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Abstract

Recent interest in underwater vehicle maneuvering
and control in shallow water has generated a need for
greater understanding of vehicle dynamics in this
region. Specifically, improved vehicle models and
control methodologies are required for acceptable
control performance in the presence of wave induced
disturbances. In this paper a method for identifying the
decoupled surge motion dynamic parameters of a small
Autonomous Underwater Vehicle (AUV) is given. The
identification is based on experimental data obtained
from in-water tests of the vehicle along with post
processing of the data using Kalman filtering
techniques. Various lumped parameter system models
of the surge dynamics are proposed and comparisons
are made between them with the actual motion
measurements. Identification of the square law velocity,
square law propeller speed coefficients, and any first
order force lag time constants is performed, as well as
selection of the most appropriate model design for the
experimental conditions. Since a continuously changing
surge motion is required for adequate parameter
identification, the vehicle is placed in a test tank and
commanded to oscillate in the longitudinal direction
using the stern propulsors. A series of experiments are
performed with different sets of commanded oscillation
amplitudes and frequencies of motion. Surge position
and rate feedback for the vehicle controller is provided
by an onboard high frequency sonar aimed
perpendicular to one of the tank walls. A by-product of
the in-water experiments is the observation of the
vehicle surge performance in wave like conditions. In
shallow water, the vehicle surge motion is particularly
pronounced and the design of the experiment allows for
the controller performance bandwidth to be studied for
the specific propulsor installed. With this information
and knowledge of the ocean wave conditions in certain
areas, the vehicle control performance may be predicted
with some degree of accuracy.

1. INTRODUCTION

Modeling of autonomous underwater vehicles
(AUV's) has lead to the development of rather
complicated equations of motion found in Fossen [1,
2] and Headey [3]. Apart from the non-linearity
inherent with the motion of the vehicle, the
hydrodynamic forces and moments acting on an
AUV are usually modeled by a combination of
theoretical and experimental results. Simpler models
that describe only particular aspects of the vehicle
dynamics are often needed [4], [5], and [6]. In
particular, there is the need for models describing the
decoupled motion of underwater vehicles. Healey [3,
5], suggested the possibility of decoupling the
dynamic equations of motion in three independent
sets regarding flight speed, steering, and dive motion
control.

An important use for the models identified is the
ability to develop more sophisticated control
methodologies in uncertain ocean environments. The
severe and unpredictable surf zone environment and
absence of a human supervisor leads to the necessity
for increased controller robustness for a high degree
of autonomy.

Section two presents three different dynamic
models of increasing complexity for describing the
vehicle, while section three introduces the parameter
estimation methodology using Kalman filtering
techniques. The fourth Section briefly describes the
in-water experimental setup for data collection. This
is followed in Section five by a detailed parameter
estimation analysis from the in-water test series.
Section six presents a comparative analysis of each
model proposed against the experimenta data
obtained. The final Section contains the conclusions
and future directions for this work.



Il. VEHICLE MODELING
A. Simplified Longitudinal Dynamics Models

If it is assumed that the hydrodynamic forces in
the surge direction are due mainly to drag and added
mass, and that the thrust forces are determined by the
propeller alone, a simple dynamic model for the
vehicle can be derived. From the complete set of
equations of motion [2] and [7] the simplified surge
(longitudinal direction) dynamics equation of motion
becomes

mu(t) =X, U(t) + X, u(t)u(t)
X : D
+ prop (t)
The coefficient m is the vehicle “dry mass’, X, is
the longitudinal “added mass’, and (t) and u(t) are
the longitudinal  acceleration and  velocity
respectively. The force due to the propeller X, (t)

depends on two terms. the thrust force with no
longitudinal velocity (Bollard pull) and a thrust loss
term due to vehicle forward velocity given by

X prop (t) =X propg n(t)|n(t)|

= (X o IO @

If the steering control of the vehicle is fixed, so that
only longitudinal motions are allowed, the following
equation of motion can be derived from (1) and (2)
such that

u(t) =X, u®fu(®)]+ X n(@®u(t) -
+ Xz n(®)n(t)

The model described by (3) depends on three
terms, one quadratic in u(t) caused by the dynamics
of the body, another quadratic form in n(t)
(revolutions/sec of the propeller) and one cross term
in u(t) and n(t) caused by the loss of thrust due to

the longitudinal velocity u(t).

