,and . T he form alization of
this \guess" constitutes the observer or estim ator problem we discuss in Section 3.

2 CONTROLLER DESIGN

T he control design problem can be stated as follow s: G iven the system

T Bt B |9tz}
nEnnfgl nfl11f1

how dowe nd u such that x behaves nicely? W e consider for now single input system s (u
Is scalar and B is a vector), the multiple input case is studied later. W e are particularly
interested in closed loop control, where u is a function of the state x. T he case where u is
an explicit function of tim e only and not x is called open loop controland is studied under
system dynam ics. Since we are using the state x to determ ine the controle®ortu(x) we call
it feedback control.

2.1 Pole Placem ent

The sim plest case of feedback controlu(x) iswhen u is linear in x,

U= j ig(z}x
1£n
where K is the feedback gain vector to be determ ined. Substituting u = j K x into x =

Ax+ Buweget

1<
1

Axij BKx; or
(Aj BK)X:

1<
1

The actualcharacteristic equation of this closed loop system 1is given by
det[A j BK j sl]= 0:

W e can now pick K such that the actual characteristic equation assum es any desired set
of eigenvalues If we choose the desired locations of the closed loop poles at s = s; for
i=1;:::; ;n, the desired characteristic equation is

(Si si)(si s2)iii(sisy)=0:

Therequired valuesofK are obtained then by m atching coet cients in the two polynon ials
of the actual and desired characteristic equations.
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Consider the exam ple:

The open loop eigenvalues are
— #H

. _ sl 5 - C AN . B - . _q -
detfsl j A]= = 5 si1 0=) (i 1)ijb5=0=) (sj6)s+4)=20;
so we have an unstable system with no control. Ifthe pair (A ;B ) iscontrollable we are guar-
anteed thatwe can pick the elem ents of K to produce an arbitrary characteristic equation.
In this case we have

.1 # "1 1 #
AB = . ; C= RE ; detC= 56 0;

so the system is controllable. N ow suppose we want closed loop eigenvaluesatj 108 101 so
thatwe geta dam ping ratio 3= 0:707. T he desired closed loop characteristic equation is

(s+ 10§ 10i)(s+ 10+ 10i)= s>+ 20s+ 200= 0 :

Form the m atrix

T “
" like i5iky |
B i 5 1 ’

,_\
o
N

J

AjBK = ki ks

5 1 1o

and the actualclosed loop characteristic equation is

o

dethh | BK j sl]= — | ik15i s ifii NE=NF

1j kijsis+ks+s®j25i 5k,=0; or
s+ (kii 2)s+ (ikii Sk 24)= 0;

or

requiring
i2i ki = 20;
i kii 5k, 24 = 200:
Solving thiswe get
k1 = 22;
246
k, = iT;
and the control law is 248
U= jkexgj Koxo= j 22xq 4 TXQZ
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N ote that these gainsm ay be im possible or im practical to build for this system . T hiswould
require som e com prom ise in the speci cation which led to the desired closed loop eigenvalues.
In general, the above approach yields a system ofn linear equations to be solved for the n
elem ents of K provided (A ;B ) iscontrollable. Thism ethod is known as pole plcem ent.

Exam ple: Consider the subm arine equations

k= 03
W= apaZggfpt apUw + apUg+ bl %t
Q= anZggh+ anUw + apUg+ byl %t

Let the control law be
t= gkl kow i ksq:

Substituting into the equations we get the closed loop system

= 0,
W= (a1Zgs i DU 2K+ @V § bV Zko)w + (agU i byl 2ks)q ;

q (@23Zgs i b2l ko)p+ @21V i boU 2ko)w + @V i boU 2k3)g ;

or,in m atrix form ,

2 3 2 3
0 1

i 0
QW_ g: 2313255 i b1U 2k1 ag U i b1U 2k2 aqU i b1U 2k3 g :
q a232¢5 i DU 2ky axU i bolU 2k, anU i boU 2ks

T he characteristic equation of the closed loop system is

0ij s 0 1
detEamZGB i b1U 2k1 ail b1U Zkg i S al b1U 2k3
a23265 i boU kg anl i byl %k, al i blU2ksi s

L
o

and after som e algebra this reduces to
s+ (i DD+ Agkat Agks)s®+ (i Bikii Bokoi Bsksi D s
+ (1 Cikij Cokaj D=0

where we have denoted

Ay=bU?; Az= iByi=bU?;

B, = (biaz i b2a12)U3 ;o Ba= Cqp= (baanyi b1a21)U3 ;

Co= (azshyi amshy))U%z¢5 ; D 2= (ay+ ap)l ;

D 2= as3zgp + (a2as1 i aan)l?; D 2= (adz i a1dxn)Zgsl :

Now assum e that the we wish to place the closed loop polesat i pi, i p2,i ps- Thismeans
that the desired characteristic equation is

S+ pu)(s+ pa)(s+ ps)=0; or
s3 + ®132+ ®,5+ @53=0;
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w Ith

T hen, the control gains can be com puted by equating coez cients of the actual and the

By = pitopat ps;
B, = pip2t p2Pst Papi;
B3 = pip2ps:

desired characteristic equations

Thism ethod ofequating coet cients is feasible only for sm all system sand italvaysproduces

Aokt Agky= j 8,4 DP;

Blk1+ ng2+ B3k3: ®2+ DO;

C1k1+ C2k2: ®3+ D3O

a linear system in the unknown gains k.

The above approach can be sim pli ed if the systenm

form

x%= A%% BQ; y= &

and we are seeking a control law of the form

u=jKk %O:

A'san exam ple say the open loop characteristic equation is

s+ ass®+ a,8%+ a5t ag= 0

and the state space form of the system is

2)(_103 20 1 0 0 32X103
BroZ-8 0 0 b 0 2B
X964 0 0 0 1 x 9
Xy id jar ja, jag  xP

and

w ith the control law

T he transfer function is

y= bo by Dby b

RN W

—
1
5 )
=~
e}
=~
~o
=~
“0
=~
=0 -
- MOOO) N
POOD) N < =< x x=
> > X iaieldeololale]

>

Y (S) _ b333 + b232 + bis+ by

ialebloblelole)
UNNN W

+
pOOO) N

_ O O o

U(s) s*+ azs®+ a,s2+ a;S+ ag
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0 bserve that no algebra is needed here, if we have the transfer function we can write the
control canonical form directly.

W e can select now our desired closed loop characteristic equation
S4+ ®333+ ®232+ @15t By :

T hen
2 1 0 0

3
0 0 1 0 z
. O_ .
A BK ‘g 0 0 0 1 :
iaoi kP jari kP jaxi kP iasi kP
w ith closed loop characteristic equation

sh4 (agt kOsP+ (@t kDs?+ (art kds+ (ap+ k9= 0

A gain,since we are working w ith a controlcanonical form ,no algebra has been necessary so
far. W e can now solve for the gains directly w ithout solving a system of linear equations

k10: iagt 0o ;
k20: jagt 0 ;
kO_ . .
3 T jaxt @,
k40: iazt 03 ;

and the control law is

i kX2 kxPi kx9i kX2;
i Gaot 025 (GGag+ @)x24 (ag+ O)x9i (jas+ 0xD:

-
[}

Draw a block diagram of the system before and after feedback control; do you see what
happens?

Tosumm arize, ifwe have a systen
x% Ax% Bu;

in the control canonical form ,we can introduce a feedback control law

u= jKk %°;
w ith feedback gains
KO ja+0;
where
a = coetcientsoforiginal characteristic equation ;
® = coet cients of desired characteristic equation :
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If the system isnot in the controlcanonical form we have to transform it. Suppose that
the original state x is transform ed into xCthrough the transform ation

x%= Tx ;
and
X=Ax+ Bu;
hecom es

xO= TATilx% TBuy :

For the transform ed system ,which is in the control canonical form ,
u=jK %9

where

KO ja% 0= ja+0;
since the characteristic equation is invariant under a change of state variables. T he control
law is
i K %O
i K 9x;

i Kx;

[
1 1

where
- (0] .
iz fares

1£n 1£n n£n
Is the gain in the original system . T his can also be w ritten as

ey ks (o)

nf£l transpose nEn

Weonly need to nd the transform ation m atrix T which will transform any system into
its control canonical form . T he desired m atrix T is the product of two m atrices

T=VU ;
where U is the inverse of the controllability m atrix C
U=cit:

N otice that if the system isuncontrollable, U does not exist. M atrix V is given by
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where 2 3

¢ ¢ a;
¢ z;

¢ ¢

¢ ¢

¢ ¢ ¢ 1

the rst row is form ed by the coet cients of the characteristic polynom ial of A

QD
=
-
—
o 6 e o
g
R g
QD
N

O e e e /)

deth j s1]= s"+ a,;18"#1+ €6¢+ a;s+ ap= 0;
and the other row s are pushed left by one ata tim e. T herefore, the desired control law 1is

KT = h(cw Y ate):
- I -

Now thatwe have a formula for the gains ofa controllable single input system thatw ill
place the poles at any desired location, several questions arise:

1. Ifthe closed loop polescan be placed anywhere,where should they be placed?
2. How can the technique be extended to m ultiple input system s?

3. W hat ifnot all states are available for feedback and we have to use output m easure-
mentsonly?

o~

. W hatdo we do ifwe have external disturbances and we want to track a reference
nput?

5.How dowe handle e®ects of sensor noise?

[ap]

.Can we optim ize the perform ance ofa control system ?

T he above questions are the sub ject of the rem aining of these notes.

2.2 Pole Location Selection

For a second order system we m ay have som e transient response speci cations, such as rise
tin e, percent overshoot, or settling tim e. T hese result in an allowable region in the s{plane
from which we can easily get the desired locationsofthe poles. For higher order system swe
can em ploy the concept ofdom inant roots, select two roots as dom inant which m eans that
we want to place the rem aining roots m ore negative so that the transient response is not
a®ected signi cantly. In selecting poles for a physical system we need to look at the physics;
we can notspecify poles thatare too negative, forexam ple. Thiswould dem and a very sm all

tin e constant for the control system and the physical system m ay nothbe able to react that
fast.
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Thecontrol law u = j K x im plies that for a given state x the larger the gain, the larger
the control input. In practice, how ever, there are lim its on u: actuator size and saturation.
0 ccasionalcontrolsaturation isnotseriousand m ay be even desirable;a system w hich never
saturates is probably overdesigned.

Exam ple: Controldesign by pole placem ent is very easy using M ATLA B, the appropriate
command is place which accepts as inputs the A, B m atrices and a vector of the desired
closed loop poles, and returns the gain vector K . For exam ple, consider the subm arine
equations

2 3 2 32 3 2 3
0 1 N 0

I
Qu 5= 8 00135 §0:3220 0:7102 S8 w £+ & 020322 s
qQ i 0:0360 0:1260  0:7395 q i 0:0857
I & } —

=3

A B

Say wewantto design a control law to stabilize the subm arine to a level °ight path aty = 0.
Wewanttobeable to return to levelafteran initial sm alldisturbance in p w ithin the tin e it
takes to travelone ship length, this is reasonable. Since the boat isabout 17 feet long and it
travels at 5 ft/sec, that tim e isabout 3:5 seconds;so we want the control law to have a tim e
constant of 3 seconds. Thismeanswe want to place the closed loop polesatapproxin ately
i 0:3. Using place we specify polesatj 0:3,j 0:31, i 0:32 (place does not like poles that
are exactly the sam e) and we nd the gains in the control law

t= j(j 08451 1:4733w + 0:9807q) :

Using a simulation program we plot the response starting from 30 degrees positive (bow up)
pitch angle. W e also seta lim it in the dive plane angle between § 0:4 radians. W e can see
from the results that initially the planes saturate at the upper lin it and they com e 0® as
L approaches zero. For com parison, we show the response with no control (planes xed at
zero). Ifwe specify m ore negative poles,atj 09, 0:91,j 0:92, the control law beconm es

t= j (j 31:6147p 1:22581w j 24:6634q) :

0 bserve how unrealistically high these gains are: for a unit change in the pitch angle y our
controller dem ands 32 degrees of plane action! The response is also shown in the gure;
there ism ore plane activity than in the previous case. H owever,since we hit the saturation
lin it, the response is not any faster and it overshoots the desired value. Ifwe specify less
negative polesat j 0:1, 0:11,0:12,weend up with a control law

t= j(0:3640p§ 1:22581w + 8:0657q) :

This isa very soft control law , it takes considerably longer for u to reach zero and there is
very lim ited plane activity.

From the above results, that are plotted in Figures 14 and 15, we can see that:

2 Poles that are speci ed too negative w ill not necessarily result in faster response for a
physical system ;we m ay reach the hardware lin itations of the system .
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2 Poles that are speci ed too negative will result in a high gain tight control law w hich
will exhibit continuous control action; the system w ill over{respond to everything,
including m easurem ent noise.

2 Poles that are speci ed not negative enough will result in soft response with a very
quite control system that hardly works at all.

2 Proper pole selection can he achieved by know ing the physics of the system we are
trying to control, and by a tria{and{error sim ulation process.

Theebdectofcontrol system gain on pole locations can be appreciated by considering the
form ula

h 1
KT= (W) " (a+0):
Thegainsare proportional to the am ounts that the polesare to be m oved: the less the poles
are m oved the smaller the gain m atrix and therefore the control e®@ort. It is also seen that
the control system gains are inversely proportional to the controllability test m atrix C. T he
less controllable the system , the larger the gains that are needed to m ake a change in the
system poles.

Som e broad guidelines for pole selection are:

2 Selecta bandw idth high enough to achieve desired speed of response.

2 Keep the bandw idth low enough to avoid exciting unm odeled high frequency e®ects
and undesired response to noise.

2 Place the polesatapproxim ately uniform distances from the origin for et cient use of
the control e@ort.

W e can also use standard characteristic polynon ials such as m inim izing the ITAE crite-
rion, B essel transfer functions, or B utterw orth pole con gurations. A typical sketch of the
B utterworth poles isshown in Figure 16.

The closed loop poles tend to radiate out from the origin along the spokes ofa wheel in
the left halfplane as given by the rootsof
Mg Ta
= = Dty
=0
where k is the num ber of roots in the left half plane and !, the natural frequency. In the
absence of any other consideration, a B utterworth con guration is often suitable. Note,
however, that as the order of the system k becom es high, one pairofpoles com es very close
to the m aginary axis. It m ight be desirable then to m ove these poles further into the left
halfplane.

0 ptim al control strategies can also be used to optim ize som e perform ance index. 0 ne
com mon choice here is z,

minJ = (x'Qx+ uTRu)dt;
0
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where

weighting m atrix of the error x ;
weighting m atrix of the controle@ortu :

Thisisthe Linear Q uadratic R egulator problem which is studied later in these notes.

2.3 M ultiple Input System s

If the dynam ic system under consideration
X=Ax+ Bu;

hasm ore than one inputs, that isB hasm ore than one colum ns, then the gain m atrix K in
the control law

u= jKx:;
hasm ore than one rows. Since each row ofK furnishes n adjustable gains, it is clear than

in a controllable system there will be m ore gains available than needed to place all of the
closed loop poles. Ifwe havem inputs, then the equation

detjA i BK j= speci ed characteristic polynon ial

gives n equationswith n £ m unknowns. M ore than one solutions exist in general. This
gives the designer m ore °exibility: it is possible to specify all the closed loop poles and still
be able to satisfy other requirem ents. T here are several possibilities here, som e of them are
brie°y discussed below .

1. W e can make one control proportional (or related) to the other. For exam ple ifwe
have a two input systen

h iy
X = Ax+ b1 b2 ,
X 0,
we can choose
U= ,U;1;
with , som e selected constant of proportionality, and the system becom es
h iy
Xx= Ax+ byt b ;
X 0,

which is single input. The underlying physics should be the guidance for selection in
this m ethod. For exam ple, say that our subm arine is equipped with two inputs for
depth control: independent stern and bow planes, call them %5 and z,. Ifrapid depth
change iswhatwewantata regular cruising speed then itm akes sense to assum e that
ty = j1s. Thisde®ects the bow planes di@erentially than stern planes and produces
maxim um control authority through m axim izing the vehicle pitching m om ent. If on
the other hand, the vehicle is equipped w ith vertical stern and bow thrusters and is
operating near hover, it isnatural to com m and the sam e instead ofopposite values for
the two control inputs in order to achieve depth control.
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2. Another possible m ethod of selecting a particular structure for the gain m atrix is to
m ake each controlvariable depend on a di®erent group ofstate variables thatare phys-
ically more closely related to that control variable than to the other control variab les.
Forexam ple,suppose thatoursubm arine isequipped w ith stern planesand sailplanes
at about am idships. Then ism akes sense to use the stern planes to directly control
pitch angle and the sail planes for direct depth control. Form ally,whatwe are doing in
this case is to specify not just the eigenvalues of the closed loop m atrix butalso (som e
of) its eigenvectors. T his achieves a m ore precise shaping of the response.

3. Anotherpossibility m ightbe to setsom e ofthe gains to zero. Forexam ple,itispossible
(som etim es) to place the closed loop poles at the desired locations w ith a gain m atrix
which hasa colum n ofzeros. Thism eans that the state variable corresponding to that
column isnotneeded in the generation ofany ofthe controlsignals in the vectoru,and
hence there isno need to m easure (or estim ate) that state variable. T his sim pli es the
resulting controlsystem structure. Ifall the state variab les, exceptthose corresponding
to colum nsofzeros in the gain m atrix, are accessible for m easurem ent then there isno
need for an observer to estin ate the state variables that cannot be m easured. A very
sin ple and robust control system is the resu lt.

