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Abstract

An important consideration for Autonomous Underwater Vehicles in shallow water is station keeping.
Station keeping is the ability of the vehicle to maintain position and orientation with regard to a reference object. In
shallow water AUV operations, where large hydrodynamic forces are developed due to waves, knowledge of the sea
is critical to allow for the design of a control system that will enable the vehicle to accurately navigate and position
itself while in the presence of non-deterministic disturbances.

Recently it has been shown that it is possible to measure the shape of the sea surface using remote sensors
such as acoustic probes, lasers or short wavelength radar. These measurements have made it possible to develop so
called "predictive" control strategies for many surface applications including hydrofoil operations and craning
operations between vessels.

The ability to develop predictive control strategies for underwater vehicles is limited by the ability to
measure the environmental disturbances acting on the vehicle. In this paper we describe the design of a model based
predictive controller that employs sub-surface sensors for disturbance prediction, to reduce wave induced effects on
vehicle station keeping. Using linear wave theory and recursive estimation, an Auto Regressive (AR) model of the
sea spectrum is developed. This dynamic model is then used to develop a forward predictor/estimator which is
embodied in the controller to cancel the predictable portion of the non-deterministic disturbance on the vehicle
thereby minimizing position error.  Through simulation the ability of the Naval Postgraduate School's "PHOENIX"
AUV to maintain longitudinal position while subjected to actual wave disturbance data from coastal Monterey Bay
is shown.

Introduction

For an Autonomous Underwater Vehicle to operate with a high degree of reliability, disturbances and their
effects on the AUV must be modeled mathematically with an adequate degree of accuracy. The main source of the
dynamic disturbances encountered by underwater vehicles or submerged vessels are wave and current induced.
These disturbance forces arise from buoyant and inertial effects due to ocean wave kinematics. The effects of
incident waves on a submerged body can be divided up in several categories. The largest, the first order forces act at
the incident wave frequency. These forces move the vehicle, but usually result in oscillations about a mean state.
Second order forces, which are the result of wave diffraction and wave interaction, have several different frequency
components.

Wave diffraction of a single frequency wave results in a steady force and a varying force at twice the wave
frequency. The double frequency force may be neglected, as the inertia of the underwater vehicle effectively filters
it. Interaction of waves at different frequencies also results in forces. These forces consist of a component acting at
the sum of the wave frequencies and a component acting at the difference of the wave frequencies. The force caused
by the summation of the wave frequencies, again, may be neglected, as it is also filtered by the vehicle's inertia. The
difference frequency component results in a slowly varying force on the AUV. To best assess the performance of a
vehicle in shallow water, it is necessary to generate a dynamic model representing the wave induced water velocity
and acceleration to properly model the wave disturbance forces.

Since there is strong uncertainty in ocean wave fields, in the past a spectral approach has been best suited
for describing the intensity and frequency characteristics of ocean wave fields. During the late 1980’s, P. Spanos
(1986) presented research on digital simulation of ocean wave disturbances. His research expanded on the use of
Linear Prediction Theory (Makhoul, 1975) using Autoregressive (AR) and Autoregressive Moving Average
(ARMA) models. Using the former spectral method, considerable numerical difficulties were encountered in getting
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realistic simulations, while the latter methods experienced difficulties accurately approximating a given spectrum,
and an accurate approximation could only be feasible when using a high order AR scheme.

In this paper, seaway dynamics will be modeled as a linear Auto Regressive system subjected to random
white noise input, where the linear system transfer function is approximately mapped to the local spectrum. Using an
LQE approach a predictor, developed from the AR model, is used to predict wave states at future times based on
present measurements. Finally, this paper will develop a control scheme to make use of the disturbance estimation
and show that station keeping, in the longitudinal (surge) direction, relative to an object, in the presence of shallow
water waves is possible.