However, various studies by Yoerger [8],
McLean [9], and Brown [10] have shown the
existence of non-linearities that are modeled as force
lags in the propulsion system. Using (3) and
assuming the existence of a generalized force delay,
z(t), specified by time constant t, two new
differential equations describing the system can be
formulated as

i) =au@u)+auoh®+ 20 @

where

Z()=- tlz () +t3n(t)|n(t)|, ®)

and the units of the coefficientsare a [=] 1/L,b [F]
L/rev®,g [=] 1/rev®,andt [=] T.

The model described by (4) and (5) is in
continuous time but the control and estimation is
done in discrete time, so a digita model for
identification purposes must be obtained. A zero
order hold filter with sampling period T can be used
leading to the following,

Upyg = U +T(auk|uk|+g*|k|nk|+zk) (6)
and
Z,1=2Z, +T§ 1zk +Bnk|nk|9. (7)
et t o

B. Parameter Identification Models

The model described in the previous section has
four unknown parameters that can be determined by
experimental means. The variables available for
measurement are u(t) and n(t) . It is very convenient

to write the model in terms of the parameters and the
measurable variables only. Fortunately, increasing
the order of (6) by one now results in an equation in
terms of u,,, and z,,,. Defining a change of

variable

b=— (8)
and

c=— 9)
asecond order mode! in U is asfollows

- Uk|”k|)
+TC(Uk - uk+1)+T ZCa(uk|uk|)
+T2b(nk|nk|)+Tg(Uk+1 - uk|nk|)
+T %egu, n, |

Upp =2Up - Uy +Ta(uk+1

uk+1

(10)

nk+1

Unfortunately, the model is non-linear in the
parameters, however we can consider a change of



variables to produce a linear one as a function of the
new parameters by defining

hy = Uy [Upas |- uk|uk| C, =Ta
hy =Uy - Uy C, =Tc
hy =u,u,| C, = T’ca
h, =n,|n,| C, =T%
hs =UaNa|- U n|  Cs = Tg
he =u,|n,| Cs = Tcg

and

Z = Uy - 2 + Uy
h =T[h h, hy h, hy h] (11)
q=[C1 C, G C, G Ce]

The above can now be written in matrix notation as
z=hq. (12)

The parameter vector q contains six parameters
but only four are of interest caused by the non-
linearity of the original model (10) with the terms in
cg and ca . Equation (12) will be used to identify
the parameter vector and in this case two extra
degrees of freedom are present which will decrease
the accuracy of the estimation for the other
parameters. These two extra terms define implicit
relationships between the other parameters of the
model, and in the estimation process this relationship
was let free, and the estimator was used to determine
all six parameters.

C. Simplification of the Identification Models

In the identification procedure two other models
were considered obtained from (4) and (5) by
assuming some simplifications. The first is given by

assuming no lag in the thrust force and no cross
relation between u(t) and n(t), thus the following

models are defined
Model I:
t(t) =au(®)u(t) + bn(t)n(t)| (13)

In the second model, only the crossterm g is
assumed zero yielding

Model I1:

U(t)=au(t)u(t)[+z(t) (14)
and

Z(t)=- tlz(t)+t3n(t)|n(t)|. (15)

Model | has the advantage of aready being
linear in the origina parameters with no extra
degrees of freedom, although due to this simplicity, it
may less exact in describing the actual system. Model
Il has three parameters for identification and for
future reference the model given in the previous
section using al coefficientsa, b, g, and t will

denoted as Model 111.

I11. PARAMETER ESTIMATION
METHODOLOGY

A. Kalman Filter Estimator

Various estimation methods are available for
determining g, but a preference was given to
recursive algorithms due to their suitability in real-
time implementations. A recursive Kalman filter was
chosen for the parameter estimation since it is similar
to weighted least-squares algorithms [11], and allows
for the consideration of modeling and measurement
errors.

For system identification, the state vector is the
parameter vector g , with the dynamics described in
discrete time by:

Qi =FQ, +Gw (16)
Zy =D N 17)

The modeling noise w is considered white and
Gaussian with an associated covariance matrix Q,

and the measurement noise is denoted by n with
covariance matrix R. Matrix F  describes the
dynamics and is null since the system parameters are
assumed to be time invariant. The measurement
vector h, is atime dependent function of the inputs

u(t) and n(t) . The Kalman filter equations as given
by Gelb [12] are shown below.