Hand calculation of the system of equations to be solved for the gains is possible for the
multiple input case just like the single input. The only di®erence here is that unlike the
single input where we always end up w ith a system of linear sim ultaneous equations in kj,
formultiple inputs it is possible to com e up with a nonlinear system for k;;.

3 OBSERVER DESIGN

So farwe have developed the m eans to estab lish a control law ; i.e, software which com m ands
a certain action from the system actuators. W hatisneeded isthe state x. In reality, how ever,
what is available to us from hardware is the outputy through a set of sensors. In order to
com plete the picture, therefore, we need to estin ate x given y.

3.1 State Estim ators

Say we have the systen
X=Ax+ Bu;

and wewant to use a control
u=jKx:

Suppose, however,thatwe only have the m easurem ents (output)

i k3l P

p£1 pEn n£1l
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instead of x. Note that if p were equal to n then we could use x = C ity and our troubles
would be over; the interesting case iswhen we have less sensors available than the num ber
of states,p < n. Itmay be undesirable, expensive, or im possible to directly m easure all of
the states. W hat we can do is to dynam ically use the p m easurem ents to estim ate all the
states In x. Ifwe denote the estin ate of the state x as db, the error in that estim ate willbe

B B B
error actual  estin ate

Then we could feed back this estim ate oin place of the actual state; i.e.,
u=jKb:

W hatwe need now is to construct a state estim ator or observer. C onsider feeding back the
di®erence between the estim ated and m easured outputs and correcting the m odel continu-
ously with this error signal

b= Ab+t But L(yj Ch;

where
Ab+ Bu : system model,bshould behave like x ;
L : observergain m atrix, to be determ ined ;
y . actualmeasurement;
Chb : measurement ifx were bo:

In order to establish L we can consider the dynam ics of the error in the estim ate,

e = xj b=)

e = Ax+BujAbjBujL(yjiCh=)
e = AxibBilLCxjiCh=)

e = (AjLC)e:

The error in the estin ate will be determ ined by the eigenvalues of [A j LC Jwhich we can
obtain from detfA j LC j sl]= 0. If (A;C) is observable, we can pick the elem ents of
L to give the error arbitrary dynanm ics, sim ilarly to the control design. W e should choose
the eigenvaluesof [A j LC]to be further to the left in the s{plane than the eigenvalues of
[A i BK] Then the error in the estinm ate willdie quickly com pared to the dynam ics of the
system .

The com bined controller and observer equations are

x = Axj BKb;
b= LCx+ AjLCjBK)MD;
y = Cx;

or PR a4
X A i BK X
b LC AjLCjBK b
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and JECR:

In block diagram form this appears as shown in Figure 17.

Ifwe use
u=ikKb=jKKim®;

we get H# #

TR
x _ AjBK BK X

e 0 AjLC e
which has the follow ing characteristic equation

det[A § BK j sl] ¢det]A j LC j sl]= 0:

Thisindicates that the dynam icsofthe observerare com pletely independentofthe dynam ics
(eigenvalues) of the controller. Thus,K and L can be designed separately.

3.2 Duality

Remenber the controller design for x = Ax+ Bu,y = Cx by placing the eigenvalues of
[A i BK ] For the observer design we want to place the eigenvaluesof [A j LC]. But the
eigenvalues of A j LC ]are the sam e as the eigenvalues of [A j LCT and these are the
sam e as the eigenvalues of AT j CTLT]. T herefore, instead ofdesigning an observer for the
system x = Ax+ Bu,y = Cx we can design a controller for x = AT + CTu. This is the
duality principle between controller and observer,

controller | ! observer
A b AT
B i1t T
c ! BT
For any system
X = Ax+Bu;
= Cx;
its dual system is
X = ATx+CTu;
y = BTx:

The controllability m atrix ofa system is the observability m atrix of its dual and vice versa.
If in the observer canonical form , starting from the output, all signal °ow s are reversed |
sum m ers are changed to nodes and nodes are changed to summers| weobtain the control
canonical form .
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3.3 Pole Placement for Single O utput System s

W hen there isonly one output variable, the output equation is

2 3
X1

h ig X,
y= ¢ C CCC ¢, .4

Xn

Thus,C isa row vector h i
C = Ci C cee Cn ;

and the observer gain m atrix L isa colum n vector
2. 3

i

~

n

N ow recall the expression we had for the controller gain m atrix

h i
KT= (W) "~ (ja+0):
By duality, the observer gain m atrix m ust be
h i
L= W) " (ia+e);
where
0 = observability m atrix ;
= coet cientsoforiginal characteristic equation ;
® = coet cientsofdesired characteristic equation :

The presence of more than one outputs provides m ore °exibility; it is possible to place all
the eigenvalues and do other things too. O r, alternatively, som e of the observer gains can
be set to zero to sim plify the resulting observer structure.

3.4 Compensator D esign

Recall that the eigenvalues of the controller were not a@ected by the eigenvalues of the
observer, this allow s us to design the controller and observer separately which is known as
the separation principle. T he com bination is called a com pensator,

(controller) + (estim ator) = (com pensator) :
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For the system

Ax+ Bu;
Cx;

< X<
1

wehave the controller
u=jKx;

the observer
b= Ab+t But L(yj Ch;

and, using the separation principle, we can w rite
u= jKb:
Theblock diagram of the com pensator is shown in Figure 17.
Using the above equations we get
X = AxjBKb
= AxiBKKXi®

= (AjBK)X+BKoe
= Ac¢x+ BKe;

and
b= Abj BK b+t LCxj Cb:

T herefore,
e= xj bz (AjLC)e= ABe:

Taking Laplace transform s,

(sli Ac)x(s)= BKx(s)+ x(t);
(sl i Mes)= w(t) =) ws)= (sl i Ditet):

T herefore,

(s1i Ac)P'BK ®(s)+ (sli Ac)i'x(t);
(s1j Ac)I'BK (sli Aitbety)+ (s Ac)itx(t);

and we can see that the transient response of the state is the sum oftwo part: one partdue
to the initial estin ation error x(ty), and one part due to the initial state x (t;).

X (S)

In order to obtain the transfer function of the com pensator, we have
b= (AjBK jLC)bt Ly;

or
(s)= (slj A+BK + LC)Ly(s):
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T hen
u(s)= jKdb(s)= jK(slj A+BK +LC)Ly(s):

The transfer function of the com pensator,D (s), isde ned between plant output and plant
nput by
u(s)= i D (s)y(@s);

S0

K(slijiA+BK+LC)IL
K (slij AR)ILL ;

D (s)

where
A= A BK jLC=AcjLC =M BK

W ecan de ne the follow ing:
2 com pensator poles = zeros of jsI j AR j,
2 open loop plantpoles = zerosofjslj Aj,
2 controller poles = zerosof jsl j A¢j,

2 observer poles = zeros of jsI j A9.

A Il of the above are, in general, diderent. If ®and A, are chosen independently, it m ay
even happen that A% has roots in the right half s{plane, which m eans that even though
the com plete system s still stable, we can get an \unstable™ com pensator. This is not
catastrophic, the m ain serious consequence of an unstable com pensator is that the closed
loop system willonly be conditionally stable and, therefore, m ay not be very robust w ith
respect to unm odeled dynam ics and param eter variations.

In sum m ary, the com pensator design proceeds as follow s:

1. Design a control law assum ing that all states are availab le.
2. D esign an observer to estim ate the (n issing) states.

3.Combine the full state control law w ith the observer to obtain the com pensator design.

Exam ple: Consider the subm arine pitch angle control developed in the previous section.
W ith polesatj 0:3,and ifnotall states u,w,q are directly m easurable,we have to use

+= 7 (j 0:84511Pj 1:4733ub+ 098074 :

A ssum e, however, that the only sensor we have isa rate gyro thatm easures the pitch rate q.
W e have to design an observer to estim ate y,w,q,using the g m easurem ents. First, is this
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possible? To do thiswe have to check the observability of the system . The output equation

IS 2 3
h

i K
y:0019w%;
q

and the observability m atrix is

2
0 0 1:0000

0:=9 i 00360 0:1260 j 0:7395 Z,;
0:0283 0:1338 0:4214

which has rank 3; i.e., the system is observable. In order to design the observer gainswe
use the duality principle and we issue the M ATLAB comm and place which we already used
for the controller: here we use A Cinstead ofA and C ®instead of B (the prime in M ATLAB
signi es a transpose). The observer poles are selected, say at j 0:6, i 0:61, j 0:62; these are
tw ice as negative as the controller poles so the error in the estim ate should die out faster
than the system dynam ics. T he observer gains are

2 3
i 219614

L =9 22636 &
0:7685

and the observer equations
b= Ab+t But L(yj Ch;

or, ifwe substitute the values for A,B ,C ,and L,

P = b 2196140 B ;
b = 0:0135P; 0322w 0:7102d+ 0:0322+§ 2:2636(q i ® ;
b = j0:036[P+ 0:126Wpj 0:7395dj 0:0857++ 0:7685(q i ® :

T he observer produces estin ates of the states and these are used in the control law we
estab lished previously (with polesatj 0:3),

u= 0:8451P+ 1:4733wbj 0:9807d:

The system 1is subjected to an initial disturbance p = 30 degrees, while for the observer we
use P= 0 since the observer doesnot know the true value ofp. T he results of the sin ulation
are presented in Figure 18 where it can be seen that y approaches zero in much the same
way as for the com plete state m easurem ent case of the previous section. T he estin ate P
approaches the true value of p quickly.

Ifweweretoreduce the absolute value ofthe observerpoles,say to j 0:1,j 0:11,j 0:12we
are faced w ith the follow ing pathological situation: In order for the control law to return the
system to itsequilibrium , it needs an accurate estim ate of the states as quickly as possible.
Since the observer poles, however, are less negative than the controller poles this estin ate
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willbe slow which means that it w ill take longer for the control law to stabilize the systen
to its equilibrium point. Indeed, in such a case the observer gains are

2
0:8664
L= 804817 £
i 0:7315

and the results of the sim ulation are shown in Figure 19. It can be seen that the response of
the system s slow ; even though the control poles were speci ed at j 0:3 the response looks
m ore like the j 0:1 controller polesofthe perfect state know ledge case ofthe previous section

(why?).

It appears thatwe need to have the observer poles as negative as possible, com pared to
the closed loop controlpoles. A good rule{of{thum b practice is tw ice as negative. Beyond
thatwe do notgain much and we run into problem sw ith sensornoise,m ore about this later.
Fornow, it isenough to recognize the fact that as the observer poles becom e m ore negative,
the elem entsofL becom e larger in absolute value (verify thisusing M ATLAB ) and any kind
of sensor noise that gets into our m easurem entsw illbe m agni ed. There is a lin it on how
large the elem ents of L can be and this depends on the quality of our sensors. This is the
optim al observer design or K aln an ~Ier problem which we discuss later.

3.5 Reduced 0 rder 0 bservers

Thepreviously developed observerisusually called a fullorder observer: itsorder is the sam e
as that of the system . A full order observer estin ates all the states in a system , regard less
whether they are m easured or not. This does not seem to be too bad, except imagine we
have a system with ten states and we can m easure eight of them ; wouldn™t it be better
to estim ate two instead of all ten states? T he form alization of this procedure leads to the
reduced order estim ator.

Suppose we can m easure som e of the state variables contained in x. W e partition the
state vector x into two sets,

X1 - variables that can be m easured directly ;
X, - variables that cannothe m easured directly :

T he state equations are broken down to

X1 = AnXgt ApXxpt Baug
Xo = AaXit ApXxyt Bou;
and the observation equation is
y= Cixy;
where C, issquare and nonsingular m atrix. T he full order observer for the states is then

b A+ Apb+ Baut Li(yi Cob)s;
b A+ A+ Bout La(yi Cob)e
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Butwhy take the trouble to in plem ent the rst observer equation for %o when we can solve
for x; directly?
o= xp= Cfly:

In this case the observer for those states that cannot be m easured directly becom es
0= AuC ity + A+ Bou;

which isa dynam ic system of the sam e order as the num ber of state variables that cannot
be measured directly. The dynam ic behavior of this reduced order observer is governed by
the eigenvalues of A ,,, a matrix over which the designer has no control. Since there Is no
assurance that the eigenvalues of A,, are suitable, we need a m ore general system for the
reconstruction of . W e take

b=Lly+z;

where
z=Fz+ Gy+HuU:

D e ne the estim ation error

. bl# .o ..0#
X1 i €1
ez Xi b= = = ;
: X, i b P e,
and we get
&2 = X2i b
= AaXgt AgpXpt Bouj Lyi z
= AogXgt Ao+t Bouj LOyixqj FZijGyij Hu
= AaXxit Agpxot Bauj LCo(AqiXe+ ArgXxat Byu)
iF(ily)iGyifu:
Since
i ly=Xoi€iLly=XyieilCixg;
we get

e, = Feyt (Aorj LCiAyj 6Cpt FLC X,
t(Aogi LCyAp i FOXxot Boi LCyByj H)u:

In order for the error to be independent of xy, X5, and u, the m atricesm uktiplying xi, x,,
and u must vanish

Fo= Aypi LCiAp;
Boi LCqiB
(Agli LC1A11)C1i1+ FL:

o T
[} [}

T hen
e,= Fer;
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and for stability the eigenvalues of F m ust lie in the left halfs{plane. T herefore, we see that
the problem ofreduced orderobserverissim ilar to the fullorderobserverw ith (A 22§ LC 1A 12)
playing the role of (A j LC). Theblock diagram schem atic appears as shown in Figure 20.

Exam ple: Consider the subm arine problem , and assum e that both the pitch angle p and
pitch rate g are available through m easurem ents. W hat we need is to estim ate the vertical
translational (heave) velocity w . Let"s design a reduced order observer to do the job. W e
start w ith our equations of m otion and we re{write them so that the variables that are
m easurable go rst

= 0q,;
@ = anUw+ aplq+ agnZes P+ bU % ;
W= a“U W+ a12U qt+ agzZggft b1U 2i B

In matrix form we have
2 3 2 32 3 2 3

" 0 10 " 0
2 q g: 2323255 a)l  anl gﬁq g‘*‘ ngUZ gi ;

W_ a13Zgp  apU  agl W b1U 2

and the m easurem ent equation is

T #2“ 3
ok 1000 g
YT T oo TIS
W
T herefore, the m atrices are
“# h oo
X1 = q s XK= W
T y T 7 h i ho i
Ay = A= Ao = agsz apl A= agl
11 . a23zG£& a22U 12 a21U" 2;; 134G B 12 22 11
0 h i 1 0 h‘ . i
B,= by 2 ;Bo= bU? ;Cq= 01 ;L= 12 -
The reduced order observer equations are
o= Tt gtz

Z = Fz+Gy+ Hzt:

Follow ing the design procedure we have
H#

- B
0 = apl i panl = p;

F = Ui ¢ °
gl j 12 aV
where p is the desired observer pole (F here is a scalar since there isonly one state variable
to be estim ated). W e see that "y plays no role in determ ining F and, therefore, we can
choose

1= 0,



~

for sim plicity. T he other observer gain ~, is com puted from

N apl jop .
: as U ’
Then we get
_h i o, 7
H = bU°j 0 °
= U2 bl %
6 = AupilAp+tFL . 4
h i h i { h i
= a3z apd j 0 7 + 0 °
1326 8 12 _| 2 8232cs Azl p ’ 2
h i h‘ . i h L
= 213Zgs @120 j 2823265 2a220 + 0 p
i
= Q13Zgs i 2823Zgs a1l i 28U + Py

The observer equations are then

Z = pz+ (a13Zes i 2823Zes )Mt (@12l i 282U + pa)q
+ (b U2 yboU Bt
b = 0+ z:

Simulation results for control poles at j 0:3 and observer pole at j 0:6 are shown in Figure
21, 1in term s ofw and woversus tim e. In this sin ulation the initial conditions were changed
top=0q=0,w =05 ft/sec,and wo= 0. Thiswas done to hetter show the convergence of
wo to the true value w. The sam e rem arks concerning selection of observer poles apply for
the reduced order observer as for the full order observer design.

