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Abstract

This paper presents a heuristic fuzzy position estimation technique for autonomous un-
derwater vehicle navigation. The heuristic estimator performs asynchronous data fusion
of all sensor measurements based on their relative con�dence levels, and then nonlinearly

combines the fused information with the INS estimates via fuzzy �ltering techniques. In
this paper, the basis and implementation of the estimator will be described, and naviga-

tion results will be presented based on the heuristic estimator. In addition, performance
comparison based on the heuristic estimator and those based on extended Kalman �lters

will be reported in our companion paper, and the results are expected to provide insights
into the pros and cons of individual methods in terms of computational cost, steady-state

and convergence characteristics for bias estimation.

1 Introduction

With rapid progress in COTS sensors and electronics
technology, miniaturized autonomous underwater ve-
hicles (AUV) have reached an acceptable level of ma-
turity and reliability which can be capitalized on their
use for oceanographic and military applications [5, 6].
Examples include spatio-temporal surveys during clan-
destine oceanographic and mine counter-measure op-
erations in shallow-water environments. Without re-
quiring any tethering support, the dynamic stability
and data sampling quality can be much improved. In
addition, multiple small AUVs can be deployed simul-
taneously to traverse in di�erent regions without ne-
cessitating one-to-one surface ships, and this results in
higher data sampling e�ciency [7]. To truly charac-
terize four-dimensonal ocean dynamics autonomously,
high-precision underwater navigation is a technically
challenging issue because vehicle localization must be
done onboard. While di�erential GPS sensor technol-
ogy provides a good solution for surface navigation
[2], underwater navigation still remains a challenging
problem especially when sonar position beacons are
unavailable. The main goal of this paper is to present a
novel heuristic data fusion which collates di�erent and
independent asynchronous position sensors together,
and nonlinearly gain schedules them with the onboard
INS system. One important objective of our study
is to evaluate the e�ectiveness of the algorithmic per-
formance based on computationally-intensive model-
based approach [3, 8] versus heuristic sensor-based ap-

proach with respect to steady-state and convergence
performance of bias estimation. This evaluation will
be reported in our companion paper. This paper is
organized as follows: the next section briey describes
the sensor and capability of the Ocean Explorer AUV.
Section 3 presents the heuristic navigation architecture
and algorithms currently implemented on the OEX.
Section 4 presents navigation results based on GPS-
doppler aided INS system, and �nally the last section
provides concluding remarks.

2 Ocean Explorer

The OEX AUV is a small and untethered autonomous
underwater vehicle. It is 7 ft long (extendable to 10
ft) and maximum diameter is 21". The hull is based
on a modi�ed Gertler's Series 58 Model 4154 with
a modular mid-section for interfacing swappable pay-
loads. The cruciform control surfaces are aft-mounted,
and are replaceable with larger �ns if a 3' mid-section
is inserted. In air, the vehicle weighs approximately
400lbs, and is designed to be neutrally buoyant. The
OEX cruises at a speed of 3 knots (a range of 2-5
knots), and can execute any pre-programmed mission
continuously for approximately 12 hours before Ni-Cad
batteries are to be re-charged. Note that the vehi-
cle mission can be re-programmed while the OEX is
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in water, thereby increasing the operational e�ciency.
In terms of navigational capability, the OEX houses
1) an acoustic doppler sensor which measures altitude
and vehicle velocity with respect to either water col-
umn or ground; 2) a Watson AHRS unit which mea-
sures Euler angles, tri-axial body rates and accelera-
tion; and 3) a di�erential GPS receiver unit; 4) RF
ethernet and 5) CTD sensor instrument which pro-
vides depth measurement. All sensors and actuators
onboard were each attached to their individual Neuron
Modules and the low-level control communication is
done using the LonTalk protocol. High-level planning
and control processes are carried out on the VxWorks
real-time operating system (with 68030 CPU) and the
communication among processes is data-driven using a
shared memory archiecture with semaphores and ded-
icated I/O function calls (see [5, 6, 7] for more detail).

3 Heuristic Navigation Archi-
tecture

Figure 1 shows a general architecture for setting up the
navigational module in the OEX. In this architecture,
there are arbiters created for position sensors, attitude
sensors and motion sensors. This set up is desirable
because many existing AUVs incorporate multiple sen-
sors performing same functions, and it is thus bene�-
cial to fuse all information to obtain the best naviga-
tion estimates. In cases of sensor failure, these arbiters
will recon�gure in order to complete time-critical mis-
sions.