Prediction step:
s =F q, (18)

P.,=FPFT +&QG (19)



Correction step:

Ay+1 :q_k+1 +Ly (Zk+1 - hkq_k+1) (20)
P :[I - Lkhk]ﬁk+l (21)
L, =P.h [hP.h +R] 22)

B. Two-Stage Parameter Estimation

Of the above, the parameter most easily
identifiable is b (that can be seen in the results in

the next section), since it is the direct gain of
propeller revolutions. The other parameters represent
evolution of the response of the system and in
particular a incorporates most of the modeling error
since it is primarily responsible for the response
shape, while t strongly influences the response
delay, and b the amplitude of the response. Also

note that unless Model | is used, the estimator will
have more degrees of freedom than the actual number
of parameters. This leadsto an attempt to increase the
accuracy of the parameter identification by using a
two step estimator.

During the first stage, the complete filter is run
on a data set (Model Il has been chosen as an
example), and for the second stage, the most strongly
identified parameter from the first stage is held
constant. From this, the degrees of freedom available
are reduced and the other values may be estimated
with greater precision. The steps for this process are
outlined below:

1. Apply the estimator to Model Il and obtain
the intermediate parameters a, b and c.
(Stage One)

2. Set the parameter with the best estimate
constant and apply the filter again with the
final values of the other parameters as initial
conditions. (Stage Two)

3. Fromthefinal b and ¢ compute b andt .

To determine which parameter is to be held fixed
a a constant value for the second stage of the
estimation, an analysis of the final covariance matrix
P must be performed. The parameter which
corresponds to the smallest covariance at the end of
the first stage of the estimation process is selected as
having the highest confidence of identification.

IV. IN-WATER PARAMETER
IDENTIFICATION EXPERIMENTS

One of the main concerns addressed by this work
is to design robust controllers for acceptable
performance under wave conditions in shallow water.
Several experiments were performed in order to
obtain a model of the surge dynamics for ranges of
frequencies of interest, namely some of the possible
wave frequencies.

The in-water experiments were conducted in the

NPS test tank by positioning the vehicle
perpendicular to one of the tank wall about 10 feet
away. Vertical and horizontal thrusters were under
active control to maintain the vehicle at a depth of
approximately 3 feet and perpendicular to the wall at
all times. Continuously changing position commands
from the wall consisting of sinusoids of a different
frequency were used for each experimental data set.
The propeller revolutions were measured by motor
mounted tachometers. The surge velocity was
measured indirectly by differentiating the position of
the AUV relative to the wall face. The position was
obtained by ultrasonic sonar measurements, and a
Kalman filter was applied to the sonar ranges in order
to obtain a clean estimate of position. Four data sets
were generated for four different frequencies, (1)
f=05 rad/sec, (20 f = 04 radlsec, (3
f = 0.7 rad/sec , and (4) f = 0.2 rad/sec . A
three state Kalman filter was used for sonar signal
filtering that at the frequencies of interest produce not
only the estimation of position, but aso the
derivatives to give estimates of velocity and
acceleration [13].

The use of the filter for obtaining uf(t)
introduced new dynamics to the system, and if the
values of u(t) from filtering and n(t) from the
tachometer readings are used for parameter
estimation, the sonar filter dynamics are introduced
into the parameters. In order to minimize the
influence of signal filtering and keeping in mind that
the sonar filter has an almost unitary gain, the filter
was also applied to the propeller speeds n(t) . From

this, the same dynamics introduced in the u(t)
measurement path were also introduced for n(t) , and

their overall effect on the model parameters sought
should be minimal.



V. PARAMETER ESTIMATES
EXPERIMENTAL RESULTS

FROM

In the estimators for all the identification models,
the measurement noise covariance, n was set to 0.01,
a constant scalar, and is the same value used by the
sonar filter. The values of diagonal elements, g, of

the modeling noise covariance matrix Q were

chosen in each case to match the bandwidth of input
signal. With this choice, a tradeoff between good
convergence, rapid stabilization of the filter, and
precision of the estimates is made. The following
results for each model type are for the “best”
compromise of values selected for matrix Q .

