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Abstract—The elevated temperature deformation behavior of interfaces in model single fiber composites
was isolated and studied using a fiber push-down approach, whereby the interface is loaded in shear. Two
fiber—matrix systems, one with no mutual solubility (quartz—lead) and the other with limited mutual solubi-
lity (nickel-lead), were investigated. In both systems, the matrix and fiber underwent sliding relative to
each other, with the interface acting as a high diffusivity path. The mechanism of sliding was inferred to be
interface-difTusion-controlled diffusional creep with a threshold stress (Bingham flow). The behavior was
modeled analytically using a continuum approach, and an expression for the constitutive creep behavior of
the interface was derived. The model provided a physical basis for the observed threshold behavior, which
was found to be directly related to the normal (radial) residual stress acting on the fiber-matrix interface.
The results are deemed to be significant because: (1) in some instances, interfacial sliding may be instru-
mental in determining the overall creep/thermal cycling response of a composite; and (2) they offer an
alternative rationalization of threshold behavior during diffusional flow (besides interface reaction control)
and may be useful in understanding creep in multi-phase systems with internal stresses. Acta Metallurgica

Ine. Published by Elsevier Science Ltd

1. INTRODUCTION

It is well known that continuous fiber reinforced
metal-matrix composites display significantly better
creep resistance and stress rupture life than the cor-
responding unreinforced matrix alloy [1-15]. In gen-
eral, it is believed that during isothermal creep at
constant applied load, the matrix undergoes stress
relaxation, the relaxed stress being transferred to
the fibers. Since the fibers are typically much stiffer,
stronger and more refractory (i.e. more creep resist-
ant) than the matrix, this gives rise to a gradually
decreasing creep rate when a continuous fiber com-
posite is subjected to a constant siress creep
test [8,9]. Eventually, one of two things can hap-
pen. If the applied stress is relatively low, all of the
stress is supported by the fibers, and the composite
creep rate becomes equal to zero for non-creeping
fibers, or to the creep rate of the fibers for creeping
fibers. If on the other hand, the applied stress is
large, the fibers are progressively loaded due to
matrix stress relaxation till the fracture strength of
some of the fibers is reached, at which point, the
fibers start failing and the composite creep rate
increases again till failure occurs [8, 9, 13].

While the above micro-mechanical representation
of creep is generally agreed upon, the role of inter-
faces on creep in composites is a subject of signifi-
cant confusion, despite having been considered in a
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number of studies [13, 14, 16-21]. Although continu-
ous fiber reinforced composites are generally
thought to deform with the matrix and fiber in iso-
strain condition, there is ample evidence in the lit-
erature that this condition is often violated, even in
the absence of interfacial fracture. This is most
clearly observed following thermal cycling of com-
posites in the absence of any applied load [22,23].
For instance, Yoda et al. [22] observed that the
ends of W fibers in a Cu matrix intruded into the
matrix following thermal cycling, the extent of
intrusion increasing with increasing number of
cycles. Similar effects have been observed following
slow thermal cycling of graphite fiber reinforced
aluminum composites [23], whereupon the matrix
was observed to protrude past the fiber ends. In
both cases [22,23], the slow heating/cooling rates
during cycling, in conjunction with the tensile
matrix residual stress along the fiber-axes, allowed
the matrix to elongate relative to the fibers via
creep. Here, no interfacial debonding occurs, and
the differential strain between the matrix and fibers
is accommodated by time-dependent diffusional slid-
ing at the interface close to fiber-ends, where large
interfacial shear stresses exist. This is very different
from the effect observed during relatively rapid ther-
mal cycling, where interfacial fracture, followed by

Jrictional sliding at the debonded interface, results
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in the relief of axial tensile residual stresses in the
matrix, allowing the matrix to shrink relative to the
fibers [24,25]. Fricitonal sliding is commonly
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observed in composites with weak interfaces which
undergo debonding during cycling [24-26], whereas
time-dependent sliding via interfacial creep occurs
in the absence of debonding [22,23]. Indirect evi-
dence of interfacial sliding during isothermal creep
has been noted in y-TiAl reinforced by Ti,AlIC pla-
telets, where, beyond about 60 percent of the melt-
ing temperature, the composite creep strength was
observed to decrease below that of the unreinforced
matrix, despite the absence of any interfacial
debonding or fracture [27). This loss of strength at
high temperatures has been attributed to diffusional
relaxation of the matrix, accommodated by diffu-
sionally accommodated sliding at the interface [19].

Broadly, the interfacial contribution to creep has
been thought of in two different ways. In the first
case, the “interface™ is thought to consist of a
highly dislocated region of the matrix (a work har-
dened zone), formed due to the higher elastic mod-
ulus of the fiber relative to the matrix, which makes
matrix dislocation loops moving towards the fiber
stand off at some equilibrium distance from the
fiber [18,13,14]. This is followed by recovery pro-
cesses driven either by dislocation annihilation pro-
cesses in the work hardened zone [18], or by the
non-conservative glide of prismatic loops along the
interface [13, 14]. Both allow the interface to accom-
modate differential strain rates between the matrix
and fiber. This type of behavior may be represented
by a power-law creeping interfacial region, which
has been the basis for a number of models proposed
in the literature [14, 16-18].