Inputs to the position sensor arbiter are absolute
AUV position measurements, which can be based on
(D)GPS and various forms of baseline sonar �xes.
These measurements are particularly valuable because
of their drift-free properties over a longer time scale,
as compared to the dead-reckoning position estimate.
However, over a shorter time scale, the DGPS �xes
might be correlated thus introducing undesirable po-
sition error for compensation. It is thus important to
carefully sample these �xes so that the signal-to-noise
ratio is maximized. In addition, measurements from
all sensors are generally unavailable at every time sam-
pling instant, and a strategy is thus needed to combine
these asynchronous measurements before routing the
result to the heuristic position estimator.

To combine the position measurements, each sensor
is assigned a con�dence value which characterizes its
expected variance in error about the true value. For
an example, typical DGPS �xes can have 1-5m range
error (�) together with horizontal dillution of preci-
sion (HDOP) uncertainty due to satellite geometry.
The total position error introduced in terms of root-
mean-square value is HDOP � �. It should be noted
that while the range error is generally hard to quan-
tify, the HDOP pro�le can be readily obtained from
any receiver, and thus it should be accounted for in
the position estimator otherwise position error might
be compromised. Once a suitable time sampling inter-
val is chosen, the output of the position sensor arbiter
is given as

X =
X

Zi � Ci (1)

where X is the arbiter output, Zi is the ith sensor
output, and Ci is its con�dence value which has ac-
counted for both the range error and baseline geometry
of satellites or sonar beacons. Note that a constraint ofPN

i=1 Ci �1 is imposed on the con�dence values, and
thus Ci can be loosely interpreted as prior probability
that the ith sensor is correct. Among these position
sensors only the horizontal pro�les are sought because
of their much improved range error tolerances and the
fact that the depth information can be obtained di-
rectly from the doppler sonar. Now the remaining task
is to determine these Ci.

One important objective in this paper is to strive for
a practical estimation algorithm which is not compu-
tational intensive but yet provides theoretically sound
approach in performing data fusion. To have a rea-
sonable trade-o�, consider the following condition in
which the unknown quantity to be estimated is a con-
stant, X�, and is being observed by N independent
sensors. It can be easily shown [1] that, in such a
case, an expression of the minimum mean-squared er-
ror estimate and the resulting error variance can be
established

Ci =
�N;i 6=j
j=1 e2j

P
(2)

C = E[(X �X�)2] =

"
NX
i=1

1

e2i

#�1
(3)

ei = �ihi (4)

where ei is the expected position error standard de-
viation for the ith sensor. �i and hi represent the
range error and HDOP pro�le for the ith sensor. � is
the product operator, and P corresponds to a sum of
N unique combinations of variance terms where each
term consists of a product of N � 1 variances. C cor-
responds to the overall error variance. For illustrative
purposes, consider N =3,
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It should be noted that these con�dence values are only
meaningful if the statistical properties of the sensor
measurements are stationary, and the state dynamics
are negligible although the e�ect of state dynamics will
be studied and reported in our companion paper.

Similarly, the attitude sensor arbiter generates the
best estimate of the Euler angles and body-�xed angu-
lar rates. This arbiter setting enables direct compari-
son in performances using di�erent compasses without
requiring any code modi�cation. The arbiter outputs
are then routed to both the heuristic position estima-
tor and motion sensor arbiter.

In the motion sensor arbiter, the doppler-based
ground and water velocities are compensated based
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on the CTD output. At present, the default sound
speed was set to 1500m/s and correction was made
in post-processing. Typical variation in sound speed
with respect to the default setting can be as high as
2%, and this error must be accounted for during long
underwater transits.