4 DISTURBANCES AND TRACKING SYSTEM S

The best way to start with the introduction of the reference input is via our subm arine
exam ple:

Example: Oncemore,consider the subm arine equations ofm otion

k= q;
W= apUw + apl g+ apszes it bl 2t
Q= anUw+ aplq+ angzespt bl ’t:

W e have a feedback control law which w ill guarantee stability, of the form

t= i kepi Kow i ksq;

49



where the gains k¢, ky, ks correspond, say, to the j 0:3 poles. W hat ifwe wanted the boat
to stabilize to, say,p= £ where £ 6 0? The rstreaction m ightbe to use

= ka(ui £)i kaw i kag:

To see ifthis is enough let's sim ulate the system with £ = 20 degrees, and starting w ith
zero initial conditions. T he results are shown in Figure 22, in term s of u=£ versus t (solid
curve) where it is clear that the system m issed its nalvalue, it stabilized but to the wrong
angle. To see what went wrong, consider the above equations. At steady state all tim e
derivatives go to zero,which means = gq= 0,w = 0,and ¢ = 0. From the equations of
m otion thism eans that

aplw+ ad13Zgg H + b1U 2i
a U W + apzZgs it byU %t
and ifwe use the steady state control law

t= gkt ke okow

we get

@11V § bl %ko)w + (aazZgs i bl %ki)u
@21V § boU 2ko)w + (azszZgs i bl “ki)u

i b1U 2k1£ ;
i b2U 2k1£ :

T his system of linear equations can be solved for the steady state valuesofw and . Using
the gains that correspond to the j 0:3 poles design,we nd

L= 06679 ;

which agrees w ith the sim ulation results exactly. It seem s, therefore, that the above control
law can guarantee stability but it needs som ething extra to ensure steady state accuracy, in
other wordswe need to add (or subtract) a little m ore plane action to bring pup to£ . W e
might be m otivated then to use a control law of the form

t= g kaui £)i kow i ksqi ko

where the feedback gains ky, ky, ks rem ain the sam e as before, and ko, is an unknown gain
which is com puted such that at steady state we get the desired result y= £ . T herefore, at
steady state we have

i A13Z¢s £
i A23Zgg £ :

apUw + b1U 2

t
aUw+ byU 24

The solution is
w¥% 0; and += j0:4202f :

Substituting into the steady state dive plane angle we get

£ j ki £)i kaw i ko
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or
ko= 0:4202f :

This extra gain 0:4202 which m ultip lies the desired value £ is called a feedforward gain. By
incorporating this in the previous control law , we achieve the desired steady state accuracy
as shown in the results of Figure 22 with the dotted curve. It seem s then that when a
non{zero set point is com m anded we can stilluse the sam e control law we developed hefore
but augm ented with an extra term to ensure that the com m anded set point is achieved.
The form alism of this result, along w ith the disturbance rejection, occupies the rest of this
section .

4.1 Feedforward Control

So far we have considered the design of regulators in which the perform ance ob jective has
been to achieve a speci ed closed loop dynam ic behavior (i.e.,pole locations) of the system
In response to arbitrary initial disturbances. A m ore general design ob jective is to control
the system error not only for initial disturbances, but also for persistent disturbances, and
also to track reference inputs.

Say our system 1is
X=AXx+ Bu+ Fxg;

where x isthen £ 1 state vector,u isthem £ 1 controlvector,and x4y isadf 1 disturbance
vector. Tom ake thingseven m ore interesting suppose thatwe want to track a reference input
X, In the presence of the disturbances x4, where the reference inputhas itsown dynam ics

Xr= A Xy
W e are concerned here w ith the error
€= X i Xr:

bhetween the actual state x and the reference state x,. W hat we need then isa di®erencial
equation in e,

€ = Xi Xr
= A+t x )+t Bu+t Fxgi Ax,
= Aet (Aj ApXxet Fxgt Bu
= Aet+ Bu+ EXg;
where we have denoted vy
Xo = X ;
X4

a(n+ d)f 1vectorcontaining both the reference inputs and the disturbances, and
h i
E= AjA, F ;
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a(n+ d)f naugmented m atrix.

Consider a control law of the form
U= jKejKogXxp:
Then the error dynam ics becom es
e= Ae+ Exogj B(KejKoxg):

Ifit were possible it would be desirable to choose the gains K and K o to keep the system
error e at zero. Aswe w ill see shortly though, this isnot alvays possible. M ore reasonable
perform ance ob jectives would be the follow ing:

1. Theclosed loop system should be asym ptotically stable.

2. A linear com bination of the error state variables (rather than the entire state vector)
IS to be zero at steady state.

The rst objective is met by placing the polesof (A j BK ) in the left half s{plane. At
steady state we have
e=0;

which gives
(AiBK)e= (BKoi E)Xo;

and the steady state error is
e= (Aj BK)*BKoij EXg:

Now B isnfm,Koism £ (n+ d),and E is(n+ d)f n. W e see, therefore, that only if
we have as many inputs as there are statesn = m we can choose K, = B i'E to makee
zero at steady state. In practice we have m < n which m eans thatwe cannotm ake e = 0.
T herefore, in generalwe can only require that som e desired outputy, is zero at steady state,

yo= Cqe=0;

whereCyisam £ n matrix,so the number of inputsm is the sam e as the dim ension ofyy.
T hen we can require
Co(A i BK)UBKoi E)xo= 0

for all x, or
Ca(A i BK)'BKojE)=0;

or
Ca(A i BK)BKo=Cq(A j BK)I'E :

ks %ﬂl}n%}

n £n nen

Now we see that
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ism £ m and can be inverted. T herefore, we can choose

h -
Ko= Cq(Aj BK)I'B

Iil

Cq(A j BK)IE ;

and the steady state requirem enty, = 0 has been achieved.

Exam ple: Let'sillustrate the procedurew ith the subm arine exam ple. Suppose ourob jective
Is to keep constant depth z in the presence of two external disturbances f,, f, (arising, say,
from near surface e®ects at periscope depth). T he linearized equations ofm otion, including
the disturbance e®ects, are

= 0Q,;
W= ayUw + aplgt apzeppt bl Pe+ fr
0 = anlw+ anlq+ anzesp+ bU2t+ fy;
z = jUptw;
or,in matrix form ,
2 2 3
p 1 0 0 0 TR
gw_z galgzgg allU a,U 0 zg z §b1U2 z g f1
qQ 323255 anU anl 0 b2U2 I%} 0 1 Tf
2 L0 0 0 0 H&3
&= | Ab }I—‘?—} |—{7—} I—EEL} d
X

The ob jective is to keep depth z = 0 in the presence of f;, f,. The rstthing we have to do
Is to stabilize the system by placing the polesof (A j BK ). W e do this by using a control
law of the form

t= kol kow i ksqi kez:

Selection ofpolesatj 0:3,i 0:31,j0:32, 0:33 produces a stable system whose response in
the absence ofexternal disturbances is shown in Figure 23 (curve 1).

Use of the above feedback control law when f, 6 0,f, 6 0 produces stable response but
w ith a nonzero steady state error, as expected;see curve 2 in the gure,with f; = 0:005 and
f,= 001, In order to achieve the desired depth we introduce a general feedforward ternm
in the control law
t= kol kow i ksqi kezj ko

where the feedback gains ky, k,, ks, ks rem ain the sam e as before, and the feedforw ard gain
ko will be determ ined such thatz = 0 at steady state. At steady state we get q = 0 from
the pequation and w = Uy from z= 0. The steady state control law becom es

t= gk KUpi ko

where we have im posed the requirementz = 0. Thew and g equations yield

0;
0;

ap U 2P+ agazgg U+ byl 2t + f
a1l 2P+ agzeg U+ bU 2t + f
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or, ifwe substitute in the expression for t,

(a1V 2+ ay3zg5 § bV %ky i byl 3k2)ll i bl kg
(aV 2+ anZgs i byU kg i bV 3k2)ll i byl %k

i f1;

1
—h
N

Substituting in num erical valueswe can nd
ko= 1:4312f, j 11:1353f, ;
and we can write then the com plete control law as
t= 3:0673pu+ 1:1668w + 2:7562q j 0:0835z j 1:4312f, + 11:1353f, ;

where the feedback gains correspond to the j 0:3 pole selection aswe m entioned before. If
we simulate the system using this control law we see that the response gets to its desired
value in the presence ofnonzero f; and f, (curve 3). W e should com m ent here that from

the above two equations which were used to com pute ko we can see that, in general, we
get a nonzero pitch angle p at steady state. T his, sim ilar to the set{and{drift in currents,
dem onstrates that in the presence of disturbances it is in general in possib le to keep all the
state variables ofa system to their desirable values.

W e can get the sam e result by applying the general form ula derived in this section. W e
have

+
1

t = jKej KXo
i ke He)i ko g owe)i ks@i ar)i ka(zi zv)
i Koalr i Ko2Wr i KosQr i Koazri Kosfii Kosfz s

where the subscript r indicates the reference input states, which are zero in our case. The
general equation for K ¢ is

h ) [ )
Ko= Cqg(A i BK)'B ""Cqu(Aj BK)E :

The above m atrices are (verify the calculations)

S 0 T 2 5 3
) - 8 00135 0:3220 0:7102 Oé 3 - g 00322 %
T 200360 0:1260 0:7395 05 T A;0:0857 5"
i 5 1 0 0 0
S 0 1 000° ) ]
_ 800135 {03220 {07102 0 1 oz_ _ '
E = 800360 011260 07395 0 0 147 Ce7 0001
i 5 1 0 000 )
h i h i
K = ki ko ky ke = j3:0673 j1:1668 j2:7562 0:0835
Using these we nd
h i
Ko = Koi Koz Koz Kos kos Kos _
h i

= i 3:0673 j1:1668 j2:7562 0 1:4312  11:1353
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and substituting into the expression for + we get
t= 3:0673pu+ 1:1668w + 2:7562q j 0:0835(z i z,)i 1:4312f  + 11:1353f, ;

the sam e control law as before.

4.2 D isturbance E stim ation

Recall that the previous procedure was given a system w ith reference input x, and distur-
bance xg,

1><
1

Ax+ Bu+ Fxy;
Xr = AXe;

we form the error
€= X i Xr:

and the equation for the error dynanm ics
e= Aet Bu+ EXxgp;

w ith "x #H h :
Xo = " . E= AjA,F
Xg
The control law was

u= jKeiKoXp;

where K is com puted from stability requirem ents by pole{placing (A j BK ), and K¢ is
com puted from the steady state accuracy requirem ent

yg= Cqe= 0 atsteady state ;

by com puting h i
Ko= Cq(A i BK)™B '""Cq(h i BK)E :
T he above process requires know ledge ofxq, which contains both the reference input x, and
the disturbances x4. Ifdirect m easurem ent of x, isnot possible (usually we know what the
reference inputx, isbutwecannotm easure the disturbance x4), estim ation ofx, isnecessary.
In order to estim ate xo we need to assum e a \m odel" for the disturbance, x4 = A 4Xq; €.,
whether the disturbances are fairly constant, oscillatory, and so on. T he com p lete system is

then
X = Ax+Bu+ Fxg;
X¢ = AgXq;
Xr = ArXr:
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De neanew augm ented state vector

H#
e
X =
X Xq
Thenew system 1is then written as
x= Atx+Bu;
Where ' #H# ' #H# ' #
A E A 0 B
A = - = r - =
LN 0 AO 1 AO 0 Ad 1 B_ 0
W e assum e that the observation (m easurem ent) vector y depends on both the error e and
the vector x,, h i

y=~Ce+tDxo=C¢x; C= C D
W e can apply now the generalobserver equation to the new augm ented system x,

b= Atx+Bu+ L(yj C¢x);

whereL iscom puted by pole{placem entof(A j Lo )asbefore. Thisprocedurew illproduce a
fullorderestim ator for the augm ented system ,assum ing ofcourse thatthe augm ented systenm
Isobservable. In the sam e way we can design a reduced order estim ator for the augm ented
system to estim ate those states and disturbances thatare not directly m easurable. T he key
for the above procedure is to treat the disturbances as extra states; although we cannot
control a disturbance we can estim ate it by observing its e@ects on the system .

Separating the above full order observer equation into equations for the system error
estin ate dand the error in estim ating xo, we get

b
)

Abt But+t Elp+ Le(yi Cbj D hy);
Agky+ Lo(yi Chj D y):

The block diagram is presented in Figure 24. W e can see from this block diagram that if x,
Isconstant (Ao, = 0)and D = 0, then there are integrators in parallel to the path through
Le. Thismeans thatin the detrm ination of &there exists a path proportional to the integral
of the residualr = y j Céin addition to the path through L. which isproportional to the
residual itself. B ecause of this integral path it is possible for r to becom e zero w ithout Xy
going to zero. T herefore,we can produce a nonzero control signal u, even when the systen
error is zero. In classical control system design this is achieved by m eans of control action;
here it is achieved autom atically by using an observer to estim ate the unm easurable x,.

W ith the above estim ates éand Xy, the control law for the com pensator is
U= jiKé&j K b:

W e refer to this technique as the disturbance estim ation and com pensation m ethod.

56



Exam ple: Consider the control law of the previous exam ple. In general, the disturbance
forces f,, f, are unknown, so we have to use

+= 3:0673fP+ 1:1668ub+ 2:7562d; 0:0835b; 1:4312f9+ 11:135317 :

In order to estim ate f; and f, we rsthave to assum e theirdynanm ics. T his is based on fairly
general physical considerations. In our case, since both f; and f, are assum ed to m odel free
surface suction e®ects we can assum e them to be relatively constant; ie., fy = f5 = 0. The
equations ofm otion then are

= 0q,;
W= ayUw + aplgt apzegpt bl Pe+ fr
Q= anlw + anlq+ anzespt bU2t+ £y
z = jUptow;
together w ith
= 0;
f_g = B
In m atrix form2 thesaugm ented system becom es
32 3 2 3
I 0 0 1 000 I 0
W_ a13zgg apl appl 0 1 0 W b1U2
O 7Z_ 8axnZs anl axpl 0 0 1 q 2, byU 2 4 -
4 iU 1 0 0 0 0 z 0 o
s 0 0 0 0 0 0 f, 0
f 0 0 0 0 0 0 f 0
L&y | & }1-§%-}
X

Let'sassum e thatz,p,qarem easurable (rem em ber from Section 1.7 thatwe have tom easure
z);can we estim atew , f,,and f,2 The m easurem ent equation is

2 3
2 3 2 38
1 100000
Qq4=80 010005 ;
7 00010 0
=} | & fi
y c f
l—f%-}

UsingM ATLAB wecan see thatthe system isobservable (the rank ofthe (A ;C ) observability
matrix 15 6),s0 we should be able to estim ate all states. Selecting observer poles at j 06,
j 0:61,i0:62,j063,i0:64,and j 0:65,we can get the (full) observer m atrix

2 0:6234 10000  0:0000

133973 § 06743 06681

C-p.q- B 19255 05153 09378
i 94327 00377 15498
56251 00153 02424

£ 0:0990 03905 ; 0:0492
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The observer equations are then

b= Ab+t But L(yj Ch;

or
P= ot u@i P+ n@i O wEi D;
b = aplwot apl o+ anzes Pr R4 iU %+ (i P+ 2@ Bt uEi D;
© = anl bt anl t anzes P+ B+ U2+ @i P+ @i O+ i D;
b= jUPHwb+r @i Pt @i O+ wEi D;
R = @i Pt @i Bt @i D;
® = “a@i Pt @i B+ aEi D:

Sin ulation results in term s of z, f2=F,, and f2=f, versus t are presented in Figures 25 and
26.

W e can see that the response goes to zero, as it should. T he initial condition for bwas
the sam e as for z, this is fair since z ism easurable. T he initial conditions forﬁ?and f?were
both zero,we have no know ledge of free surface e@ect forces and m om ents, and we can see
that they converge to the actualvalues of fy, f, quickly.

4.3 Integral Control

Thedisturbance estim ation and com pensation technigue w illwork well ifwe can have a fairly
good idea ofwhatkind ofdisturbances w ill a®ect the system . In our subm arine exam ple it
may not be very hard to guess som e kind of external forces and m om ents, but this is not
always so easy. In order to produce good perform ance w ith a nonzero set point (reference
input) and steady disturbances we need to introduce som e sort of integral control behavior.
Itshould be pointed out that integral controlis an alternative to the disturbance estin ation
and com pensation technique ofthe previous section, in fact the two m ethods are very closely
related. B oth techniquesachieve the sam e thing, zero steady state error,and both have their
advantages and disadvantages.

A typical state variable feedback control law feeds back the coordinatesand their deriva-
tives. From Newton's law we obtain second order ordinary d@erential equations for our
system s and we often use the positions and velocities as the states. T he state variab le feed -
back thus produces a proportional{plus{derivative (PD ) type of feedback. Suppose thatwe
are prim arily interested in som e desired output

z=Dx;

wherez ism £ 1. Itis for thisoutput z thatwe want to m aintain a desirable value in the
presence ofdisturbances. Ifthe desired value ofz iszy one way to introduce integral control
characteristics is to introduce new state variables; i.e.,augm ent the state vector,

V=DXj zg:
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Feedback ofv then willproduce an integral of the errorz j zy4.
M ore speci cally in the z; = 0 case,
X=Ax+ Bu:

The new state variable is

v=1272=Dx,;
or z
v= zdt
The augm ented system is
# o #r# #
x _ A0 X, B '
v D 0 0
The control law isobtained by pole{placem ent of this system
- T
X
u= j Ko K v ;
or
U = jKoxij Kjv -

' i K zdt
Ve 1Y ’

: —=3

PD action Integral action

so this is a generalized P ID {control.

Exam ple: Consider the subm arine equations of m otion

q;

= apUw + aplq+ apzeept b2+ i
= ayUW + anl g+ anzespt bl ’t+ fy;
pUptw:

N 2 =

Ifwewanttomaintain depth z at its desired valuez = 0 we introduce a new state equation
=17,

where z, denotes the integral of z. W e can see that steady state accuracy (z = 0) is
autom atically ensu red T he augm ented system is now

2 32 3 2 3
0 1 00 Ty
g | 313255 atU oappU 00 W b1U2
q = 323255 a, U apl 0 0 q + b2U 2 }:
z 10 0 048 ) ¥
0 0 10 z 0
Y & &3 e
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W e select the closed loop controller polesat j 0:30, j 0:31,§0:32,§0:33 | same asbefore
| with the fth pole corresponding to z; at j 0:10. T he reason for this is that we want the
integrator to correct the erroronly at steady state,whilewewould like to m aintain the sam e
transient response. A sa result, the integrator m ust be relatively slow com pared to the other
poles of the system . T he control law is

t= 4:0647p+ 1:0237w + 3:8698q j 0:1533z j 0:0084z, :

Resultsareshown in Figure 27 for the sam e valuesofthe disturbancesf,,f, asbhefore. W e can
see thatz approacheszero,asitshould. Them ain advantage ofthe integralcontroltechnique
Is that the desired response w ill approach its com m anded value regardless of the exact type
ofdisturbances. A Iso,no disturbance estin ation isnecessary. Them ain disadvantage is that
the integral control response tends to be oscillatory especially ifno disturbances are acting.
In contrast, the response using the disturbance estim ation and com pensation technique is,
in general, much smoother.