A. Model | Results

The first model design proved to be inadequate
for describing the system since two of the data sets (2
and 3), predicted unstable values for the parameter
a . Table 1 shows the parameter estimation values
obtained for each data set including statistics of the
filter residuals e .

Model | failed to adequately describe the vehicle
dynamics, a more sophisticated model, Model 11 was
tried next.

B. Model 11 Results

All four data sets were run again using Model |1,
and the results are shown in Table 2.

;=10 Data Data Data Data

Set Set Set Set
1 2 3 4

a -0.7791 -0.7066 -1.5387 -0.9144

b 0.0016 0.0015 0.0017 0.0012

t 0.7074 04544 0.5538  0.4486

3 -0.0863 -0.0427 -0.0023 0.0205

S, 0.2173 01653 0.1854 0.1851

el 0.2009 0.1425 0.1597 0.1547

;=10 Data Data Data Data

Set Set Set Set

1 2 3 4
a -0.3626 * 1.295 *0.1895 -3.1120
b 0.0024 0.0033 0.0028 0.0038
3 -0.1703 - - 0.0134
S, 0.3404 - - 0.3496
|§| 0.2776 - - 0.2834

Table 1: Resultsfor Model | - (*) Unstable
Parameter.

Note: The units for the parametersare a [=] 1/ft, b

[=] ft/rev?, and in the following tables, g [=]
lrev,t [=] sec.

Figure 1-a shows the evolution of the parameter
estimates and the diagonal elements of the covariance
matrix P for data set 1. Figure 1-b is a comparison
between the measured velocity u(t) and the

prediction from the model. Similar results were seen
using the other three data sets as well. The noise in
the evolution of the covariance matrix P is due to
the rather large value of the diagonal elements of Q.

That was needed in this case, since smaller values
lead to poor parameter estimates. The simplicity of
the filter demanded an attempt to try to use the most
of the measurements for the estimation process. Since

Table 2: Resultsfor Model 11

The parameter evolution for data set 1 and the
respective model simulation can be seen in Figures 2-
a and 2-b respectively. This filter/model had a much
less noisy parameter evolution and a better
description of the system than with Modéel I, as can
be seen from the model response in both cases. This
was not unexpected due to the limitations of Model 1,
since it had fewer parameters and the force lag was
not modeled.

Figure 3 shows the coherence C,,, along with a

trace of the residuals € through time, and from this
analysis, it can be seen that the prediction errors are
not white noise. From this, a bias is implicated in the
estimation model and is probably caused mainly by
the inherent inadequacy of the system model.
Particularly, the error in the estimation of the lag
response is mainly responsible for the non-whiteness
of the residuals, (they exhibit a sinusoidal shape).
This implies that there exists a phase lag and/or
magnitude difference between the actual and
predicted responses. However, it can be seen from
the comparisons with the actual u(t) that the

predicted response is fairly close, and implies that
although it has limitations, this model is of good use.

C. Model 111 Results

The results from the estimation with Moddl 1Il are
shown in Table 3.



g,=3.0 Data Data Data Data
" Set Set Set Set
1 2 3 4

-1.2359 -1.6676 -1.5980 -1.6185
0.0131 0.0132 0.0072 0.0019

31413 2.8565 1.1329 0.6856

Data Data Data Data
Set Set Set Set
1 2 3 4

g = g = g = g =
0.0032 0.0032 0.005 1.0

a
b
g -0.1720 -0.1204 -0.0917 -0.0917
t
3

-0.1221 -0.0551 -0.0086 0.0089
S, 02213 01946 0.2709 0.2673

§| 0.1622 02263 0.1597 0.2264

-0.5823 -0.7066 -1.3678 -0.7968
0.0022 0.0015 0.0022 0.0014

0.9482 0.4544 0.7112  0.5075

Table 3: Resultsfor Modél 111

In the case of this model, we chose a dlightly
higher value for the model noise covariance than in
Model 1I. This was due to the necessity of leaving
some extra freedom for the filter. Since in this case
there is not only a new parameter that in principle
gives a better model and less freedom in the filter
dynamics, but also an extra cross-coupling term that
that introduces uncertainty in the model. A dlight
increase in the diagonal elements of P is noted in
Figure 4 corresponding to the lag time constant T ,
which implies that the filter was not able to estimate
T with the same precision than in the previous case.
In fact, this particular value of the dynamic noise
covariance was selected as the limit for filter
stability. Higher values of the covariance resulted in
instability in the estimate of T and lower vaues
caused dlightly worse estimates.