Linear Wave Theory with Applications to Shallow water

The simplest free surface wave formation, which nevertheless has great practical significance, is the plane
progressive wave system. This motion is two dimensional, sinusoidal in time with angular frequency ω, and
propagates with a phase velocity cp such that to an observer moving with this speed the wave appears to be
stationary. A cartesian coordinate system is adopted, see Figure 1, with z = 0 the plane of the undisturbed free
surface (still water level) and the z-axis positive upwards. The vertical elevation of any point on the free surface may
be defined by a function z = η(x,t). With these requirements, the free surface elevation must be of the general form

)cos(  ),( tkxAtx ωη −= , (1)

where the positive x-axis is chosen to coincide with the direction of wave propagation. Here A is the wave
amplitude, and the parameter

pc
k

ω
  = , (2)

is the wavenumber, the number of waves per unit distance along the x-axis. Clearly

L
k

π2
  = , (3)

where the wavelength L is the distance between successive points on the wave with the same phase, Figure 1.
The solution of this problem is expressed in terms of a two dimensional velocity potential, which must

satisfy Laplace's equation

0  2 =∇ φ , (4)

and appropriate boundary conditions. Furthermore, φ must yield the wave elevation (1) from

tg ∂
∂

−=
φη 1

  . (5)

Equation (5) is the linearized dynamic boundary condition on the free surface and is an expression of the fact,
through Bernoulli's equation, that the pressure on the free surface must be the same as the ambient atmospheric
pressure. An appropriate boundary condition on the sea bottom is
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z

−=
∂
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  at      ,0  
φ

, (6)

i.e., the bottom at depth H is a rigid impermeable plane. Finally, the free surface boundary condition is
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Equation (7) is a combined dynamic and kinematic surface boundary condition. The dynamic condition was
discussed earlier, while the kinematic condition simply states,

zt ∂
∂

=
∂
∂ φη

  , (8)

that the vertical velocities of the free surface and fluid particles are the same. Combining (5) and (8), (7) is obtained,
ignoring the small departures of the free surface η from the horizontal orientation z = 0.

From the requirements of the problem, it is clear that the velocity potential φ must be sinusoidal in the same
sense as (1); therefore a solution of the form

)()sin(  ),,( zFtkxtzx ωφ −= , (9)

is attempted. Substituting (9) into (4), F(z) must satisfy the ordinary differential equation

0  2
2

2

=− Fk
dt

Fd
, (10)

throughout the domain of the fluid. The solution to (10) satisfying the bottom boundary condition (6) is

))(cosh(  HzkAF += . (11)

Substitution of (9) and (11) into the surface boundary condition (7) yields an important relationship between the
wavenumber k and the frequency ω,

)tanh(  kHgk2 =ω , (12)

which is called the dispersion relationship. The surface elevation η follows from (5)

)cos(  ),( tkxatx ωη −= , (13)

with the amplitude a given by

)cosh(  kH
g
A

a
ω

= . (14)

Substitution of (11) and (14) into the velocity potential function (9) yields
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Hzkag

tzx ω
ω
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= . (15)

An underlying assumption associated with potential flow theory and Laplace's Equation, is that the velocity
field can be expressed as the gradient of a velocity potential function. This allows the expressions for the velocities
in the x and z direction to be given as
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Using (16) and the linearized form of the Bernoulli's equation (17),
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the expressions for the  fluid velocity and pressure fields are:
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It can be seen from (18) that the trajectories of the fluid particles are elliptical.
There are several simplifications that may be made to the above-derived expressions for the cases of

shallow (long) and deep (short) water. The shallow and deep water ranges correspond to H/L < π/10 and H/L > π
respectively, and over these ranges approximate expressions may be substituted for the hyperbolic functions that
have been encountered. Table 1 summarizes these results. Figure 2 depicts the water particle velocity between long
and short waves. The key points that should be observed are that shallow water waves are non-dispersive and that
the classification of shallow water depends on the ratio of water depth to wavelength.

Table 1.  Summary of progressive, small amplitude wave equations

Deep water (short) waves,
H/L>1/2,

 kH>π

Intermediate depth waves,
1/20 < H/L < 1/2,
  π/10 < kH < π

Shallow water (long) waves,
H/L < 1/20,
kH < π/10

In all cases, θ=kx-ωt
Profile, η θη cos  A= θη cos  A= θη cos  A=
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ω
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As an example, consider a one-meter high, monochromatic wave with a ten-second period (0.1 Hz),
propagating in water six meters deep.  The deep water  and shallow water wavelengths are 156 meters and 76.7
meters, respectively. The ratios of water depth to wavelength are 0.038, for the deep water case, and 0.078, for the
shallow water case.  Referring to Table 1, it can be seen that neither the deep water nor shallow water
simplifications may be used. In fact, the water depth must be reduced to 2.45 meters before the shallow water
equations are valid. Conversely, if the water depth remains at 6 meters, then the wave period must become greater
than 15.6 seconds or the wave frequency less than 0.064 Hz. This indicates that only low frequency waves typically
qualify as shallow water (non-dispersive) waves which becomes an important consideration in the proper modeling
of the wave induced disturbances.  This is shown graphically in Figure 3.