5 LYAPUNOV STABILITY

The concept of stability according to Lyapunov has found m any applications in control
system s; In fact the whole theory of dynam ical system s is based, to a great extent, on
Lyapunov'sm ethods.

5.1 Lyapunov Functions

Consider the nonlinear system
x = f(x):

Letan equilibrium point of the system be X,
f(x)=0:

W e say that X is stable in the sense of Lyapunov if there exists a positive quantity 2 such
that for every £ = (%) we have

K)i xj< =) (O Xj< 2;
forallt> t;. W e say that x is asym ptotically stable if it is stable and,
x@®ixj! 0 as t! 1

W ecalxunstable if it is not stable.

The question, ofcourse, is: How do we determ ine stability or instability of X? Lyapunov
introduced two m ain m ethods:
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The rstis called Lyapunov' rstor indirect m ethod: we have already seen it as the
linearization technique. Start w ith a nonlinear systen

x = f(x):
Expand in Taylor seriesaround x (we also rede nex ! xj X),
X = Ax+ g(x);
where if —
A= —T
ix -
Is the Jacobian m atrix of f(x) evaluated atx,and g(x) contains the higher order term s; ie.,
lp VO
o xXj

Then,thenonlinear system x = f(x) isasym ptotically stable ifand only if the linear systen

x = Ax is;ie., ifalleigenvalues of A have negative realparts. Thism ethod is very popular
because it iseasy to apply and itworkswellform ost system s,allwe need to do isto be able
to evaluate partialderivatives. 0 ne disadvantage ofthe m ethod is that ifsom e eigenvalues of
A are zero and the rest have negative realparts, then we cannotdraw any conclusionson the
nonlinear system , the equilibrium X can be either stable orunstable. Them ajordraw back of
the m ethod, however, is that since it involves linearization it is applied for situations w hen
the initial conditions are \close” to the equilibrium X. T he m ethod provides no indication
as to how close is \close", this is som ething which m ay be extrem ely m portant in practical
app lications.

T he second m ethod is Lyapunov®"s second or direct m ethod: this is a generalization of
Lagrange's conceptofstability ofm inim um potentialenergy. C onsider the nonlinear system
x = f(x). Suppose that there exists a function, called Lyapunov function, V (x) w ith the
follow ing properties:

1.V(x)= 0.
2.V (x)> 0,forx 6 X.
3. \L(x)< 0along trajectories ofx = f(x).

Then,X isasym ptotically stable. W e can see that the m ethod hinges on the existence ofa
Lyapunov function, which is an energy{like function, zero at equilibrium , positive de nite
everyw here else, and continuously decreasing aswe approach the equilibrium . It should be
noted that the derivative \_(x) is understood as the total di®erential along solution curves
ofx = f(x); 1e.,

L (x)

ov
@@
—f

8 x)

— —f, :
0

n

v
fi+ @—x2 + ¢CC+
ix,

[ SN Ry
X | =
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Themethod isvery powerfuland it has several advantages:

2 answers questions of stability ofnonlinear system s,
2 can easily handle tim e varying system sx = f(x;t),
2 can determ ine asym ptotic stability aswellas plain stability,

2 can determ ine the region of asym ptotic stability or the dom ain of attraction of an
equilibrium .

A'san exam ple, consider an oscillator w ith a nonlinear spring:
ht 3yt yi= 0

Ifwewere to linearize this system wewould get i+ 3y = 0,which has characteristic equation
s(s+ 3)= 0. The j 3 characteristic root corresponds to the dam ping term but notice the
existence ofa 0 root from the lack ofa linear term in the spring restoring force. T he linearized
version of the system cannot recognize the existence ofa nonlinear spring term and it fails to
produce a non{zero characteristic root related to the restoring force. To see ifthisnonlinear
spring produces a stable or unstable system we have to resort to Lyapunov functions. T he
state space form of the system is

X1 = X2,
. . v3d .
i 3X2 0 X7

X2

with equilibrium Xy = X, = 0. Let's try fora Lyapunov function

1 1
V(x) = Ex§+ Zx‘l‘:

W e can see thatV (x)> 0 for all x;, x,. T he tim e derivative ofV is

WL
@Xl_l ix, =

= x3xg+ xa(j 3% x)
i 3x3

< 0:

V= (x)

It follow s then that X is asym ptotically stable.

Themain drawback of the m ethod is that there is no system atic way of obtaining Lya-
punov functions, this ism ore of an art than science. For sim ple second order system s (like
the one above) a good selection for a Lyapunov function is the total energy of the systen
(kinetic plus potential energy). A Iso, it is always possible to nd a Lyapunov function for a
linear system in the form

X= Ax:
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Choose as Lyapunov function the quadratic form
V)= x"Px;

where P isa sym m etric positive de nite m atrix. Then we have

\L x"Px+ xTPx

= (Ax)'Px+ x"PAX
= x"ATPx+ x"PAX
= xX'(ATP + PAX

i X7Qx ;

where we have denoted
ATP + PA = O :

If the m atrix Q is positive de nite, then the system is asym ptotically stable. T herefore,we
could pick Q = I, the identity m atrix, and solve
ATP +PA=I;

for P and see if P is positive de nite (we can do this by looking at the n principalm inors
of P | Sylvester®s criterion). T he equation

ATP +PA =0 ;

Is called Lyapunov®s m atrix equation and its solution is easy through M ATLAB by using
the com mand lyap. 0 fcourse one could argue that having an equation to determ ine a
Lyapunov function for linear system s is useless; after all for a linear system we can alvays
look at the eigenvalues of A to determ ine stability or instability. T his is true, the usefulness
of Lyapunov's matrix equation for linear system s is that it can provide an initial estin ate
for a Lyapunov function for a nonlinear system in caseswhere this isdone com putationally.
Furtherm ore, it can be used to show stability,aswe w ill see in the next section, of the linear
quadratic regulator design .

5.2 Exam ples

W epresentthree exam pleshere thatdem onstrate three im portantapplicationsofLyapunov’s
m ethod, nam ely

1. How to assess the im portance of nonlinear term s in stability or instability.
2. How to estim ate the dom ain of attraction ofan equilibrium point.

3. How to design a control law that guarantees global asym ptotic stability; i.e., w ith
in nitely large dom ain of attraction, for a nonlinear system .
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A llofthe above problem s are very dit cult, in general,and we shouldn*t think that we can
easily generalize the relatively sim ple exam pleswe present here.

Asour rstexam ple,suppose we have the system

i X2+ axixj ;
FXobxixg

1<

1

1<

2

with a6 b.To nd the equilibrium of the system we have to solve

i X+ axyXs = 0
+X§ bXix, =

M ultiplying the rstequation by Xy, the second by x, and adding we get
iXs(ai b)= 0;

from which x; = 0orx, = 0. IfX; = 0 then we see from the rst equation thatx, = 0
as well, and sim ilarly ifwe assum e that x; = 0. Therefore, the unique equilibrium of the
system isX; = X, = 0. The linearized system is

# #'O#
i - 0l X1
X2 10 X2
T he characteristic equation is
Ei s i1l — 5 o _ .
_ _= = + = = = I
det 1 s 0=) s°+1=0 s=81li:

Since the characteristic roots are purely im aginary, we cannot draw any conclusion on the
stability of the nonlinear system . W e have to resort to Lyapunov functions. Let's try for
V (x) the sum of the \kinetic" and \potential' energy of the linear system (this doesn't
alwayswork ofcourse), we get

1 1
V(x)= Ex§+ Ex%:
W e seethatV (x)> 0 forall x;, x,. Then

\L(x) X1(i X2+ axix7)+ xo(x1 i bxixp)
i X1Xg2+ axix5+ xixzq bxZx}

(aj bx2x3:

T herefore, we see that

if a< b =) thesystem isasym ptotically stable ;
if a> b =) thesystem isunstable;

a resultwhich could not have been obtained by linearization.
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Asoursecond exam ple,suppose we want to determ ine the stability of the origin (0;0)
of the nonlinear system (show that this is the equilibrium of the system ),

Xi = QX+ Xpt X (xi+ x3);
Xo = Qi Xpi Xgt Xp(xi+ x}):

The easiest way to show stability is by linearization. T he linearized form of the system is
P a o

i 1 X1

il X2

o o~ il
X7 il

T he characteristic equation of the system is
s?+ 25+ 2=0;

and we can see that the system isstable,the rootsofthe characteristic equation have negative
realparts. Now since this result is based on linearization, it says that if the mitial cond ition
Is \close" to the equilibrium point (0;0) then the solution will tend to the equilibrium as
t! 1 .To nd how close is\close" we need to get an estim ate of the dom ain ofattraction.
W e can do this by using Lyapunov theory. Let's try a Lyapunov function candidate

1 1
V(X): EX%‘}‘ EX% B
Form

LX) = XiXit XoXo
= oxi(i Xt gt X xax3) GG X i XoF XoXTH X3)
= pxE4 xoxo+ xTH XA oxaxg i x5+ xixE+ x)
= x7#oxp 4 2xX3xdg xtoxd
S G e )
= (Dt X xzi 1)
W e can see, therefore, that stability is guaranteed if
L(x)< 0 or xi+ x5<1;

which means that the dom ain of attraction of the equilibrium 1is a circular disk of radius 1.
A's long as the initial conditions are inside this disk, it is guaranteed that the solution will
end up atthe stable equilibrium . In case w here the initial conditions lie outside the disk then
convergence isnot guaranteed. It should be m entioned that the above disk Is an estim ate of
the dom ain of attraction based on the particular Lyapunov function we selected. A di®erent
Lyapunov function could heve produced a di®erent estin ate of the dom ain of attraction.

Asourthird exam ple,consider the m otion ofa space vehicle about the principal axes
of inertia. The Euler equations are

AlLyi B i Oyl = Ty
BYyi (Ci A)l .l = Ty
Cl,i Aq Bty = T,
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where A,B ,and C denote the m om ents of inertia about the principal axes, !,,!,,and !,
denote the angular velocities about the principalaxes;and Ty, Ty, T, are the controltorques.
A ssum e that the space vehicle is tum bling in orbit. It is desired to stop the tum bling by
applying control torques w hich are assum ed to he

Ty = kiAlv,:
T, = kiBly;
Tz = k3C|z,

where kq, ko, ks are the feedback gains. The unique equilibrium of the system is!, = I, =
I,= 0. Ifwe substitute the equations for the control torques we get the closed loop system

B jC

!_x = A !y!z+k1!x;
CiA
!_y = B—!z!x+k2!y;
AijB
l, = é—!x!y+k3!z:
Ifwe linearize the system around itsequilibrium we have
2 3 2 32 3
!_x kl 0 !x
81,4-20 k, 0 481, 4
I, 0 0 ks I,

W e can see that the eigenvalues of the closed loop m atrix are the sam e as the feedback gains
ki,kz,ks. Therefore, for stability we wantnegative polesand, as a result,we select negative
gains ky, ky, ks for the three control torques. So far we have used linear m ethods. W hatwe
are really interested though isthe follow ing: w ill the above gain selection guarantee globally
stable operation of the system ? In other words, will our control law be able to stop the
vehicle tum bling for any set of initial cond itions? To see this we have to resort to Lyapunov
m ethods. Choose asour Lyapunov function

V()= %A!f+ %B 12+ %c 1z
which is the total kinetic energy of the vehicle. W e see thatV is positive de nite, and its
tin e derivative Is

V()= keA L7+ koB 10+ ksC 12
which isalwaysnegative ifthe gainsare selected negative. T herefore, the above gain selection
guarantees stability of the nonlinear system regardless of the initial conditions.

5.3 Sliding M ode Control

A'san application of Lyapunov m ethod, consider a single input system linear in the control
e®ort

x= f(x)+ g(x)u ;
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where f(x), g(x) are, in general, nonlinear functions in x. W e want to design u such that
we guarantee stability ofx = 0.

Choose the Lyapunov function

V0= BT ;

where
h(x)= s'x :

T he scalar function % (x) can be viewed as a weighted sum of the errors in the states x. For
stability,we want the tim e derivative of V (x) to be negative,

L(x)= %% < 0;

which can be achieved if

W= i PR
which means that
=i TPsign(h) ;
Where C
oo 1 ifN > 0
SN = 1 o
Using %(x)= s"x,we get
ho= sTx = sTF(X)+ sTgO)u = j “Zsign(%) ;

and solving for u we get the control law
h i h i
U= i stgx)  sTF(X)i sTg(x)

W e can see that this control law is the sum oftwo terms. The rstterm isa nonlinear state
feedback,and the second term isa switching control law . T he term "2 isan arbitrary positive
quantity,we usually select it such that\_ isnegative even in the presence ofm odeling errors
and disturbances.

“Zsign (%) :

The above control law guarantees stability of%(x) = 0,0rs™x = 0. W e need to nd s
such that stability of x = 0 isguaranteed. If%(x) = 0, the system becom es
h i

u=j s'g(x) s fx);

and h i,
x= f(x)i g(x) sTg(x) " sTF(X):
Ifwe linearize this system ,

(=1
—h

p
1
o |11

; b=190);

(=)
>
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we geta linear system
X = Ax+ bu:

Then,on %(x)= 0we have

1<
1

b b(sTb)”sTA>i<
A b(sTh)ilsTA x:

he closed loop dynam ics m atrix is
Ac=Aj b(s"b)ilsTA = A j bk :
¢ : u{L} I

T hen
k= (s"h)i'sTA =) sTbk=s"A =) sTAjsbk=0;
or
sT(Ajbk)=0=) (Ajbk)s=0=) Als=10=) (Al j0¢l)=0:

Il e see then that s is the eigenvector of A that corresponds to the zero eigenvalue. The
design procedure, therefore, can be sum m arized as follow s:

2 Poleplacem entofA j bk,specify one eigenvalue to be zero and the rest negative. Find
k and therefore, nd A, = A j bk.

2 Find s from Als= 0.Set¥ = sTx.

2 Im plem ent the control law
h SN h i
u=j sgx) s fx)i s gk)

ifwe have a nonlinear system , or

“Zsign (%) ;

u=j'b)isTAx i (sTh)! Zsign(%) ;

ifwe have a linear systen .

6 OPTIMALCONTROL

So far we were concerned w ith control design w here the ob jective was either to stabilize a
system (the requlatorproblem ), or to track a reference input (the servom echanism problem ).
W e can do better than this though! In particular,what ifwe wanted to design the \best"
controller, where the word \best" is understood w ith respect to som e m easure of m erit or
perform ance index? In classical control design we have already seen the use of integral
perform ance criteria (such as ITAE) in order to obtain desirable characteristic equations for
use in pole placem ent. 0 ther criteria could lead to m inim izing the traveltin e (m inim al tim e
control), fuel consum ption (m inim al fuel control), m iss distance (optim al randevouz), and
so on. T hese requirem ents lead to the design of optim al controllers.
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6.1 OptimalControlProblems

In general term s, the problem isto nd a control law u for the system x = f(x;u) such that
a certain index J ism inim ized. T herefore, the basic problem ofoptim al control is

Zt
minimizeJ = K (Xo;X5)+ fL(x;u)dt;

0

under the constraint
x = f(x;u):

K ,L are speci ed functions, and

Xo(t) :initial state (tim e) ?

- : iven or free :
X¢(t;) - nalstate (tine)  INEN OF Tree

This form ulation is general enough to allow for several interesting cases, for instance,

2K =0,L=1=) minmaltmeproblen,
2K =0,L=guj=) minimalfuelproblem,
and so on.

Speci cally,we have the follow ing problem statem ent:

1. System equations x = f(x;u;t) where x 2 R" is the state vector,and u 2 R" is the
controls vector.

2. Boundary conditions on the starting tin e, t;, initial state x, = x(t), nal tine t,
and nalstate x¢g = x(tf). These may ormay nothe given, therefore we can have a
num ber ofcom binations xed{free, free{free, free{ xed problem s.

3. Perform ance index Z,
.
J = K (X¢;t6) t L(x(D;u(t);t)dt:

to

A few special cases for this are:

2 TheM ayer problem ,
J= K (X¢;t) -

2 The Lagrange problem ,

Z,,
J = L(x(t);u(d);t)dt:

to

2 TheBolzaproblem ,both K and L are non{zero.

69



4. Constraints can be erther on control; i.e., ju;j - 1 (very comm on),or on the state; ie.,

6 (X¢;t) = 0 (target sets), jxiJ - X i (inequality constraints, very hard to handle in
general). These constraints determ ine a set of adm issible control histories, U , and a
set of adm issib le state trajectories, X .

The generalproblem ofoptim alcontrol can then be stated as:

6.2

Find u(®) 2 U which takes the system from x, at t; to xs at t¢ by x = f(x;u;t)
in such away attominimizeJ while x(¢)2 X .