Comparing the residuals shown in Figure 6 with
the previous cases, we see that they are more whitein
Model 111 (although yet very far from being white
noise). The increased descriptive capability of the
model is mostly responsible for this.

D. Two-Stage Estimation Using Model 11

As an improvement to the one step estimation of
the parameters for Model 11, a second estimator was
applied to the data with one parameter fixed. From
the analysis of the matrix P, it was concluded that
the parameter with the least covariance was b which
was in accordance with physical insight. So this
parameter was set to the value found previously, and
the term h,C, was incorporated into the
measurement. This lead to a 3 parameter estimator
although the cross term ac remained. The modeling
noise covariance was set to a particularly low value
since in this case one good estimate was available
that was used as the initial value. Table 4 lists the
results obtained from the four sets of data.

o~ T 9

-0.1275 -0.0427 -0.0035 0.0236
S, 0.1633 0.1653 0.1673 0.1717

|§| 01718 0.1425 0.1444 0.1433

Table 4: Results for Model Il with Second Step and
b Constant.

The evolution of the two-stage filter can be seen
in Figure 7-a and the error analysis in Figure 8.
Comparing the results with the one step estimation
for Model 11, a dight improvement in the whiteness
of the residuals is evident from the lower values of
the coherence at lower frequencies as shown in
Figure 8. Comparing with Model 111, the results give
less satisfactory responses, and in particular, the
residuals are fairly correlated with the inputs.
However, in this model two less parameters are
present.

VI. COMPARATIVE ANALYSIS

Analysis of the four data sets showed that data
set 4 corresponded to the lowest frequency applied to
the thrusters, but there were spikes in the tachometer
readings that caused the actual signal n(t) to not bea

single frequency sinusoid. In fact, n(t) was the base

sinusoid with some higher frequency noise. For this
data set, the frequency content was much greater than
in the others and that was reflected in the estimation.
Using an input signal with large frequency content is
not bad in its itself, in fact, it excites more modes of
the system and thus gives a better description.
However, since the model is simplified, an attempt to
model the behavior of the system for al possible
frequencies is very difficult. So a tradeoff must be
made between generality and applicability.

The comparison figures presented relate each
model with the data used for their parameter
estimation. A more useful comparison would be to
check the performance of the model against other
data sets. As an example, the response using the
parameters from data set 1 when the input is obtained
from the other data sets is shown in Figures 9, 10,



and 11. From the comparisons it can be seen that
Model I11 achieves the best results, however for input
signals with very narrow bandwidth, Model Il with
two-stage estimation can also give good results, and
in particular we see that in data set 3 that was the best
model. The extra parameters in Model 111 alow it to
model more accurately the shape of the response for
cases when the frequency content is more complex.
Depending on the input signal, it can be sufficient to
use Model Il with a two-stage estimation. However,
this has implementation considerations since it
requires extra computational time.

A comparison was also made between the
Kalman filter estimator with a simple least squares fit
model and with the response of a linear model in
u(t) and n(t) with a similar number of parameters

given by

Uy = U + U, + blnk. 23)
+b,n

Figure 12 shows the comparison of Model Il
responses obtained by the Kalman filter, the least
squares estimation, and the linear model (23). The
least squares estimator (LSE) provided results similar
to those obtained by the Kalman filter, but the latter
produced a more accurate model (note the response
of the high frequency perturbations on the peaks of
u(t) ). This was expected since the Kalman filter can

be used to determine the least squares fit. The
preference for its use is the ability to incorporate
noise modeling in the identification process. The LSE
when the noise is white and Gaussian always gives
the best linear fit, but does not have the flexibility of
the Kalman filter. Moreover, it is easier to tune the
identification process in the latter with a priori
knowledge of the system. The linear model, as
expected, provided poorer results than the non-linear
one, particularly in the description of the higher
frequency content of the signal.