3.1 Heuristic Position Estimator

(HPE)

Figure 2 shows a block diagram of the heuristic es-
timator which considers only the ground speed as a
special case in order to simplify explanation. Xn and
Xe correspond to the absolute position measurements
de�ned in north-east co-ordinates given a pre-de�ned
origin. Similarly, X̂n and X̂e correspond to the posi-
tion estimator outputs using the same origin. In the
diagram, the outputs of the attitude sensor arbiter are
used to transform the ground speed from the body-
�xed frame to geographical frame. If there is no po-
sition measurement, the position estimator is then re-
duced to a dead-reckoner, and no o�sets are needed for
X̂n and X̂e. If there exists at least one position update,
the position residual error (the di�erence between the
measurement and heuristic position estimator output)
is then nonlinearly gain scheduled in order to gener-
ate appropriate o�sets for X̂n and X̂e for each of the
absolute position measurement, and the nonlinear Ke

and Kn are given as

�n = Xn � X̂n (9)

�e = Xe � X̂e (10)

X̂+
n (k) = X̂�

n (k) +Kn�n (11)

X̂+

e (k) = X̂�

e (k) +Ke�e (12)

Ke(�e) = 1� exp��
2

e
=C2

(13)

Kn(�n) = 1� exp��
2

n
=C2

(14)

From these expressions, it can be easily seen that when
there is small residual error with respect to C, the
HPE discounts the contribution from the measurement
as primarily sensor uncertainty, and resorts to dead-
reckoning which generally provides a smoother posi-
tion estimate. In the case the residual error becomes
relatively signi�cant, the HPE assumes that the er-
ror is largely caused by the motion sensor drift, and
thus weighs heavily on the measurement. Figure 3
provides a ow chart of the detailed operation at ev-
ery navigation cycle. By examining the ow chart, one
can see that when both water and ground speed are
available, currents will be estimated in the geograph-
ical frame after transforming the speed di�erence. In
cases where there is a loss of bottom track at large al-
titude, the current estimate can be used together with
the water speed to estimate the ground speed over a
relatively short time scale within which the estimated
currents magnitude is slowly decaying. Two important
observations can be made regarding the HPE perfor-
mance. Firstly, the HPE does not explicitly estimate
the sensor biases and thus the navigation performance
without any position measurements is no better than
that of standard dead-reckoning estimator. Secondly,
the nonlinear error correcting gains are heuristically

de�ned based on the assumption of gaussian sensor
noise distribution. It should be noted that in a com-
panion paper, the same data sets were �ltered using
extended 2D Kalman �lters 1, and the objective for
such arrangement is to compare the performance be-
tween using numerically intensive algorithms with bias
estimation and the heuristic algorithms without bias
estimation but relying on position measurements. The
critical factors to be considered for the comparison in-
clude the convergence rate and steady state error in
the bias estimates and magnitude of drift induced be-
tween �xes. Among these data sets, only DGPS po-
sition �xes were available, and thus the true heading
reference can only be deduced when the OEX was on
surface. It should be noted that, to accomodate asyn-
chronous data fusion, the position estimator integra-
tion time step was chosen to be the smallest inter-
val with respect to all sensor throughputs (among the
results presented, the sampling rate was set to 8Hz,
�dgps =2 and �gps = 30. In cases when there is no
position �x(es) available during some time interval, no
o�sets will be added to the position estimator outputs.

4 Results

Navigation results presented in this paper were based
on a combination of the Motorola GPS receiver, Acu-
point di�erential receiver and the doppler-aided INS
system. To provide important insights, the GPS per-
formance was �rst characterized in a controlled envi-
ronment, followed by the evaluation of the heuristic
position estimation performance which was based on
at-sea data.

Figure 4 and 5 show respectively the time histories
of �xes and the converted X-Y excursion (at a lat-
itude of 26 degrees, Boca Raton, Florida) collected
in a single experiment during which the OEX was lo-
cated in a circular salt-water pool of 10ft diameter, and
the GPS and FM antennas were held above the sur-
face. It should be noted that the OEX was not rigidly
mounted thus slight vehicle movement should be ex-
pected although it was constrained to within 2 ft in
radius, which is well within the rated DGPS accuracy.
The choice of pool test was made so as to minimize
any e�ect associated with the controlled environment.