As a side note, it should be pointed out that the wave height has no bearing in determining whether a wave
is classified as long or short. The wave height is significant in order to determine the subsurface water particle
velocities, and when the wave breaks. As a rule of thumb, a wave will typically begin to break when the wave
amplitude approximately equals the water depth, but this is not by any means exact, since other factors, including
wave steepness and bottom topography, influence wave breaking.

The plane progressive wave described so far is a single, discrete wave system, with a prescribed
monochromatic component of frequency ω and wavenumber k, moving in the positive x-direction. More general
wave motions, which are no longer monochromatic, can be obtained by superimposing plane waves of different k
and ω. The elevation of the sea surface η(t) can thus be described as the superposition of an infinite number of
sinusoids of the form:

( ) ∑∑
∞

=

∞

=
=+−=

11

)cos(
n

n
n

nnnn txkat ηφωη . (19)

The equations for the horizontal and vertical velocities, accelerations and the dynamic pressure, respectively, are:
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where the parameters in (19)-(22) are identical to those in the monochromatic case.

Wave Modeling Using Recursive Methods

A typical experiment in system identification consists in recording a set of input/output data and fitting a
parametric model. In discrete time, the first attempt is to fit a Linear Difference Equation (LDE) model of the form

)()()1()()1()( 11 tntubtubntyatyaty nn ε+−++−=−++−+ KK (23)

with Zt ∈  denoting the discrete time index, and ε(t) an error term, accounting for the fact that the data never
matches the model exactly. The problem is to estimate the parameter vector

[ ]Tnn bbaa ,,,,, 11 KK=θ (24)
from a set of data. In this section we will present the general procedure to estimate the parameters associated with a
discrete linear model.

 A way of writing (23) is in regression form as
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)()1()( ttty T εθφ +−= (25)

with

[ ]Tntutuntytyt )(,),1(),(,),1()1( −−−−−−=− KKφ (26)

being a sliding window of input and output data. Now the problem is to determine a technique to compute an
estimate of the parameter vector θ on the basis of the data set { })(,),0(),(,),0( NyyNUu KK=Ζ , if it is assumed
that N data points are collected.

If the problem is cast in a probabilistic framework, a probability density for the data set Z given the model
θ can be written as

))(,),0(Pr()( NP εεθ K=Ζ (27)

with θφε )()()( 1ttyt T −−= . If we assume the disturbance term sequence to be gaussian and white, then the
density on the right hand side becomes

∏
=

=
N

t

tN
0

))(Pr())(,),0(Pr( εεε K (28)
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= e . (29)

As a consequence it can be seen that
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θφ

σθ
tty T

Ce . (30)

As can be seen, minimizing the summation in the exponential can maximize this probability. So if the estimate of
the parameters is defined as the vector that minimizes the probability, as

)Pr(minargˆ θθ θ Ζ= (31)

then it can be computed as a least squares solution

∑
=

−=
M

t

T tty
1

2
)()(minargˆ θφθ θ . (32)

The solution can be obtained using standard techniques, by writing θ̂  as the least squares solution of the system of
equations
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or, compactly

θΦ=y . (34)

The solution given by the pseudoinverse becomes

yTT ΦΦΦ= −1)(θ̂ (35)

which can be written as
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This is true provided the error sequence ε(t) is white and gaussian. If the error is not white, then the estimate of the
parameter vector θ is biased.

Now that we have set the foundation, the problem that arises is how do we estimate the parameters
associated with a transfer function that will properly represent a model of the seaway in a recursive fashion. If

)(ˆ tθ is the estimate of the parameters at time t, the goal is to compute the successive estimate )1(ˆ +tθ  by updating

)(ˆ tθ using the latest observations. It turns out that this problem can be put in a very nice framework that makes use
of the considerations on the Kalman Filter.