Exam ples

Som e exam plesofoptim al control problem s are:

1. Time O ptim al&ontrol:

Consider J = ' dtwherety is xed and t¢ is free. W e can have “xed end points or
belonging on target sets. U sually, we also need constraints on u to m ake the prob lem
well{posed. Asa particular exam ple consider A = u,where juj- 1. Say we start from
initial conditions xq;Xo both positive and we want to get to the origin xf = x¢ = 0,as
quickly as possible. W e can see that since we initially have positive x and positive x
wemustapply fullnegative controlu = j 1 in order to get negative x (i.e., towards the
origin) w hile x rem ains positive. Then atsom e instantwe should sw itch to full positive
controlu = + 1 to stop atx = 0 w ith zero speed. T he precise instant of sw itching from
U= jltou= +1is,ofcourse,notknown fornow.Thisisan exam pleofabang{bang
control problem ,which m ost tim e optim al control problen s lead to.

. FuelO ptimalControl

A typicalexam ple is,
th)( o
J = Juijdt:
b=
Typically, such problem s lead to bang{bang controls and with t; free, the problem
may be ill posed for certain initial conditions | 1ie., ifno restrictionson t; are placed

minimum fuelcould m ean coast to the destination w ith very sm all speed.

.M imimum Integral Square E rror:

H ere, z,, z,

_ T _ T .
J = x'xdt or J = x'Qxdt;

to B

where Q is a sym m etric and positive de nite m atrix. Typically we need constraints
on u to prevent it from becom ing in nitely large. In the special case of linear state
feedback,we get the fam iliar ISE criterion.
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4. M imimum Energy Problem s:
H ere, z,

J = fuTRudt;

B

where R is symm etric and positive de nite.

5. FinalValue O ptim al Control:
Here,J = K (xf;tf), for exam ple

X
J = (iri xi(te)) :
i= 1

Combinations of the above are, of course, also possible exam ples.

3 CalculusofVariations

(o>}

A real function ofa realvariable isa map between a realnum ber to another real num ber.
A map between a function to a real num ber is called a functional. T he perform ance index
J isan exam ple ofa functional. M inim ization ofa functional is the sub ject ofa branch of
m athem atics, called calculus ofvariations. T he sim plestproblem ofthe calculusofvariations

IS, z

tr
minl = L (x;x;0dt;
to
where x is a scalar function, t;, x (), t;, x(t¢) are given, and all functions are sm ooth. It
should be m entioned here that t in the above equation isnot necessarily tim e (although in
controlproblem s it m ost likely is); tsim ply denotes the dependent variable. T he function x
then which m inim izes J satis es the so{called Euler{Lagrange equations,

together w ith the boundary conditions x (tp) = Xo, X (ts) = Xs.

The solutions to these equations are called the extrem als. The equations are usually
referred to asEuler'sequations in calculus of variations textbooks and Lagrange's equations
in dynam ics,where L iscalled the Lagrangian and is the kinetic m inus the potential energy
ofa conservative system . A gain in dynam ics, the fact that the Lagrangian L is a stationary
value for J is called Ham ilton"s principle.

TheEuler{Lagrange (E{L)equationsare in general2nd ordernonlineardi®erentialequa-
tions,which m eans thatwe need two boundary conditions x (ty) = xo and x(tf) = x¢ to solve
them . Existence, however, isnot guaranteed here. Thisisnota Cauchy initial value prob-
lem ,itiscalled a twof{pointhoundary value problem (m ore later) and can he ratherdit cult
to solve num erically.

Som e particular cases of E {L are:
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1. Suppose that L (x;x;t) is independent of x (this is called an ignorable coordinate in
dynam ics). T hen,E{L results in

which is the princip le of conservation ofconjugate m om entum in dynam ics.
2. Suppose we have a tim e invariant system and L (x;x;t) is independent of t. T hen,

BL . deL _ oL @i gl

B dtie o B ot pet s
N TR L L T T
Sl @X@X_x}i TR T T 0
Thisofcourse m eans that i
L j x=— = const:;
“Ox

which is the conservation ofH am iltonian.

3. IfL(x;x;t) is independent of x, then E{L becom essimply %: 0.

6.4 Example: The Brachystochrone P roblenm

T he brachystochrone problem is one of the oldest problem s that in fact initiated e®orts
towards calculus of variations. It can be sim ply stated as follows: G iven a point 0 in a
vertical plane w ith coordinates (ty;xo) and another point also in the sam e vertical plane
with coordinates (t;;x¢) nd the shape of a curve connecting the two points such that
a frictinless m ass can start at 0 w ith zero speed and slide down in minim al tine. The
geom etry isshown in Figure 28. W e should exercise caution here in thattisnot tim e;x and
tare the two spatial coordinates of the problem .

To formulate the problem we use the kinetic energy % and the poteBtiaIenergy imgx.

Conservation of energy requires thatm v2 i 2m gx = 0 from which v = ~ 2gx. T he elapsed
tin e is, b b
d; = ds _  dx?+dt2 1+ X‘Zdt'
v Tl T Togx
The total elapsed tim e to m inim ize is then given by,
S
re - p T Lex
) ¢ E to=0 X )
Since the Lagrangian s
1+ x?




Isindependent of t, the E{L equations becom e

P

o 0L Nt X2X  _
LIX_N_ConS;-) PYIZPYP1+X_2_C)
L+ i = C o x(@+ x2)) x(@+ x*)=2Cy)
S s
o Crjox _ X ]
x = . ) dt= L de.
Ifwe let
X = Cysiny;
we get
dx = 2Cysinycospdy ;
and
dt= 2C,sinpdp= C,(1j cos2u)dy :
Integrating, i 1
in 2
t=0C, “iSInzp t Cy

Since x(=0)= 0and t(u=0)= 0we get,

X = 02_1(1i Cos2i) ;

t = Cz—l(ZUi sin 2y) :

G eom etrically, these equations represent (param etrically) an arc ofa cycloid generated by
rotating a circle ofradiusC ;=2 by an angle 2y. The two constantsC ; and p can be determ ined
by enforcing the rem aining two boundary conditions,

X(e) = x5 and  t(ue) = tr -

Som e com mentson the brachystochrone are:

1.

Every sub{arc ofa brachystochrone w ith appropriate boundary velocities is by itself a
brachystocB rone. W 1th regards to Figure 28, ifA{B isa brachystochrone with vy, = 0
and vg = = 2ghg, then the brachystochrone between points C and D w ith velocities
ve = 2ghe and v, = © 2ghy isprecisely the arc C{D . T his is called the Principk of
0 ptim ality.

. A brachystochrone rem ains optim al after tim e reversal.

. The brachystochrone helps m ake \strange" results in optim al control look m ore plau-

sible, see Figure 28 for a couple of possible exam p les.

73



6.5 O ptimality Conditions

W e can use calculus ofvariations to derive the optim al control. W e seek a function of tim e
u(t) tom inim ize J sub ject to the state equationsx = f(x;u). 0 rdinary calculuscan be used
to solve for a param eter to m inim ize a scalar. Calculus of variations is used to solve for a
function to m inim ize a scalar J. T his is sim ilar to the previous E{L equations, except that
here we need to satisfy the state equations aswell. The approach is directly parallel to the
Lagrange m ultip lier m ethod for param eter optim ization sub ject to a constraint.

The nalresultisas follows: In order to solve
- th
minJ = K (Xo;X¢) t L(x;u)dt;

such thatx = f(x;u);
we de ne the Ham iltonian
H(x;psu)= p'Fx;u) i L(x;u);

where x is the state vector, and p is an unknown vector (called the co{state vector). T he
necessary conditions for optim ality are the follow ing sets ofequations:

1. The state equations,

X = @l: f(x;u):
p
2. Theadjoint equations,
p=i T
3. M axim ization ofH am iltonian,
LI
Gu ’

which is known as Pontryagin®sm aximum principle.

4. Boundary conditions, h _
T %
tK + pixj Htt = 0:

to

Solution ofthese form idable equationsyields the optim alcontrollaw u. Thisisa very dit cult
task, and even when it is possible, usually the procedure yields an open loop control; ie.,
u isobtained as a function of tim e rather than state. A special case where solution can be
obtained in closed loop form is the Linear Q uadratic R egulator (LQR) problem .
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6.6 The Linear Quadratic R egulator

Suppose we have a linear system ,
X=Ax+ Bu;

and a quadratic cost function,

Zy h i
J= Ix{Fxet t xTQx+ uTRu dt;
0
where xo, ty, tf are given (" xed) and x is free to vary. Thisisthe LQR problem : we seek a
control law u to m inim ize J. It should be em phasized that the above m atricesA ,B ,Q ,R
are assum ed, in general, to be functions of tine. This isour rst attem pt, so far, to design
a control law for a linear, tim e{varying system .

The weighting m atrices F, Q , R are symm etric and positive de nite and are at the
discretion of the designer. Q is the state weighting m atrix, R penalizes the control e@ort,
and F penalizes the nalstate (or m iss distance). R elatively sm all elem ents ofQ com pared
to R will result in a control law which will tolerate errors in x with low control e®ort u.
0n the other hand, iIfQ ism ade large com pared to R this w ill result in tight control; sm all
errors in the state w ith considerable control e®ort. W e can also use di®erent values of the
entries of Q (orR). For exam ple, say the (2;2) elem entofQ is large com pared to the rest.
Thiswill result in im proved control of the state x, at the expense of controlaccuracy of the
other states and m ore control e@ort.

In order to solve the LQR problem we apply the general equations of optim al control.
The Hanm iltonian is

Hopsu)= pf(Ax+ Bu)j 2(x"Qx+ uTRu);

and the necessary conditions for optim ality are

0H
X= —=) x= Ax+ Bu;
W ) X
H
=i ) D= iATpt Qx;
@@lu:O:) BTpjRu=10=) u=RiBTp:

The boundary conditions are
_ = -

i
D Hirtt:+ + IxiFxe = 0;

or
Tt )Exs i pT ()Xo i H (te)ite + H (L)ity+ X{F ixg= 0

Since Xo, ty, and t are xed we have

tXo = tty= ttg = 0 ;
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and the boundary condition becom es

E:(tf)in + X]Tc_F txg= 0)
i
pT(ts)+ xtF #x¢=0:

Since x¢ Is free, its variation txs is arbitrary. T herefore, the quantity inside the square
brackets m ust vanish,and this produces the desired boundary condition in the form

p(te) = i Fx(te):

In sum m ary, the problem we have to solve iIs

x= Ax+BRIBTp;

p=QxiAlp;

x(t) = xo;

p(te) = i Fx(tr):
Solution of these ordinary di®erential equations w ill provide p(t) and this w ill allow calcula-
tion ofu asa function of tin e from u = R #*B "p(t). H owever, solving these equations isnot
aseasy asitm ay seem . Notice that for a num erical integration ofx and p we need to know
the initial conditions at ty; ie., x(tp) and p(t;). Butwe know p(t) = j F x(tf) instead of
P(ty). Thisiscalled a two{point boundary value problem with halfof the boundary condi-
tionsat ty and the other halfat t;. Solution of two{pointboundary value problem s requires
iterative (shooting) techniques: assum e an initial condition p(ty), integrate num erically the
system and at the end check whether the condition p(tf) = j F x(t¢) is satis ed, if it is not
change the initial condition p(ty) and iterate until convergence. To m ake things worse, even

if we could easily solve this problem , still the optim al controlu would be open loop, u(t)
instead ofu(x).

Kaln an’s idea com es here to the rescue: Let
p() = i S(Ox(L);
where S (t) isa sym m etric positive de nite m atrix to be determ ined. Then we have

D= iSXi Sx ~
= iSxi S Ax+BRiBTp ;

or

Oxij ATp=jSxj SAxj SBRIiBTp)
Ox+ ALSx= jSxj SAx+ SBRI'BLSx)
iSx= ATS+SAjSBRIBTS+(Q x;

and since thismust be true for all x we get
i S= ATS+ SAjSBRIBTS+Q ;
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W ith
S(tf): Fo:

This is called a R iccati matrix di®erential equation. Therefore, we can obtain S (t) by
backwards integration ofthe R iccatim atrix di®erentialequation, and then obtain the closed
loop optim al control law by

u= jRIBTS (X ;

a linear state feedback w ith tim e varying gains.

For the case of constant A, B, Q ,R matricesand t ' 1 ,we have the steady state
problem S = 0. In this case the optim al closed loop control law 1is

u=z jRIBTSx;

where S is found by solving the algebraic R iccati equation (ARE) for the positive de nite
S!
ATS + SAj SBRIBTS+Q =10:

This is a nonlinear algebraic equation in the elem ents of S and 1t may adm it multiple
solutions,only one of them is positive de nite though, and this is the one that we seek. See
the Iqr com m and for solution of the LQR problem using M ATLAB .

Recall that previously we were using pole (eigenvalue) placem ent to produce arbitrary
closed{loop eigenvalues. Here we have a technique m ore suited for large, m ultivariable
system s in which we choose the weighting m atricesQ and R . The m athem atics then yields
a setofclosed loop eigenvalues which are guaranteed to be stable (we w ill see why shortly)
but over which we have no direct control. If the closed loop eigenvalues are not acceptable,
it may be necessary to change the weighting m atrices Q and R and iterate. If the errors
In the state x; are too large, itwould be necessary to raise q;;. If there is excessive use of
control uj, it would be necessary to raise rj;. This would cause the state or control w ith
the increased weighting in J to be reduced in the next design (iteration) at the expense of
iIncreased errors in the other states and/or increased usage of the other controls.

How do we know that the LQR design yields a stable system though? W e can show
stability by using Lyapunov's m ethod. Choose

V(x)= x"Sx ;

as a Lyapunov function candidate, where S is the positive de nite solution of the R iccati
equation. Since S is a positive de nite m atrix,V (x) > 0. Its tin e derivative is

\L(x) XxSXx+ xTS+ x"Sx

= (Ax+Bu)'Sx+ xS+ x"S(Ax+ Bu)
= X'"(S+ATS+ SAj 2SBR B TS)X
= x"(jSBRIBTS | Q)

= ix"SBRIBTSxj x"Qx:
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Letz= R i1BTSx he some vector, then
L(x)= jz'Rzj x"Qx<0;

since Q , R are positive de nite m atrices. T herefore, V (x) is a Lyapunov function for the
LQ R design, and since

V() > 0 and
L(x) < 03

the design will alvays yield a stable system (as long as the R iccati equation supp lies the
positive de nite solution m atrix S).

Asan exam ple,say we have x = 2x + u,a scalar system . The open loop poleissj 2= 10

ors= 2,soitisunstable. W e wish to control x near zero and m inim ize
zZ

1
J = (qx*+ ru?)dt:
0

Supposewewanttouseq= 0:225andr = 1.Thenthe ARE is2k+ 2kj ke1¢lit¢lek+ 0:25= 0,
ork?j 4k j 0:25= 0. The positive root isk = 4:06 and the optim al control is
U= j171¢1¢4:06x = j 4:06x :

Theclosed loop eigenvalue isdet(2j 4:06j s)= 0ors= j2:06,and the closed loop response
isx(t) = x(t)ei?®t Ifwe wish to reduce the error in x faster at the expense ofusing m ore

control we can raise q. Ifwe redesign forq= 4,r= 1 wegetk = 4:83,u = j 4:83x, and
X(6) = x(t)ei?B%t Ifwe wish to reduce the am ount ofcontrolused at the expense ofslow er
response,we can raise r. Ifwe redesign forq= 0:25and r= 10,we getk = 40:06,u = j 4x,

and x(t) = x(t))ei?t.

Exam ple: Consider the subm arine equations of m otion

= q,

ayUw + a;U g+ aggzes it byl %
AU W+ apl g+ agZes Pt DU %t
PUptw:

N 2 F

0 necommon logic in selecting the weighting m atricesQ and R in the perform ance index J
Is to say thatwe are willing to use controluj, when state error x;, is reached. W e can m ake
Q and R diagonalw ith

1 .
Gii= —— 1= 1;2;::00n (0 states) ;
X5
1 .
rj= —5 1= 12;:25;m (n controls) :
Ui
In our case the perform ance index is, in general,
z
J = (Q11U2+ (122W2+ Q33q2+ Q4422+ rirZ)dt:

78



In thiscase we want to controlp and z near zero (theirnom inalvalues) and use a reasonab le
amountofdive planes to do the job. W e assum e itwould be reasonable to use 5° dive planes
for depth control when the pitch angle deviates 3° from zero or the boat reaches a depth
deviation of 1:5 feet (about one tenth of the length). W e, therefore, assum e all term s in
and R to be zero except,

L 3 ﬂiZ ] ] )
Q11 = 573 = 3648 weighting on pu° ;
Qas = (15)72 = 0:444 weighting on 27 ;
S} 5 ﬂiZ
s &z G 133:3 weighting on 2 :
Theperform ance index is
Z = -
J = Quip?+ ez’ + rypt? dt;

and the control law then becom es
t= j (j2:7570p i 0:5457w j 2:7657q+ 0:05772) ;
and the closed loop polesare
i 0:52078 0:28411 and j 0:1197 8§ 0:0704i :

A num erical sim ulation in term s ofz and £ is shown in Figure 29 by the solid curves. Ifwe
decide to use 5° dive planes for depth controlwhen the pitch angle deviates 3° from zero or
the boat reaches a depth deviation 05 feet from zero, we expect a tighter control law : the
sam e dive plane angle is com m anded for one third the error in z. In this case the control
law is

t= j (j4:6187uf 0:5177w j 45379q+ 0:17322) ;

and the closed loop polesare
i 0:49018 0:2819i and j 0:2267§ 0:1111i:

Thedom inantpole ism ore negative in this case,as it should. T he results of this sim ulation
are also shown in Figure 29 with the dotted curves, the response is faster at the expense of
more plane activity.