In general, Model 111 gave the best results since
it was more complex, however it can be seen from
sets 2 and 3, Model 11 with the two-stage estimation
provided some good results. When comparing each
model obtained from each data set with the others
(not shown here), it is concluded that data set 1
provides more genera models. Therefore, for
simulation purposes the parameters of Model Il
obtained from data set 1 should be used to model the
longitudinal dynamics of the vehicle. In fact these
values agree with observations of the vehicle
performance in the open water.

VII. CONCLUSIONS

In this paper, an initiad work was presented
towards the development of models suited for the
experimental determination of the longitudinal
dynamics of an AUV and methods for the parameter
estimation for the above models. The model of a
particular vehicle (NPS Phoenix AUV) was identified
from in-water test tank experiments. The comparative
analysis given showed the necessity of non-linear
dynamic modeling and of the inclusion of aforce lag
term. The results obtained are satisfactory, in
particular for the frequencies of interest, although the
residuals appeared to be non-white. The non-
whiteness of the residuals indicates the lack of
modeling capability, which was not unusua
considering additive measurement noise was present
and causes a bias in the linear estimates. When using
the LSE, the noise is not white and equivaently in
the Kalman filter, the measurement dynamics model
is corrupted by unmodeled noise. However, it must
be stressed that simple models for particular
applications are useful.

Oneinteresting fact discovered using the Kalman
filter estimator was that taking Q as a diagonal

matrix with all values equal, produced better
estimates in the sense that the residuals were
minimized and the filter lead to stable parameter
evolution. This reflected a priori, equal certainty of
each initia parameter estimation. Moreover, the
interrelationships between the parameters (cross-
coupling) implied a uniform characterization of the
modeling noise in the estimation filter. The tuning of
the estimation filter proved to be an important step
towards obtaining a good model.

The two-stage estimation process resulted in a
relevant improvement versus the single stage model
and in some cases presented results comparable with
higher order models. In future work this technique
can be extended to other cases, applied to higher
order models and is of particular usefulness for the
improvement of already existent estimates with
different degrees of certainty.

Model 111, the four parameter non-linear model
provided the best results. Fortunately, this moddl is
simple enough for real-time application and provides
reasonable responses for the input signals of interest.
For future work, the development of more complex
models and their experimental validation must be
performed. In particular, there is the necessity of at
sea experimentsin order to gain further knowledge of
the modeling necessities. In  particular wave
conditions, as in shallow water or near surface



operation can introduce important changes to the
dynamics that must be accounted for.

Finally, the methodology presented can be
extended to other types of vehicle motions and
represents a first step to the development of models
and identification techniques for coupled motion that
will be present while operating in shallow waters.
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Figure 1-a. Parameter evolution for Model | (Data set 1).
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Surge Velocity, u (t) (Feet/Sec)
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Figure 2-b. Model comparison for Model 11 (Data set 1).
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Figure 4. Parameter evolution for Model 111 (Data set 1).
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Figure 5. Model comparison for Model 111.
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Figure 6. Coherence between U(t) and (Dataset 1) residuals (top) and plot of residuals (bottom) for
Model 111 (Data set 1).
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Figure 7-a. Parameter evolution for Model 11 (Data set 1) using two-stage estimation with b constant.
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Figure 7-b. Model comparison for Model |1 (Data set 1) using two-stage estimation with b constant.
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Figure 8. Coherence between U(t) and residuals (top) and plot of residuals (bottom) for Model |1 (Data set
1) using two-stage estimation with b constant.
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Figure 9-a. Comparison between models derived from data set 1 against data set 2.
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Figure 10-a. Comparison between models derived from data set 1 against data set 3.
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Figure 10-b. One stage vs. two-stage Model 11 (Data set 3).

1.2

_ u, Experimental
1 u, Model I |- -
u, Model Il
0.8 —— u, Model Il

) ) I
AR\
Y
Y N

-0.8
270 280 290 300 310 320 330 340 350

G

Surge Velacity, u (t) (Feet/Sec)
>
N
S —
=
>
—

Time (Sec)

Figure 11-a. Comparison between models derived from data set 1 against data set 4.
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Figure 11-b. One stage vs. two-stage Model Il (Data set 4).

Figure 12. Comparison between linear model, L SE, and two-stage Kalman filter for data set 2.