The AR model, with numerator equal to one, can be written as

)()()( te1tty T +−= θφ (37)

with e(t) a white noise sequence. If it is assume that θ is constant, (37) can be written in state space form, where the
state is the parameter vector itself, as

)()()1()(

)()1(

tettty

tt
T +−=

=+

θφ

θθ
. (38)

This is just a particular case of the stochastic state space model with A being the identity matrix, B=0 and C= Tt)(φ .

This calls for a Kalman Filter approach for the estimation of θ(t), which leads to
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, (39)

with { }22 te )( Ελ = . Clearly this parameter λ is never known, and the need to know it can be eliminated by proper

normalization. Dividing the numerator and denominator of (39) by λ2 the following algorithm is obtained;
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which can be easily verified by setting 2/)()( λtPtP = . This algorithm is called the Recursive Least Squares (RLS)
algorithm.

Using the above developed RLS algorithm the parameters of an Auto Regressive model of the form

)()()()( teNtwd1twdtw N1 =−++−+ K , (41)

with w(t) representing the sea surface elevation due to wave action, and e(t), a zero mean, white noise otherwise
know as the innovation, may be developed. The main advantage of the AR model is the fact that the parameter
estimation is a linear operation. In fact, if the numerator pertinent to the noise term is not one, then the error state
model (38) is not white and we cannot apply Kalman Filtering techniques directly. In the general case, the problem
is nonlinear in the parameters and the Extended Kalman Filter must be applied.

The problem that now arises is to determine the order (N) of the model to properly reflect the actual
frequency spectrum of the time series w(t) while keeping the complexity if the model at a minimum. By computing
the covariance of the innovation as the order of the model is increased it can be shown that there is a value to which
the covariance converges. Using surface wave elevation data obtained in Monterey Bay, from a Waverider
measurement buoy, an Auto Regressive model of various orders was determined and the covariance of the
innovation compared. The results of this analysis are shown is Figure 4.

As can be seen, the covariance begins to flatten out around an eighth order model. This would have one
believe that the correct order model to choose would be an eighth order model. However, as Figure 5 indicates, an
eighth order model fails to accurately reflect the actual spectrum. Figures 6 through 8 show that as the order of the
model is increased, the error in the matching of the actual spectrum decreases. It is not until a 100th order model that
the desired spectrum is actually realized, Figure 9.

There are those that will argue that the energy associated with the low and high frequency modes is
minimal, and that proper modeling of those modes is not important. However, as was discussed earlier, it is the low
frequency modes of the wave train that are considered shallow water, non-dispersive waves. It is these modes that
will have the most effect on the submerged vehicle trying to maintain station. Therefore, as in any design, trade-offs
must be made based on analysis, as to how accurate the wave disturbance model must be compared to the resulting
controller complexity.

Time Series Transformations Of Surface Wave Records

The simplest method of obtaining information about the wave disturbances in a particular operating area is
by surface elevation measurements from a wave buoy. Therefore, it is necessary to be able to transform the wave
elevation record into a water particle velocity record at the desired vehicle operating depth in order to determine the
proper disturbance model. There are two approaches to this problem. The first uses spectral analysis while the
second uses Fourier analysis.

Using the spectral analysis approach, the procedure is to first compute the power spectral density, then use
the appropriate modifier and finally convert the spectral density back to time domain. Equation (42) shows this
relationship.

)()(  )( ωωω ηηSHS 2
uu = (42)

Although the resulting time series reflects the proper magnitude of the water particle velocities, the disadvantage to
this method is that all phase information is lost, and the resulting subsurface velocity time series does not reflect the
motion caused by the surface elevation times series.