0 ther perform ance indices are also possible. Suppose the ob jective is to keep the subm a-
rine at constant depth,z = 0, while m inim izing the added drag due to dive plane activity.
Thedesign isthen fora depth controller which w illm inim ize the added drag on the boatdue
to its deviations from the equilibrium (nom inal) level®ightpath x = [u;w ;q;z] = [0;0;0;0T
and controlt = 0. To formulate the problem we need the longitudinal (surge) equation of
motion, which is (see M E 4823 for details)

(m i Xu_)u_: quq2+ (qui m)Wq+ XWWW2+ XUUU2+ Xtti2+ Tprop;
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where X yy represents the drag coet cient in straight line m otion, T, is the propulsive
force, and the term s X 4q, X wq, X wu, X+« produce the added drag due to nonzero w,q, #
T he control ob jectives here are:
depth control : m inin ize z2, deviation from desired ;
added drag : minim ize j Fy;
where
i Fa= i Xgt®i Cugi mWai Xyuuw?i Xaut?:
Theweighting index is then z
J = (quz®i Fy)dt;
or z
J= G Xg0®i (uqi mwagi Xyuw?i Xat?)dt:

T herefore,we can use

2 0 0 3

0 Iwa i%(quim) Oz

0 Ig(quIm) i X qq 0 ’

0 0 Gas
and h i

where g4 IS the weighting factor between m inim izing depth deviationsand m inim izing drag.
Relatively large values of g, will penalize depth deviations heavily and w ill result in tight
controlw ith increased plane activity (thism ay be required in operationsatperiscope depth,
for exam ple). On the other hand, if g4 s chosen sm all, the resulting control law will
penalize control activity m ore resulting in m inim izing drag and fuel ez ciency, w ith larger
depth deviations from nom inal.

6.7 TimeOptinalControlofa Double Integral P lant

Consider the dynam ical systen ,

Ifwe de ne,
F
X1 X5 X2 3 X5 UE o

We can write it in state space form as,

W e also assum e the control constraints
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and the initial conditions,
X1(0)= X105 X200)= X205 X1(T)= x,(T)=0:

Wewanttominimize the tim e to °y,
Z;
minJ = dt:
0

The Ham iltonian is
H (x;p;u;t)= pr(x;u;t)i L(x;u;t)= pixo+ pouij 1

T he necessary conditions for optim ality are

X1= — = Xp;
- @py ’
X = @l_ u'
- p, ’
OH
= j—=0;
o I@Xl
_o,r
po = |@X2- i P1

Pontryagin"sm axim um principle states thatu m ustm axim izeH = piX,+ pouj 1. Therefore,
the optim al controlneeds to m axim ize p,u (since the rest of H doesnotdepend onu). W e
can see thatifp, ispositive,u must get them axim um positive value (in thiscase + 1),while
ifp, isnegative,u mustbe j 1. Therefore, the optim al control is given by

U= sgnip,(t)]= +1ifp,> 0and j 1 ifp,< 0:

Theoptim al trajectory is given by the solution to,

xil=xp;
X2 = sgn(p2) ;
py= 0

Po= i P1s

X1(0) = X103 X2(0) = Xg0; X1(T)= 0; x,(T)= 0:

Thisisa reduced system ofequations, since u is elin inated by m axim izing H .

Tosolve thissystem weobserve thatsincep, = Owehave thatp, = const:and thism eans
that p, isa rst{order polynom ial in t. T herefore, it can only go from positive to negative
atmostonce in its life, which m eans that there are only four possible control sequences,

f+1g; fjlg; f+1;51g; fjl;+1g:
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Ifwe letU = §1be the control,we have

1
X190t Xpot+ EU t;

X1 =
Xo = Xyt Ut:
Ifwe elm inate twe can get
H |
X1i X1 Engo = EUX%;
which represents a fam ily ofparabolas as shown in Figure 30. Ifu = +1 we are located on
branch A while ifu = j 1 we are on branch B.The branch that goes through the origin is
called the switching line and 1t is given by
1.
X1 =i 5X2]X2J3
To see how thisoptim alcontrolworks, suppose we start from an initial condition w ith both
X1 and x, positive. W e apply controlu = j Luntilwe hit the switching line, there we sw itch

tou=+1and we land at the origin w ith zero velocity.

A feedback control in plem entation is shown in Figure 31. W e de ne
1 ..
Z= X1t EXQJXQJ;

which m eans that the sw itching lineisz = 0. T herefore,we get the optim al control through
aswitch u = j1lwhenz> 0andu=+1when z< 0. Weshould pointoutthat in this
case the nalportion of the state trajectory follow s the sw itching curve, this is not typical
for all system s though. Since the optim al control sw itches from positive to negative we call
it bang{bang control. M ostm inim um tim e control problem s lead to bang{bang controllers.
Pontryagin has shown that for a system of order n with negative real poles and scalar u,
Juj- 1,the optim alcontrol switchesatm ostn j 1 tim es.

/7 DISCRETE AND STOCHASTIC SYSTEM S

7.1 D iscrete System s

Recallour basic continuous system in state space form ,
X = Ax+Bu;
y = Cx:

A control system thatis to be im plem ented using a digrtal com puter, as isusually the case,
Isin a discrete state space form ,

Adxn+ Bdun;
CyXn:

Xn+1
Yn
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The rstthing we have to do isto be able to go from the continuous to the discrete m odel.
W e start w ith the solution to the state equations in the form
Zt
x(= e M)+ et CTIBu()d¢

0

W e can use this solution over one sam pl period T to obtain a di@erence equation. Let

t = nT+T;
tb = nT ;
and we get >
nT+T .
x(nT + T)= e*""x(nT)+ eh T TROR y(;)dy :
nT

N ow assum e that the input doesnot change w ithin one sam ple period,
u(g)=u(T) for nT - (< nT + T :

W e refer to this operation as the zero{order hold with no delay. Then, by de ning the
auxiliary variable

,

=T+ T s
we get z,
x(nT + T)= erTx(nT)+ efBu(T)d
0

T herefore, the system

X = Ax+Bu;
y = Cx;
hecom es
Xn+1 = Aan'*'BdUn;
Yo = CaXq ;s
where
Ag = e
z;
By = eABd,,
0
Cog = C;

and T is the sam ple period. The M ATLAB comm and c2d autom ates the above conversion
from continuous to discrete form .

A low sam pleperiod T ;i.e.,high sam ple rate, isin generaldesirable for good perform ance
so thatwe can approxim ate the continuousm odelas closely as possible. T his, how ever, w ill
dem and a fast com puter and A/D and D /A converters. It should be em phasized here that
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low T is always with respect to the response tim e of the physical system . Low T for one
system m ay be high fora di®erentsystem . Low sam ple rate,high T ,m ay lead to instab ilities
when the design is based on the continuous system . In such a case we should switch to a
direct discrete design. T his m eans that the continuous system is discretized rst, and any
com pensator design isbased on the discrete version. Fortunately thisparallels the continuous
design we have already developed.

W e can place the polesofa discrete system to desirable locations by linear state variable
feedback,
Up = i K Xy ;

and ifnot all states are m easurable we can use a discrete fulKorder estim ator,
Ber= Aghy+ Boupgt L(Yai Coly):
W ecan nd the gain matricesK and L by poleplacem ent of
Agi BaK ;

and
Agi LCd:

W e already know how to do the poleplacem ent design, the only thing we need to know is:
W hen is a discrete system x,.,; = AXx, stable? W e can see this by considering a scalar
system . Consider the continuous system

X = ax :

The solution is x (t) = e*x (0) so if < fag < 0 the system willbe stable. T he discrete system

Xn+1: aXn ;
has
X1 = aXg ,
X, = ax;= a’Xg;
X3 = ax, = aXg ;
and, nally,
Xop = a"Xp :

For stability, we wantx, ! Oasn! 1 ,ora"™! O,which means thatwe want
jaj< 1:

T herefore, the discrete tim e system x,.; = AXx, isstable ifand only ifalleigenvalues of A
have absolute value less that one; i.e., they are located inside the unit circle in the s{plane,
see Figure 32. Since the continuous m atrix A becom es e*T when discretized, we can argue
that an eigenvalue which isequalto , for a continuous system , corresponds to an eigenvalue
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equalto e-T fora discrete system w ith sam ple period T. By keeping thisanalogy inm ind we
can do in discrete tin e everything we did in continuous tim e. T he corresponding M ATLAB
com mands have the sam e nam es w ith sim ply the pre x d in front, for exam ple dlqr will do
the discrete LQ R design.

A'san exam ple, consider the system
X= X+ U;

which isopen{loop unstable. A control law ofthe form u = j 2x places the closed loop pole
ofthe continuous system atj 1,thism eansthatthe continuoussystem hasa tim e constant 1
second. N ow let's discretize the system using a sam ple period T ,we set the closed loop pole
of the discrete system atei’. How dierentwill be the discrete gain from the continuous
gain 2? Thisshould depend strictly on T . IfT isvery sm allcom pared to 1, the tim e constant
of the system , then the two gainsm ustbe relatively close. Ten tin es sm aller should be sn all
enough. O n the otherhand, iIf T isofthe sam e order ofm agnitude as1,we have to com pute
the gain from the discrete design. T his is illustrated by the results of Figure 33 where we
present the discrete tim e gain for a discrete closed loop pole atei” ,versusT for T from 0:01
sec to 1 sec. Thiscorresponds to sam ple rates from 100 Hz to 1 H z, respectively.

7.2 Stochastic Processes

To thispointwe have treated the entire control/estin ation problem as determ inistic; every-
thing had a known value at each tim e. In realworld problem s, however, there are quantities
which we can only describe probabilistically, for exam p le sensor characteristics or sea w aves.
Thereare unpredictable disturbances and m easurem ent noise w hich occur during operation
of real system s. T hese disturbances and noise can be m odeled as stochastic processes. A
very useful special class of stochastic processes is the G auss{M arkov process which can be
com pletely described by the follow ing:

1. Itsm ean value vector X,

Izz}, E [X (t)]s

(n£1)

which gives the expected value or ensem ble average ofall possible observations at tim e
t; this is the m ost likely value.

2. Itscorrelation m atrix C ,
n o
G B E®i XOIKE T XET
(n£n)

which isa sym m etric m atrix and gives the relationship between the deviation from the
mean at tim e t to the deviation from the m ean ata di®erent tim e ¢ .

85



W hen t= ¢, this correlation m atrix becom es the covariance m atrix which m easures the
mean square deviation of the state vector from the m ean; ie.,

o
1, CEn=E Ir][X('t)i X®OIK® i x® -

(n£n)

Atany time t, the state x(t) isnorm ally distributed (G aussian distribution) about the m ean
and the diagonal elem ents of X (t) give the variance (standard deviation squared) for the
associated elem ents of x.

A special G auss{M arkov process is the purely random process. This is an idelized, very
Jittery process which is com pletely uncorrelated from one tim e to the next. Thisis a useful
model for disturbances ornoise w hich change very rapidly com pared w ith the tim e response
ofa system . The correlation m atrix for a purely random process is

C(t;¢)= %&i(ti DR

(n£n)

where Q (t) is the power spectral density, and £(tj ¢) is the D irac delta function; this is zero

everyw here exceptatt= ; where it assum es a \value" such that :11 t(tj ¢)d¢ = 1. This

can be viewed as the lim it ofa sequence of im pulses of random m agnitude (equalplus and
minusso the m ean is zero;average square m agnitude is %2(t)) and random tin e ofoccurence.
For such a sequence,

0@ % 20 @®F () ;

where (t) is the average num ber of occurences per unit tim e.

The key behind using G auss{M arkov processes is that a G auss{M arkov process can al-
ways be represented by a state vector of a linear dynam ical system forced by a G aussian
purely random processwhere the initial state vector is G aussian. T hus,

X = Ax+t jw;
where

Ep@®]=1T=0;

Eow(u’ = Q(O(ti ¢);

E [k (W)= X0 ; o

E ()i Xolk(t)i Xol = Xo;

n (@]

E [ TIk(L)i X =0:
The forcing disturbance w and the initial state x (t;) are com pletely independent or uncor-
related. R ecall the state property for determ inistic system s: know ing the current state and
the state equation com pletely de nes the future for zero control. The M arkov property is

com pletely parallel to this: know ing the current state m ean X, and covariance m atrix X
com pletely de nes the future m ean and covariance for zero control when sub jected to the
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disturbance described by w= 0 and Q . The G aussian property states that the state w ill
alwaysbenorm ally distributed about the m ean value in accordance w ith the variance (stan-
dard deviation squared) given by the diagonal elem ents of the covariance m atrix. T hus for
one state x, itwillbe within one standard deviation % ofx 68:3% of the tim e;w ithin 2% of
X 95:5% ofthe tim e;w ithin 3% ofx 99:7% ofthe time. Form ultiple states these percentages
decrease as shown in the follow ing table:

n % 2% 3%
11683 (955 (997
2 (394|865 (989
31200739 |97

Themean value vector ofa G auss{M arkov process obeys the state di®erential equation
X=AxX+ jw; X(t)= Xo:
The covariance m atrix obeys equation
= AX XA+ 00T X (k)= Xo;

which is com pletely independent and which could be calculated in advance. N ote that the
term AX + X AT represents the e®ect of the system dynam ics and it m ay decrease X for
a stable system , while the other term jQ j" represents the edect of the disturbance and it
always increases X since we have a positive de nite Q .

W e can visualize this by considering a simn ple rst order system so that all the above
m atrices are scalars. A stable rstorder system with an initialm ean X, and sm all standard
deviation %, could be released while sub jected to noise. It could respond as shown in Figure
34 for large noise. A s an exam ple suppose we have the system

X+ 2X= W ;

wherew is zero mean, purely random (white noise), x isexactly 1 att= 0. Atthistime,x
Is released and the disturbance w w ith power spectral density Q = g = 3 begins to act on
the system . W e want to determ ine the m ean and the covariance of the response. The m ean
will follow the state equation

X=AX+ jw=j2x; x(0)=1; A=ij2;
and w= 0 sincew iswhite noise. The solution for the m ean is
x(t)= ei?t:
T he covariance w ill follow equation
o= AX + XAT+ Q0" Q=0q=3; j=1;

or
X-= j2X | 2X + q;
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and, w ith exact know ledge at t= 0, the initial condition is X (0)= 0. The solution is

3

X (t)= 075 1 ei't = 42 ;

the variance of x (t) about its m ean x(t), refer to Figure 35.

norm ally distributed
t X X %
0 1 0 0
05 |0:368 | 0:648 | 0:805
1 0 0:750 | 0:866

M ost physical disturbances can be m odeled by one of the follow ing special cases:

1.W hite noise: A stationary,purely random G auss{M arkov processw ith zero correlation
tin e (see below) and constant pow er spectral density,

C=Qt(ti ¢):

2. Random bias: A random , unpredictable constant with in nite correlation tim e and
constant correlation. In this case we introduce

Xns1= 0 Xpe1(tg) = random

W eadd anew,constantstate to the system ofequations;i.e.,weaugm ent the state equations

seen before. Asexamples,a disturbance which changes rapidly com pared to the dom inant
dynam ics of the system can bem odeled aswhite noise; e.g. wave e®ects on the steering ofa
large tanker. A disturbance which changes very slow ly com pared to the dom inant dynanm ics
of the system can bem odeled as a random bias;e.g. tidalcurrent on ship steering.

3. Exponentially correlated noise: Between the two extrem es where white noise and
random biasm odels are appropriate, are disturbances which change on the sam e tim e scale
asthedom inantdynanm icsofthe system . T hese disturbanceshave nite,non{zero correlation
tin es .. The sim plest can he m odeled asa rstorder system driven by white noise; i.e.,

beXn+ 1t Xpe1 = W L

In these cases the state vector can be augm ented w ith x,, ;. D isturbancesw hich change w ith
about the sam e dynam ics as the system mustbem odeled with a nite ;.;e.g. the force and
momentproduced by a passing ship during underway replenishm ent. T he above equation
is called a shaping Mer because it \shapes" white noise w to produce another disturbance
Xn+1 Which is called \colored” noise. T he correlation tim e is the sam e as the tim e constant
of the disturbance variation, this can be obtained by considering the physics of the prob lem .
For exam ple, ifthe disturbance is the force produced by a passing ship we can take ;. to be
approxim ately the tim e it takes to travela ship length.

To com plete the model for the exponentially correlated disturbance it is necessary to
specify the power spectral density of the white noise w . This is given by,

q-= Z%ZCC ;
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where

%

be

rootm ean sqaue (RM S) noise level,
correlation tim e:

Thesameform ulaisalso used in design to estab lish the pow er spectraldensity ofdisturbances
modeled as white noise. In that case the correlation tim es (n odeled as zero) are actually
sm all nonzero quantities com pared to the tim e constants of the system . In practice this can
be the integration tim e step in sim ulations, or the sam ple tim e in experim ents.