Time history plots consist of longitude (meter), lat-
itude (meter) and the GPS status (0: NO GPS, 1:
GPS, 2: DGPS). It can be seen that the distribution
of GPS and DGPS �xes were fairly uniform, and dur-
ing the time when DGPS �xes were available (around
2500sec), there was minimal uctuation in both lati-
tude and longitude. On the contrary, when only the
GPS �xes were available (around 250sec), there was
signi�cant uctuation observed, and the apparent ve-
locity speed was as high as 0.1 knot, as indicated by
the time histories data. It is thus important to con-
sider the e�ect of GPS correlated noise and sampling
rate when estimating currents over a short temporal
scale. Nevertheless, the navigation performance can
be also critically dependent on the speci�c trial loca-

1It is worth mentioning that standard Kalman �lters can-
not be directled applied to navigation problems because of the
kinematics transform between co-ordinate frames.
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tion, and in particular, the e�ect of GPS noise will
become relatively insigni�cant when the OEX is to be
operated in Florida currents of 3-5 knots, and in deep
water regions with only water speed measurements.

From the XY plot, it can be seen that all errors were
con�ned to within a 5 meter square area. To evaluate
the worst case sampling interval, one can consider the
following ideal condition under which the OEX cruises
horizontally along for T seconds at u knots with �u
speed error and � heading error. The position error,
�X, can be crudely approximated as

�X = T
p
u2� 2 + �u2 (15)

For an example, given DGPS �xes with 5 meter er-
ror, the OEX cruises at 2 knots with 1% speed error
and 2 degree heading error, T is approximately 3 min-
utes. That means, the maximum sampling interval is
3 minutes or position estimation performance will be
signi�cantly compromised. On the contrary, T should
not be much smaller than 3 minutes otherwise the es-
timator will be signi�cantly biased with GPS noise.

Figure 6 and 7 compare the INS way-point naviga-
tion performance based on 1) doppler returns (dash
line) and 2) GPS + doppler (solid line). In these
�gures, `X' and `O' represent a di�erential and reg-
ular GPS �x respectively, and in both missions the
OEX was started at the origin. During these missions,
the OEX was underwater most of the time, and com-
manded to surface during some speci�ed cornerings in
order to obtain �xes, and thus position drift due to
doppler and attitude sensors can be easily observed,
as compared to the DGPS �xes as the only source of
reference. At the end of the last eastward leg in Fig-
ure 6, there was a signi�cant discrepancy between the
position estimator and DGPS measurement (approxi-
mately 1.5% error based on 50 meters after 3300 me-
ters transect). It is worth mentioning that during pre-
vious OEX surface trials with continuous DGPS �xes
(not included in this paper), the doppler measurement
error was found to lie within 1%, and the additional
error herein was believed to be caused mainly by the
heading measurement with internal magnetic interfer-
ence. Figure 7 presents results of a 3-hr mission cov-
ering 15km transect. Sporadic �xes can be seen in the
�gure which corresponds to the OEX surfacing maneu-
vers. Among these �xes, maximum discrepancy be-
tween the position estimator and GPS �xes was found
at location [-50 east, 150 north], and also it can be
seen that the position estimator responds less to these
GPS �xes, but much more to the DGPS �xes obtained
immediately afterwards. By observation, the discrep-
ancy was approximately 100m since the last update
(6 legs of transect away � 3300m), and thus the error
was approximately 3%. It should be noted that 100m
is within the limit of the GPS error deviation, and the
result suggests that accurate navigation does not nec-
essarily require frequent surfacing, as expected from
previous discussion.

5 Remarks

In this paper, the basis and implementation of the
heuristic position estimator has been described, and

navigation results which were based on this estima-
tor has been illustrated. This paper was also empha-
sized that the navigation performance must be eval-
uated with respect to the entire system as a whole,
rather than an isolated entity. Thus, factors such as
mission requirements, systems recon�gurability, cost-
e�ectiveness and computing resources must be alto-
gether considered with regard to the constrainted re-
sources currently available on the OEX. Results of
such evaluation can then provide important insights
into the e�ectiveness of sensor-based and model-based
approach. For long underwater missions without any
sonar positional beacons and with minimal surfacing
frequency, estimation of sensor biases might be re-
quired for high precision navigation, and such infor-
mation must be extracted. Extended Kalman �lters
were applied to those data sets with known heading
bias, and the results will be reported in our compan-
ion paper in terms of steady-state error and conver-
gence performance. Other than focusing on the posi-
tion sensor measurements, parallel work on improving
our existing INS system in currently underway such
as localizing the main source of interference, demag-
netizing the battery housing, and developing a more
accurate deviation table based on a �ber-optic gyro
(Andrews Corp) as short-term heading reference.
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