Through the use of Fourier analysis this disadvantage is overcome. In this method, a FFT of the surface
wave record is taken, then the Fourier coefficients are multiplied by the appropriate value of the modifier for each
frequency component. Once this has been completed, then an inverse FFT is performed. The resulting times series
now reflects both the proper amplitude and phase relation.
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Figures 10-12 demonstrate this Fourier analysis translation procedure for a wave elevation time series
recorded in 30 feet (9.14 m) of water, and translated to a subsurface water velocity record at a depth of 20 feet (6.1
m) in Monterey Bay, CA. It will be this translated velocity record that will be used during the control law design and
vehicle simulations later in this paper. The maximum velocity as shown in Figure 12 is approximately 1-knot
(0.5144 m/s). It is interesting to note, see Figure 13, that in addition to the dominate peak frequency at 0.12 Hz
,(caused by the wind), there are two additional lower frequency swell generated peaks at 0.05 Hz and 0.07 Hz.
Referring back to Figure 4 and Table 1, it can be seen that for this water depth that only the 0.05 Hz frequency
component may be treated as a shallow water wave.

AUV Surge Model Development

The equations of motion (EOM) based on constant hydrodynamic coefficients for an underwater vehicle
are well known and documented in the literature (Healey, 1993). In general, the hydrodynamic force on a submerged
vehicle depends on the relative velocity and acceleration between the water particles and the vehicle. The general
case of longitudinal (surge) motion in the u-direction written in compact form is

)()( tXuuXuXm proprruuru =++ && (43)

where
)( fluidr Uuu −= (44)

and Xprop(t) represents the propulsion force. The propulsion force can also be modeled in the form

nnX
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X propprop τ
β

τ
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−
=& (45)

where τ and β represent a time constant and a thrust parameter, respectively. Combining (43) and (44) and adding
the kinematic relations for a vehicle constrained to longitudinal motion, the following system of equations is
developed,

nnF
1

F

Fuuu

UUuX

prop

proprrr

wxcxr

τ
β

τ

α

+
−

=

+=

++=

  

  

  

&

&

&

, (45)

where because relative velocities are used in (45), the steady state current and fluctuating velocity caused by waves
can be added directly to the kinematic equation. It should be pointed out, that in the form used in (45), F becomes a
generalized force with unit the same as an acceleration vice a direct thrust value.

With the development of (45) complete, it is desirable to linearize this system of equations about some
nominal operating point to simplify the controller design. This nominal operating point can be taken to be a variety
of conditions depending on the analysis and control development to be performed. In our case, since we are
interested with station keeping, we chose to linearize about the steady state solution to (45) in the presence of a
steady current and obtain

β
α

α
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oo

2
cxoprop
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U
nn

UF

Uu

=

=

−=

,

,

, (46)

as the nominal operating point. Using a standard Taylor series linearization, the linearized system of equations, in
state space from, can then be written as



10
































=
















+



















+




































−
=

















F

u

X

100

010

00

U

0

0

1

n

nn2

0

0

F

u

X

1
00

1uu20

010

F

u

X

r

wx

oo

ro0r

 

1

y                                     

  

)sgn(

 )sgn(

v

&

&

&

τ
β

τ

α

, (47)

assuming that all states are measurable. This may be a little pretentious, but it is possible to obtain X and ur from a
doppler sonar with bottom lock, and it would be possible to get thrust measurements directly from the propulsion
system if it had strain gauges embedded in the propeller.

If it is assumed that the vehicle will be operating in a 1-knot (0.5144 m) steady current, and the parameters
α, β, and τ are available, then equation (47) can be evaluated numerically. As Marco (Marco, 1998) has pointed out,
through system identification, it is possible to obtain these values. The values obtained for PHOENIX and reported
at IARP '98 are
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Since the time of Marco's experiments, the PHOENIX has had its propulsion system upgraded, to include
larger brushless DC motors for propulsion, increased diameter/pitch propellers and ducted shrouds. From initial
at-sea experiments, the vehicle, due to these system upgrades, is now capable of approximately 4-knots (~2 m/s) at
800 revolutions per minute. Based on these upgrades, a more realistic set of values is
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, (49)

which will be used throughout the remaining design and simulation.
Since we will be using parameters obtained from a discrete filter, and desire to implement the designed

control law into PHOENIX, the state space equations must be converted into a discrete form. Using a standard Euler
discretization (47) can be represented in the discrete form as
































=
















+



















+




































−
−

−=
















+
+
+

)(

)(

)(

 