M ore com plex models for m odeling disturbances are also possible, this is a trade{o®
between accuracy and sim plicity. 0 fgreat interest to naval engineering is the m odeling of
the disturbance due to waves. T he sim plest approach would be to m odelthis aswhite noise,
this is very accurate for large ships. For sm aller vessels it m ight be worth m odeling the
periodic nature of the disturbance. There are a couple of ways to do this. Ifwe assume a
sinusoidal wave as the dom inant m odel for waves in the area, we can use a second order
modeldriven by white noise w ,

pr Lty =g

where ! is the assum ed frequency of the dom inant wave (usual periods of sea waves are in
the 6 to 15 sec range), and y is the am plitude of the disturbance. In state space form then
weneed to augm entour system with two additionalequations

Xn+1 = Xps2;
- . 2 .
Xnr2 = iV Xpegt W

wherey = X,,,and y = X,.,. M ore accurate descriptions of the seaway are also used. A
typical description follow s the so{called P ierson{M oskow itz wave spectrum given by

- a ib=14 .
S(M)-= !—5e ;
where a,bareconstants describing the particular seaw ay. Such a spectrum can be sin ulated
by feeding a w hite noise signal into a suitable shaping Iter. A san exam ple, for a signi cant
wave height (the average of the highest one third of all wave heights) of 7 m and a m ean
wave period of9:4 secondswe havea= 0:78 and b= 0:063. Then the rational spectrum

212
b2

16+ (a2 2a,)!%+ (a2 2asa3)!2+ aj

Sp ()=

witha; = 05,a, = 0:33,a3,= 0:07,and b, = 0:415 can be used as an approxim ation ofS (1)
for the chosen sea state. W hen both S and Sy are plotted versus ! the agreem ent is good.
For details see the article \C ontrol of yaw and roll by a rudder/ n stabilization system "
by K allstrom in the Proceedings of the Sixth Ship Control System s Sym posium , 1981. A
stochastic process w ith spectral density given by Sy can be obtained as output from the

~lter
bQS

s3+ a;8%2+ a,S+ as

6 (s)=
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with white noise as input. A sim ilar m odel can be built for approxim ating the wave slpe
spectrum ,

14
SS(!):Q_ZS(!);

and either one or bhoth wave height and wave slope m odels can then be used for realistic
design and sim ulations.

7.3 Kalnan Filter

W e present now the maximum likelihood, stochastic observer or ~Iter for a nonstationary
G auss{M arkov process. This will be seen to be com pletely parallel to the determ inistic
observer discussed in Section 3. W e w ill sketch the derivation ofthe continuous tim e K al an
“Iter using calculus of variations in a m anner which parallels our derivation of the optim al
control law in 6:6.

Recallour classical full order observer design
b= Ab+t But L(yj Ch:

In general,we would like to place the observer poles as negative as possible, this w ill create
large elem ents of the observer gain m atrix L. The larger the L, the faster the error in the
observerdynam icsw illdecay to zero. A very large L, however,w illam plify undesirable noise
which is always present in real system s. T herefore, there seem s to be a lim it on L which
should depend on the level of noise in the system ; this in turn should be directly related
to the quality of our sensors and the disturbances. The K alm an  Iter is this best value for
L and it provides an optim al stochastic observer, just like the linear quadratic regulator
provided an optim al controller.

Consider the systen
X=AXx+Bu+ jw;

wherew isa purely random process, and

E X (t)]= %o ; o
E ()i Xolx()i Xl = Po;
which is the covariance of the error in the estim ate of the state B(ty) at t,. Initially we

assum e that »(ty) = X,: the m ost likely estim ate at t; is the m ean value at that time. In
general,

n o h i
PM®=E [ xR i x®O = E =t () ;

where ” Y»j x is the error in the estin ate of the state. The disturbance w in the state
equationsisa purely random process w ith

Ew()]= 0; zeromean;

E(w (6)]= Q@i ¢);
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where Q 1is the power spectral density m atrix. W e want to estim ate the state vector X(t)
using a setofnoisy m easurem ents,
y=0Cxt v;

where the m easurem ent noise v is another purely random process w ith

Ev(t)]= 0; zeromean;
EMEV (D= R (D(ti ¢):

W hat we want to do is to generate an estim ate of both x and w which enter the state
equations. Thiscan be done in a least square sense ifwe m inin ize the cost function

1h Tp il ' 1thhT il Tp il '
J= 7 (Koi Xo) Po'"(Xoi Xo) * 3 WoQ tw (yi Cx)R™(yj Cx) dt:

0

0 bserve that the “rst term m inin izes the error in the initial estin ate; the second term
m inim izes the error in the estim ate of w; and the third term m inin izes the error in the
estim ate of x. The m inim ization is sub ject to the constraints

X = AXxX+Bu+ jw;
y = (Cx+v:
Follow ing a process sim ilar to the LQ R design,we can de ne the Han iltonian
h i
Ho= 2wTQitw+ (i CX)TRINyjCx)+ T(Ax+Bu+ ju);

and form ulate the Euler{Lagrange equations, as hefore. W e can nd then that the optin al
observer has the fam iliar form ,

b= Ab+Bu+L(yj ChH; Bt)= Xp;
where L isthe Kalm an Iter gain m atrix
L=PCTR I,
and P is the solution of the forward m atrix R iccatid®erential equation

P_= AP +PAT+ jQijTjPCTRICP ;
P(th)=Po:

In the steady state case, these resu lts becon e
L=PCTR i,
where now P isthe solution to the algebraic R iccatiequation
AP+ PAT+ jQi"j PCTRICP =0

The positive de nite solution de nes P, the covariance of the error in the estin ate of the
state b.
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A'san exam ple, consider the system
X = j2x+w; SoA=ij2;i=1;
y = xt+v,; soC = 1:
The disturbance w is exponentially correlated w ith a correlation tim e

ew = 001 ;
and rootm ean square value
Yy = 122 :
Themeasurementnoise v is also exponentially correlated w ith correlation tim e
¢v = 0:01;
butwith an RM S value
hy= 022 :

W ewant to design a K aln an ~Iter to produce a best estin ate ofx from y. T he system has
the tim e constant

T=05A 001;
so wecan modelboth the disturbance and noise asw hite noise com pared w ith the dynam ics
of the system . T he power spectral densities are estim ated as

forw Q% 2%Z¢, = 2(1:2)°0:01 = 0:0288 ;
forv : R % 2%Z; = 2(0:2)620:01 = 0:0008 :

0ur Iter is given by
b= j2b+t L(yi b; L=PRIil:
To ndP weuse the algebraic R iccatiequation

2P+ P (1 2)¢ 00288 P ——P = 0)

0:0008
P2+ 0:0032P j 0:00002304=0)
P = 0:00346 ;
the positive root. T hen 000346
i 0034
- il - " - . .
L=PR 00008 4:3246 ;

giving
b= j 2t 4:3246(y j B) = j 6:3246b+ 4:3246y :
The error in the estim ate produced by the Iter is
bi X
= Ab+tBu+LECx+viChHijAxijBujjw
= (AjLCyet Lvi jw
= (j 2 4:3246)et 4:3246v i w
= j 6:3246t 43246V w :

The eigenvalue of the Iter isat j 6:3246 which iswell to the left of the system eigenvalue,
i 2,50 the estim ate w ill converge fast com pared to the system .

e
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74 ThelLQG Compensator

Recall that the separation principle allowed us to design the controller and the estim ator
separately and then use o instead of x in the control law. The sam e principle states here
that the optim alway to control a system

X=Ax+Bu+ jw;
Isto use a Kaln an stochastic observer to estin ate the state from the noisy m easurem ents
y=0Cx+ v,

and then use this estim ate ow ith the optim aldeterm inistic linear controller we have already
developed. The optim al controller can be derived from the LQR design, or we can use any
kind ofstate feedback and feedforw ard we desire. T he key is thatwe have no controlover the
poles of the observer here,nor can we choose the Q and R m atrices that enter the K aln an
“Iter design. These are set by the quality of our sensors and the level of the disturbances.
A fter com puting L from the Riccatiequation, we should nd the observer poles from the
eigenvaluesof (A j LC )and m ake sure that they are m ore negative (the dom mantpole) than
the dom inant poles of the controller. This can be done directly ifwe use poleplacem ent or
indirectly by changing the weighting m atrices in the LQ R design. In case that the controller
poles are not satisfactory, it is tim e to get better sensors!

The above com bination of the optim al controller (LQ R ) and the optim al stochastic ob-
server (K aln an " Iter) is called the Linear Q uadratic G aussian (LQ G ) com pensator. This
theoretical result produces a control system which iscom pletely parallel to the determ inistic
observer and controller derived previously, except that now the controller and observer gain
m atrices are theoretically derived to yield optim alperform ance in the presence of stochastic
disturbancesw and m easurem ent noise v.

Sum m arizing the total design problem ,we have:

2 State x,
x= Ax+Bu+ jw; x(b)= Xo;

W ith
EWww']= Q#(tj ¢); whitenoise;

Efw]=0; h -
covariance X = (xj ©)(xi ¥)'

2 Estin ate b,
b= Ab+ Bu+L(yi Cb; D)= Xo;

W ith covariance h i
€= (bi )(bj )
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2 Error in estim ate x,
e= bj x;

w Ith covariance h i h i

P = (bj x\)(bj x)' = E ed

2 M easurem entsy,

y=0Cxt v;
W ith
h i
E ow' = R#(tj ¢); whitenoise;
Ev]= 0:
2 Controller,
u=ijKb;
2 Controller gain K ,
K =R¥BTS ;

where
ATS + SAj SBRIBTS+Q =0;

2 Estin ator gain L,
L=PCTRI!;
where
AP+ PAT+ Qi i PCTRICP =0:

It should ofcourse be em phasized that the m atricesQ and R thatenter the controller design
are com pletely di®erent than those in the observer design. The block diagram of the LQ G
design is shown in Figure 38.

7.5 Linear Quadratic G aussian C om pensator block diagranm

W ith the optim al design developed above the perform ance can be evaluated either prob-
abilistically or determ inistically using com puter sim ulation. Here we will develop the root
mean square (RM S) response which can be easily com puted for linear system sand can serve
as a com parison index for di®erent designs. Ifwe wish to establish the response of the state
about zero (the states are de ned as deviations from nom inal), we can begin w ith the Iter
response. U sing the previous equations,

b= AiBKYot L[ CKXi D+ v];
b = (AjBK)YjLCetLv; Bt)=Xy=0:
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T he dynam ics in the error are governed by,

e bj x
Abt Bu+ LCx+viChbijAxijBujjw

AiLCyet Lvijw;

W ith
()= Xoi X(k)= jx(k):
From the oand xeequations we can see thateis statistically independent of ), so

h i

and

h i
E (b (t) = 0:
W e can, therefore, estab lish the covariance of the state to be given by
h i
X = B x(x'(b)
h i
= E (bi @i e
h i h i h i h i
= E bd jE od jE & jE ed
h i h i
= FE bd | E ed
Thisgives
X (@)= €@®+P®;

or,at steady state,

which says that

(covariance of state) = (covariance of estim ate of state)
+ (covariance of error in estin ate of state) :

W ealready know how to obtain P and thuswe need )© to obtain X ,and the R M S response of
the state x which is given by the square root ofthe diagonaltern sin X . Ifwe use the above
equation in the de nition of the covariance X* we can “nally obtain the follow ing di®erential
equation for =,

= (AiBK+ECAiBK) +PCTRICP =0; X(tp)= 0;
which in the steady state yields the linear m atrix equation,
(AjBK+CQAiBK)Y+PCTRIICP =0;

which can be solved for X and then used in X = X+ P to obtain X .
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The root mean square (RM S) use of the controls u can be derived directly from the
de nition of its covariance,
h i h i h i
U EFE uu” = E GKOGKD = KE bd KT =KCKT:

The square root of the associated diagonalelem entsofX and U give the RM S value of the
states and controls, respectively, when the system is sub jected to the disturbances w de-
scribed by Q and them easurem entnoise described by R . The above equations are estim ates
of the RM S value of the response ofa system and can be used for com paring di®erent con-
trol and estim ator designs. It should be borne in m ind that they are not valid for nonlinear
system s; they can nothbe used when the controle@ort saturates, for exam ple. In these cases
the associated RM S values of the variables of interest should be com puted num erically by
sim u lation .

8 NONLINEAR SYSTEMN S

W e introduce here a few concepts and analysis technigues for nonlinear system s. The anal-
ysis and control of linear system s is a necessary step in understanding nonlinear dynan ics.
A Ithough, as we have seen, aln ost every nonlinear system can be locally approxim ated by
a linearized system , this corellation should not be pushed too far. For nonlinear system s
the principle of superposition ofsolutions doesnothold. T here are no separate naturaland
forced m otions. Twice the input does not m ean twice the output. For nonlinear system s
there may bhe a signi cant dependence of the response on the m agnitude and type of the
excitation. For exam ple, a nonlinear system m ay have com pletely di®erent behavior under
step inputsofd®erentm agnitude, or sinusoidalinputsofd®erent frequencies. T he response
may also depend drastically on the initial conditions. In fact for som e system s itm ay happen
that the long term behavior of the solutions m ay be e@ectively random , even though both
the system and the inputare purely determ inistic,as a result ofextrem e sensitivity to initial
conditions. Since one can never be exactly certain about the initial state, the nal state of
such a system may very wellbe unpredictable. Such essentially unpredictable determ inistic
system s are known as chaotic system s.

8.1 Introduction

Asa rstexample ofwhatmay happen when nonlinearities are present in a physical system ,
consider the so called D ut ng'sequation. Thisisnothing buta spring{m ass{dam per systen
w ith nonlinear spring force characteristics,

mA+ bx+ kx+ 0x3= 0:

The spring force is kx + ®x® instead of kx thatwould be if the spring were linear. W e call
the case of® > 0 a hardening spring,and @ < 0 a softening spring. A typicalexam ple would
be the fam iliar 6 Z (A) curve: it has the characteristics ofa hardening spring for sm all A for
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a surface ship, and a softening spring for a subm arine. The plot of spring force vs. spring
displacem entwould typically appear as shown in Figure 39.

qﬂ know that the natural frequency of oscilation of the linear spring system is!, =

k=m , in other words it depends only on k and not on the am plitude of oscillation. For a
hardening spring, it can be seen that the equivalent linearized spring constant is k + 30x?2,
which m eans that it increases w ith the displacem ent x. T herefore, we expect the natural
frequency of the hardening spring system to increase w ith the am plitude of oscillation, as
well. The opposite is true for the softening spring case, ® < 0, see Figure 40.

N ow consider D ut ng'sequation with forcing,
mA+ bx+ kx+ 0x3= P cos!t:

W e know that the frequency response curve has the fam iliar shape of Figure 41. It starts
from 1, it may reach a maximum atabout!, depending on the am ount of dam ping, and
then it approaches zero. W e can observe that the frequency response curve \wraps around”
the am plitude vs. frequency curve we had before. T herefore,we can guess that the frequency
response curves for the hardening and softening nonlinear springs w ill take one of the two
form s shown in Figure 42.

W e can see that depending on the frequency of excitation and upon increasing or de-
creasing this frequency, the system m ay experience oscillations w ith di®erent am plitude, or
sudden changes in the am plitude of the response. T hese phenom ena are characteristic of
nonlinear restoring forces and m om ents, and are called jum p phenom ena or hysteresis.

A di®erenttype ofphenom ena ofnonlinear system sm ay occurwhen the system isexcited
with inputoffrequency ! . A linear system would respond only w ith the sam e frequency, but
a nonlinear system m ay experience responses, besides !, at frequencies ' =n where n is an
integer. T hese are called subharm onic oscillations. Superharm onic oscillations at frequencies
n ¢!l are also possible although they are not as severe as the subharm onics. T his is because
higher frequencies are usually associated w ith m ore dam ping. T he generation of the above
oscillations depends upon the initial conditions, as well as the am plitude and frequency of
the excitation.

0 nequestion thatonem ay ask is,how m any typesare behaviorare possible fornonlinear
system s? Theanswerto thisdependsm ainly on the system dim ensionality. Supposewe have
a rstorder,scalar, system . This involves one variable only,and this can be represented on
a straight line. Since it is restricted to m ove on this line, the system can only experience
one ormore equilibrium points, and these can be either stable or unstable. N ow consider a
second order system , this involves two variables x,, x,,and ifwewant to plot these together
we need to use a two{dim ensional graph, a plane. The solutions in tim e on this plane can
do whatever they desire except cross each other: thiswould violate uniqueness of solutions
for all subsequent tim es, since di®erent response would be obtained from identical starting
conditions. Solutions ofdynanm ic system s, linear or nonlinear, exist and are unique. W e can
see that two types ofbehavior are possible here: the solutions can either approach a point
asym ptotically (equilibrium point), or a closed curve on which they may be constrained to
move for ever. This represents a periodic solution. Such an isolated periodic solution is
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called a lim it cycle and occurs w ithout any periodic excitation! The study of lim it cycles
Is a very tough but nice problem in nonlinear system s. Now let's im agine a system w ith
three or m ore state variables. W e need at least a three{dim ensional graph to plot allofour
solutions together here. It is clear that such a system m ay exhibit both equilibrium points
and isolated periodic solutions or lim it cycles. In three or m ore dim ensions, the restriction
that trajectoriesm ay notcrossdoesnotconstrain the solutionsto be simple. T here isenough
room in three dim ensional spaces and beyond so that the solutions they can wrap around
each other, twist, turn, and tangle them selves into fantastic knots as they develop in tim e,
form ing com plicated patterns. Therefore, som e com plex dynam ic behavior is possible for
third or higherorder system s. Forced and/or discrete system sare usually m ore com p licated .
Tosummarize we can have the follow ing possib le types ofbehavior for nonlinear system s:

2 Firstorder unforced system s: Equilibrium pointsonly.
2 Second order unforced system s: Equilibrium points and lim it cycles.