1

(k)y                                                        

)( )( 

)sgn()(

)(

)(

 )sgn(

)(

)(

)(

kF

ku

kX

100

010

00

kU

0

0

dt

kn

dtnn2

0

0

kF

ku

kX

dt
1

100

dtdtuu210

0dt0

1kF

1ku

1kX

r

wx

oo

ro0r

v

τ
β

τ

α

. (50)



11

Optimal Predictive Controller Development

Using standard optimal control techniques the solution for the optimal (LQR) controller can be found as

SxBRn T1−−= (51)

where S is found by solving the steady state algebraic Riccati equation (ARE) for the positive definite S,

0QSBSBRSASA T1T =+−+ − . (52)

Here Q is the weighting matrix on the state error, and R is the scalar, since this is a single input system, that envokes
a penalty against the control effort.  The LQR approach will always yield a stable system, as long as the Riccati
equation provides a positive definite solution matrix S.

Figure 14 shows graphically the relation between the level of control input to the level of disturbance
rejection for the standard optimal control solution, without a disturbance model included in the control law design.
This analysis can give a "feel" for how tight a control law must be provided to achieve a reasonable disturbance
rejection. Using the control law design that provides the greatest disturbance rejection, it can be seen in Figures 15
and 16 that a reasonable position is maintained within the propulsion system limitations. To determine how well the
propulsion system can respond in the presence of  wave induced disturbances, the velocity time series was scaled to
a maximum value of 1.5 m/s. At this level of disturbance, the error in maintaining position is +/- 0.4 meters. The
required control input, to maintain this position, is greater than the input available from the propulsion system,
Figures 17 and 18. If the control law is modified to limit the controller to provide an input within the propulsion
system design, then the optimal position control, for this disturbance, is shown in Figures 19 and 20. The problem
that now must be solved is how to achieve better performance. We propose, that by embedding a predictor of the
disturbance, into the control system design, we can achieve improved station keeping.

The AR model of the wave disturbance may be written in state space form as

)()(

)()()(

kXCky

kBkXA1kX

www

wwww

=

+=+ ν
, (53)

with the only measurement that is available is the wave velocity at current time k obtained from the Doppler. If the
system is forward time shifted, then information about the future disturbance is available based on current
measurements. Equation (54) represents this;

)()()()( tetwd1NtwdNtw N1 =++−+++ K . (54)

This is possible since the basis of the model is that e(t) is white noise. Now by augmenting the vehicle state
equations with the disturbance state equations, a new control law may be developed using the predicted disturbance
states. To do this a new state vector is defined as









=

wave

vehicle
aug X

X
X , (55)

where the disturbance states are given as

[ ]Twww 1kX1NkXX )(,),( +−+= K  , (56)

then using the separation principle, the control law is designed assuming all states are measurable. Therefore, as in
the previous optimal control discussion, the ARE is solved to obtain the appropriate gains for the augmented system.
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This augmented system is
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With the control law designed the estimator/predictor must be designed. Using optimal estimation theory, a
estimator/predictor of the form

)()(ˆ)()(ˆ kLwkXLCA1kX wwww +−=+ , (58)

where w(k) is the current disturbance measurement, was developed.
To display how well this procedure can work if an accurate model of the disturbance is available, consider

the simple case of a sine wave with only one frequency component as the wave disturbance. The precise model of
this disturbance is known. When this model is embedded in the control system design, perfect cancellation of the
wave disturbance effects on station keeping may be obtained. These results are displayed in Figures 21 and 22. Now
these results are for demonstration purposes only, and we do not expect to get perfect cancellation of the wave
disturbances since an exact model of the random sea is not available.

Using the same weighting values that went into the design of the control law that was used in the
simulation of the results presented in Figures 19 and 20, improved results are achieved from this method when an
eighth order AR model is used to form the predictor, see Figures 23 and 24. As can be seen, there is a 400%
improvement in station keeping, and the control input requirements are significantly less.  This reduction in control
effort is particularly important given the fact that power consumption is the downfall of AUVs.

Conclusions

This paper has shown that an Auto Regressive model provides a convenient means of matching the wave
induced disturbance dynamics. It has been concluded that a digital estimator/predictor derived from a low order AR
model provides adequate prediction of the disturbances acting on the submerged vehicle. What cannot be concluded
from this particular work is the degree of optimality to which the embedded predictor provides, since this analysis
was done under ideal conditions, i.e. no noise and all states available. Thus far, based on previous studies in this
area, the work conducted herein has indicated a promising direction for improved prediction of wave disturbances
on submerged vehicles and the resulting control required to allow the vehicle to maintain station.

The estimator developed is merely a baseline version for predicting the disturbance. That is, since the AR
model from which the estimator was developed was assumed to have linear time invariant parameters, the estimator
may not accurately reflect the actual dynamics of the disturbance.

Lastly, it should be noted that the optimal predictive control law developed provides excellent disturbance
rejection in the presence of wave induced disturbances.

Recommendations

First, it is recommended that further investigations be made into the modeling of wave induced
disturbances. The ability to identify the predominate  frequency components and use a frequency weighted non-
linear RLS algorithm to determine the disturbance model parameters used in the controller design will improve the
ability of the vehicle to maneuver and hold station in the presence of wave induced disturbances.

 Second, the parameters of the disturbance model should be considered to be time varying, and an adaptive
algorithm developed to increase the accuracy of the disturbance model used in the control law design. This
parameter identification can be done as a background process, with the resulting parameters passed to the controller.

Lastly, models of vehicle sensor  performance in shallow water must be developed to allow for a detailed
analysis to determine how and which sensor(s) should be used to measure the wave induced disturbances, and how
accurate these measurements will be.
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Figure 1.  Monochromatic Progressive Surface Gravity Wave

Figure 2.  Comparison Of Water Particle Velocities For Different Types Of Waves
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Figure 3.  Comparison Of Shallow Water Wavelength Ratio To Wave
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Figure 4.  Comparison Of Innovation Covariance To AR Model Order
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Figure 5.  8th Order AR Model
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Figure 6.  16th Order AR Model
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Figure 7.  24th Order AR Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Frequency (Hz)

Raw PSD               
50th Order AR Model   
Frequency Smoothed PSD

Figure 8.  50th Order AR Model
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Figure 9. 100th Order AR Model

0 200 400 600 800 1000 1200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

A
m

pl
itu

de
 (

m
et

er
s)

Figure 10.  Surface Elevation Time Series
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Figure 11.  Modifier For Translation Of A Surface Elevation Time Series To A Subsurface Velocity Time
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Figure 13.  Power Spectral Density Of Subsurface Velocity Record
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Figure 14.  Comparison Of Control Input Covariance To Normalized Vehicle Position Covariance
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Figure 15.  Results Of Vehicle Station Keeping Using Optimal Control Solution In The Presence Of A
1-Kt (0.5144 m/s) Wave Induced Disturbance
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Figure 16.  Propeller RPMs From Optimal Control Solution In The Presence Of A 1-Kt (0.5144  m/s) Wave
Induced Disturbance
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Figure 17.  Results Of Vehicle Station Keeping Using Optimal Control Solution In The Presence Of A
3-Kt (1.5 m/s) Wave Induced Disturbance
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Figure 18.  Propeller RPMs From Optimal Control Solution In The Presence Of A 3-Kt (1.5  m/s) Wave
Induced Disturbance
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Figure 19.  Results Of Vehicle Station Keeping Using Optimal Control Solution In The Presence Of A
3-Kt (1.5 m/s) Wave Induced Disturbance With A Control Input Within Operating Limits
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Figure 20.  Propeller RPMs From Optimal Control Solution In The Presence Of A 3-Kt (1.5  m/s) Wave
Induced Disturbance With A Control Input Within Operating Limits
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Figure 21.  Results Of Vehicle Station Keeping Using Predictive Optimal Control Solution In The Presence
Of A 2-Kt (1 m/s) Sine Wave Disturbance
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Figure 22.  Propeller RPMs From Optimal Predictive Control Solution In The Presence Of A 2-Kt (1 m/s)
Sine Wave Disturbance
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Figure 23.  Vehicle Relative  Velocity And Wave Induced Velocity vs. Time
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Figure 24.  Results Of Vehicle Station Keeping Using Embedded Disturbance Model And Identical Weighting
Values As Those Associated With The Results In Figure 19
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Figure 25.  Propeller RPMs From Optimal Predictive Control Solution Using An Embedded Disturbance
Model Identical Weighting Values As Those Associated With The Results In Figure 19