2 Third order or higher unforced system s: Equilibrium points, lim it cycles, possible
com plicated behavior.

2 Second orderor higher forced system s: Equilibrium points, periodic solutions, possib le
com plicated behavior.

2 D iscrete system sofany order: Equilibrium points, periodic solutions, possible con pli-
cated behavior.

Let"s consider as an exam ple, a Van der Pol equation; a spring{m ass{dam per system w ith
nonlinear dam ping and no forcing,

mAj b(lj x?)x+ kx=0:

The equilibrium point of this equation is x = 0, the origin. By linearization we can easily
see that the origin is unstable. T he linearized system ism A j bx + kx = 0,and we see that
X = 0 isunstable because of the negative dam ping term j b. So where are the solutions
going? W e have seen that for sm all x the solutions m ove away from x = 0. For large x we
can see that the term j b(1 j x?) will becom e positive, so the dam ping w ill be positive and
the solutions w ill have to m ove towards x = 0. T herefore, solutions which originate from

large x will m ove towards the origin. Since they cannot cross each other and there are no
other equilibrium points to attract them , they have to approach a lim it cycle w hich should
be located som ewhere around the origin. This argum ent, which is known as the Poincar§{
Bendixon theorem , holds for second order system s only and it w ill reveal the existence ofa
lim it cycle but it cannot provide any inform ation about its size or frequency. T he sketch of
Figure 43 illustrates Poincar§'s argum ent.

Anotherphenom enon typicalin nonlinear system s is the frequency entrainm ent. Suppose
we have a system which is capable ofexhibiting a lim it cycle of frequency !,. Ifa periodic
force of frequency ! is applied to this system we have the phenom enon of beats. As the
di®erence between the two frequencies decreases, the beat frequency also decreases and, for
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a linear system , it is zero only if ! = 1,. In a self excited nonlinear system , however,
it is found that the frequency !, of the lim it cycle falls in synchronization w ith, in other
words it is entrained by, the forcing frequency ! within a certain band of frequencies. This
phenom enon is illustrated in Figure 44.

8.2 A Simple Zero Eigenvalue

Suppose we have the nonlinear system of state equations,
x = f(x):

W e know that the equilibrium points, x,of the system are de ned by
f(x)=0:

This is a nonlinear system of algebraic equations and it m ay have m ultiple solutions in ¥,
which means that the nonlinear system m ay have m ore that one positions of static equ ilib -
rium . Ifwe pick one equilibrium , X, we can establish its stability properties by linearization.
T he linearized system becom es

X= AXx;
where A is the Jacobian m atrix of f(x) evaluated atx,

f
X

(=)

A =

< LT

[<=>)

and the state x hasbeen rede ned to designate sm all deviations from the equilibrium X,
X! xjX:

Aslong as alleigenvalues of A have negative realparts, we know that the linear system w ill
be stable. Thism eans that the equilibrium X willbe stable for the nonlinear system aswell.
Nosurprises so far, in fact what we have just said isnothing but Lyapunov's linearization
technique.

T hequestion we ask ourselvesnextis,whathappensifone realeigenvalue ofthe linearized
matrix A is zero? The interesting case here is when the rest of the eigenvalues have all
negative real parts, otherw ise X is unstable and the problem is solved. If the case ofa zero
eigenvalue appears to he too specialized to be ofany practical use consider this: A ssum e that
f(x) dependson one physical param eter (and there willbe plenty of physical param eters in
any problem ) and that physical param eter is allow ed to vary over som e range; aren't they
all? Then itisclear that A willdepend on thatparam eter and as the param eter varies, it is
possible that one realeigenvalue of A willbecom e zero for a speci ¢ value of the param eter.
Ourproblem isthen to establish the dynam icsofthe nonlinear system asone realeigenvalue
of A crosses zero; i.e., goes from negative to positive. A s the solutions evolve it tim e, things
are interesting only along the direction of the eigenvector that corresponds to the critical
eigenvalue (the one that crosses zero). A long the rest of the directions in the state space,
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everything should converge back to the equilibrium ; rem em ber that we assum ed that all
rem aining eigenvalues of A have negative real parts. The above statem ent should be clear
for those ofus who haven't forgotten our M E 2801 or 0 .D .E . m aterial. A Ithough, strictly
speaking, it isa true statem ent for linear system s, there are technical reasons that force it to
be true for nonlinear system saswell, the only di®erence is that the corresponding directions
In the state space are curved instead of straight.

W e can see then thatitispossible to approxim ate ouroriginalsystem by aone{din ensional
system ,which ismuch easier to analyze. The dynam icsof the two system s will be qualita-
tively sim ilar. T he form alization of the above reduction procedure consitutes what is known
ascentermanifold reduction,ornorm alform com putation in nonlinear analysis. So let"s see
whathappens for the case ofa zero eigenvalue by using a (typical) rst order system ,

X=X X

where x isscalarand , isourdistinguished param eter which is allowed to vary between j 1
and + 1. Theequilibrium points of the system can be found from

JXixP=0=) x( i x)=0;
and we can see that,depending on the sign of , the equilibria are
Xx=20;
if, < 0,and P —
x=0 and x=8§8 . ;

if, > 0. Thereisonly one equilibrium for negative ,,thisisx = 0, the trivial equilibrium .
However,as , crosses zero moving towards positive values a new pair ofequilibria appears
outofthin air. These two new equilibria are sym m etric (equalplusand m inus values), they
are close to the trivialequilibrium initially,butas, m ovesaway from itscriticalvalue,, = 0,
they m ove further away from zero. To analyze the stability properties of these equilibria,
let'spick X = 0 rst. The Jacobian is,

(=1
—h

=, i X

< LI

(=)
>

AtxX = 0we getthe linearized systen

K=, X,

i i i pP—
and we see thatx = 0 isstable if , < 0 and unstable if , > 0. ForxX = + | we get the
linearized systen . -
! D -

i3 X= j2,Xx:

5

X_:

. P—.
W e can see then that for , > 0, the equilibrium X = + | is stable. Remem ber thatpfo_r
, < 0thisequilibrium doesnotexist. The sam e is true for the other equilibrium X = j
Therefore,we can sum m arize our ndings as follow s:

5 "
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2 For, < 0only the trivial equilibrium exists and 1is stab le.

2 For , > 0 the trivial equilibrium becom es unstable and a pair of sym m etric stable
equilibria are generated.

Thisphenom enon, the loss ofstability ofan equilibrium and the generation ofadd itional
equilibrium states, is called a pitchfork bifurcation and is very comm on in nature; Euler
buckling ofa beam isa very typicalexam ple. In particular, we refer to the above case as the
supercritical pitchfork, this is a rather benign loss of stability since upon loss of stability of
the trivial equilibrium the additional nearby equilibrium states are stable. G raphically, we
can represent this case asshown in Figure 45 where solid curves represent stable and dotted
curves unstable equilibria. W e have also indicated the direction of solutions in time ofour
system for di®erent values of , . 0 ccasionally, the above case is referred to as a soft loss of
stability since for sm all values of | beyond its critical value, the nal steady state of the
system doesnotdi®ermuch from the nom inal (trivial) steady state.

A'sa second exam ple, consider a \sim ilar" system as before, the linear part rem ains the
sam e, and the nonlinear part x® su@ers a sign change,
X= x4+ x3:

W e can analyze this in exactly the same way as before, and we can draw the follow ing
conclusions (verify these),

2 For, > 0only the trivial equilibrium exists and is unstable.

2 For , < 0 the trivial equilibrium becom es stable and a pair of sym m etric unstable
equilibria are generated.

This case,which is also shown in Figure 45, is called a subcritical pitchfork. A com parison
W ith the previous case reveals that this isa m uch m ore serious loss of stab ility case. U pon
loss of stability of the trivial equilibrium position, there is no other stable equilibrium in
its vicinity to attract the solutions, which m ay therefore assum e a di®erent state of m otion
with what could be observed as a discontinuous jum p. Furtherm ore, even before the trivial
equilibrium loses its stability the dom ain of attraction becom es very sm all and a randon
perturbation can ablways throw the system to a di®erent state ofm otion. This new steady
state m ay be a lim it cycle or, depending on the dim ensionality of the system ,a m ore com -
plicated response pattern. This loss of stability, som etim es called a hard loss of stab ility,
dem onstrates the signi cance ofnonlinear term s in the equations of m otion.

8.3 A Purely Imaginary Pair ofEigenvalues

A ssum enow thatournonlinear system hasonepairofpurely imn aginary eigenvalues for som e
value ofthe param eter , . In otherwords, thism eans thatas , isvaried over som e range, one
pairofcom plex conjugate eigenvaluesofthe linearized system m atrix A crosses the im aginary
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axis. It is assum ed that the rest of the eigenvalues of A rem ain negative or have negative
realparts. W e w ish to investigate whathappens to the nonlinear system during this process.
M ore speci cally, in the previous section we saw that the case ofone realeigenvalue crossing
zero isassociated w ith the generation or exchange ofstability ofadditionalequilibrium points
for the nonlinear system . The purpose of this section is to show that the corresponding case
of the realpart ofone com plex conjugate pair ofeigenvalues crossing zero is associated w ith
the generation of periodic solutions or lim it cycles for the nonlinear system .

Follow ing sim ilar argum ents as before, we can convince ourselves that in the case ofa
purely imaginary pair of eigenvalues, the only interesting dynam ics of x = f(x) will be
concentrated on a two dim ensional space spanned by the eigenvectors which correspond to
the critical pair ofeigenvalues of A . W e start, therefore, w ith a two dim ensional system in
the rather special form ,

1T L Xpq Pxot axg(xf o x3)
;= Xt L xo+ axp(x2+ xd):

1< X<

T he system adm its the trivialequilibrium X; = X, = 0. T he linearized equations around the
trivialequlibrium are g e # H

X1 Lot X1

2 ! Xo

E

w ith eigenvalues, § 1! . T herefore,for, = 0 theeigenvaluesarepurely im aginary (we assum e
that! 6 0). As, crosses zero, the trivial equilibrium becom esunstable. To com pute other
potential equilibrium points for our nonlinear system we use

JXii 1%+ axy(X+ X3) = 0
Ix 4+ X+ aX(o+ X5) = 0
Ifwemultiply the rstequation by X,, the second by Xy, and we add them up,we get
L(X2+ X3)= 0:

T herefore, since ! 6 0, the only equilibrium solution is the trivial equilibrium x; = X, = 0.
To proceed with the analysis we introduce polar coordinates, (r;p), by using the transfor-
m ation,

X1 rcosy ;

rsiny :

X2

The equations of m otion are then w ritten as

rcosyj rpsinp= _rcospij 'rsinp+ ar®cosp;
rsinp+ ricosp = !rcosp+ ,rsinp+ ardsinyp ;

1< X<
) —
1 1

which reduce to

Jr+oard;
= Ir:

-
1
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It is clear that an equilibrium point, T, of the r equation w ill correspond to a lim it cycle
back in the original coordinates x; and x,. W e can see that the r equation has equilibria
given by

,T+ar=0:
Let us assume thata < 0. Then for, < 0, the trivial equilibrium is stable. For , > 0
there is a stable Iim it cycle of radius proportional to the square root of , surrounding the
unstable trivial equilibrium . Ifa > 0, then the lim it cycle occurs for | < 0; it is unstable
and surrounds a stable equilibrium point. The two cases are shown schem atically in Figure

46. This resem bles our pitchfork bifurcation of the previous section. Therefore, we can
sum m arize our conclusions about the x, x, system as follow s:

2 |Ifa< 0, then:

{ If, < 0 the trivialequilibrium 1is stable.

{ If, > 0 the trivig]l equilibrium is unstable, and a fam ily of stable lim it cycles
with am plitude § j ,=a exists.

2 Ifa> 0, then:

{ If, > 0 the trivialequilibrium isunstable.

{ If, < 0 the trivi@‘I equilibrium is stable, and a fam ily of unstable lim it cycles
with am plitude § j ,=a exists.

W e can see that the situation is sim ilar to our pitchfork case; here we have the generation
of periodic solutions except of equilibrium points. This bifurcation to periodic solutions
isnorm ally called the Poincar§{A ndronov{H opfbifurcation. A nalogously to the pitchfork
case,we distinguish here the two m ajor cases, supercriticaland subcritical H opfhbifurcation.
For more com plicated system s, the reduction to the above two dim ensional form and the
com putation of the leading nonlinear coet cienta which dictates lim it cycle stability can be
a signi cant undertaking.

8.4 Popov and Circle Criteria

Q uite often,we need to analyze a control loop which contains a nonlinearity. Such a typical
loop isshown in Figure 47. The two m ethods thatwe describe here enclose the nonlinearity
in a linear envelope. The linear envelope rather than the particular nonlinearity is then
used in the subsequentanalysis. Thisapproach leads to sut cientbutnotnecessary stab ility
conditions. Before proceeding to describe graphical technigues for the analysis ofa feedback
loop containing a nonlinearity, it is instructive to consider two celebrated conjectures, by
two of the bestm inds ofcontrol theory.

1.The Aizerm an and K alm an conjectures:
A izerm an postulated that the system of Figure 47 will be stable provided that the linear
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system ofFigure 48 isstable for allvaluesofk in the interval [ky;k,Jwhere ky,k, are de ned
by the relation
k1 . m . k2 :

foralle 8 0. In thisnotation ky,k, representa linear envelope surrounding the nonlinearity,
see Figure 51 where A stands for ky, and B for k,. A izerm an's conjecture, reasonable as it
m ight sound, is false as has been shown by counter{exam ples.

Kaln an suggested that the system of Figure 47 will be stable provided that the linear
systen of Figure 48 is stable for allk in the interval [K;;K,]w here

RO
1 de 2
and where | @)
e
k —Z .k
1 e 2
and
Ql'kl'kg'QQZ

Kaln an’s conjecture im poses additional requirem ents on the nonlinear characteristics but
nevertheless it is also false | again shown by counter{exam ples. The failure of the two
conjectures shows that intuitive reasoning cannot be relied on in nonlinear system s. 0 ne
reason for the failure of the conjectures is that instabilities m ay arise in nonlinear system s
due to the e@ects of harm onics. These are, of course, absent in linear system s. In the
follow ing,we discuss brie®y two techniques for dealing w ith the problem ofFigure 47. T hese
two techniques,Popov'sand circle criteria, can be viewed asextensions to N yquist's stab ility
criterion for linear system s.

2.Popov’'sstability criterion:

Popov developed a graphical N yquist{ like criterion to exam ine the stability ofthe loop shown
in Figure 47. It is assum ed that G (s) is a stable transfer function. T he nonlinearity N (e)
must be tim e{invariant and piecew ise continuous function ofe. The derivative dN (e)=de
musthe bounded and N (e) m ust satisfy the condition

0< m< k :
e
for som e positive constant k. G raphically, the last condition m eans that the curve rep-
resenting N must lie within a particular linear envelope. A sut cient condition for global
asym ptotic stability of the feedback loop m ay then be stated as:
Ifthere exists any realnum berqand an arbitrarily sm allnum bert+ > 0 such that

L L0 (g + L 2 0;

for all ! then for any initial state the system output tends to zero ast! 1 .
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The proofcan be found in m ost textbooks on nonlinear control and it m akes use of Lya-
punov'sdirectm ethod.

To carry out a graphical test based on the above equation,a m odi ed transfer function
G °(j!)isde ned by

69G1)= <F6 ()g+ jr=F6G1)g~ X G')+ Y Gl):

T he criterion then, in term sofX and Y , becom es

G AT L 5 0

TheG5j!)curve (the so called Popov locus) is plotted in the com plex plane. T he systen
Is then stable if som e straight line, at an arbitrary slope 1=q, and passing through the j 1=k
point avoids intersecting the G “(j!) locus. Figures 49 and 50 show two possible graphical
results for stable and not necessarily stable situations respectively. R ecall that the test gives
a suz cientcondition for stability and that the feedback loop whose result is given in Figure
50 isnotnecessarily unstable.

3. Thecircle m ethod:
The circle method of stability analysis can be considered as a generalization of Popov®s
m ethod. Com pared with thatm ethod it has two im portant advantages:

1. 1tallowsG (s) to be open loop unstable;

2. Itallows the nonlinearity to be tim e varying.

Thenonlinearity N is assum ed to lie w ithin an envelope such that,
Ae< N (e;t)< Be;

as shown in Figure 51. Then it is a sut cient condition for asym ptotic stability that the
Nyquist plot G (j!) lies outside a circle in the com plex plane that crosses the real axis at
the points j 1=A and j 1=B and has its center at the point,

Hy T Wy

1 _
- —+ — + ! —
oty Tty

- 11Tb -
| B_ ’
for som e realvalue ofq. Here it is assum ed thatA < B .

This is the so called generalized circle criterion. Notice that the center of the circle
depends on both frequency and choice of the value ofq. In return for a loss of sharpness
In the result (rem em bering that the m ethod gives a sut cient criterion), g can be set equal

to zero and then a single frequency invariant circle results (Figure 52). The circle can be
considered as the generalization of the (j 1;0) point in the Nyquist test for linear systen s.
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