An alternative treatment considers the interface
as being able to deform via two independent but re-
lated mechanisms [20,21,28]. First, the interface is
thought to slide in shear with a linear rheology, e.g.
due to the presence of an interphase layer creeping
in the diffusional creep regime. Secondly, mass
transport by short range interfacial diffusion, driven
by gradients in the interfacial normal or hydrostatic
stress state due to the presence of interfacial asperi-
ties, is also considered to be possible. Analyses
suggest that both mechanisms (i.e. diffusive trans-
port and interface sliding with a linear rheology)
have a similar effect on the deformation behavior of
the composite [20]). Further, since both diffusional
flow and viscous drag have the same linear stress
dependence, and the same direction of net flow, it is
possible that interfacial flow may be governed by a
single constitutive law that combines the effects of
both normal and shear stresses at the interface.

To date, no direct experimental verification of the
strain rate-stress relationship governing interfacial
creep has been reported. The only methodology for
obtaining insight into the interfacial deformation
mechanism has consisted of assuming an interfacial
flow law, followed by modeling of the deformation
behavior of the entire composite using this flow law
and then comparing the analytical/numerical results
with experiments based on a real composite

system [17-20,28]. However, because of the com-
plex nature of a real composite vis-g-vis (i) the
alignment and distribution of fibers, (ii) the inter-
facial stresses of both applied and residual origins,
(iii) the precise chemistry/nature of the interfacial
region, and (iv) the concurrent operation of mul-
tiple deformation mechanisms, an accurate descrip-
tion of the phenomenology of interfacial sliding is
difficult to ascertain using the above methodology.

Accordingly, the purpose of this paper is two-
fold. The first goal is to design and conduct exper-
iments on a model single fiber composite with the
purpose of isolating and studying interfacial defor-
mation without being influenced by mechanisms as-
sociated with the matrix. And secondly, based on
the experimental results, we aim to develop an
explicit constitutive law for interfacial sliding in a
fibrous composite in the absence of interface frac-
ture.

2. APPROACH

Two model single fiber composite (SFC) systems,
both based on a lead matrix of 99.99% purity, were
chosen for the present experiments. Quartz or nickel
(work hardened to a yield strength of 500 MPa)
fibers of 0.001 m nominal diameter (dgpe.) Were cho-
sen as the reinforcement. Both quartz and nickel
show good wetting by lead, and therefore provided
well-bonded interfaces without any discontinuity.
Quartz and Pb have negligible mutual solubility at
or below the melting temperature of lead, and
therefore the quartz—Pb SFC represents a system
with a “‘sharp™ interface. Contrarily, the solubility
limit of Pb in Ni at 473 K is about 1 wt% (although
there is no solubility of Ni in lead) [29], and there-
fore this system has a relatively “diffuse™ interface.

The composites were fabricated by first melting
lead in a test tube located inside a crucible furnace
at 798 K under an inert gas (argon) cover, and then
inserting a single fiber (quartz or Ni) into the test
tube using a special fixture in order to ensure accu-
rate alignment of the fiber and test tube axes.
Following fiber insertion, the exposed surface of the
composite was immediately covered by graphite
powder to minimize oxidation, and a thick layer of
alumina powder to reduce temperature gradients in
the composite along the fiber-axis. The SFC was
then furnace cooled to ambient temperature over a
period of 4-5h. The resulting matrix microstruc-
ture, which was highly consistent between samples,
is shown in Fig. 1. The grain size immediately adja-
cent to the fibers was on the order of 15-25 um,
whereas the grain size further away from the fiber
was about 25-40 um.

Following fabrication, the SFC was sectioned
into 0.0035 m thick disks perpendicular to the fiber-
axis using a slow speed diamond wafering saw. The
flat surfaces of each disk-shaped sample were
polished to a 6 um finish. The sample was then
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Fig. 1. Micrograph showing the matrix microstructure in

the SFC system. The grain size is on the order of 15—

25 ym near the interface (at left) and the far field grain
size is on the order of 25-40 ym.

mounted on a specimen platform with a hole of
0.0015m diameter (o) such that the fiber was
aligned exactly over the hole. A 0.002m diameter
tungsten indentor with a 0.00075m diameter flat
tip, connected to a servo-hydraulic MTS@ frame
equipped with an appropriate load cell (+0.1 N res-
olution) and displacement gauge (4+0.2 um resol-
ution) was then utilized to apply a constant load to
the top of the fiber and monitor the displacement
of the fiber-top as a function of time. This arrange-
ment allowed the interface to be loaded in shear. A
schematic of the experimental approach is shown in
Fig. 2. Although the tests were conducted under
constant applied load, for small shear displacements
of the fiber—matrix interface, the average interfacial
shear stress, T,y., could be assumed to be approxi-
mately constant such that 7., ~ F/2nret, where F is
the applied push-down load, r; is the fiber radius
and ¢ is the specimen thickness. For elevated tem-
perature tests, the indentor and the specimen plat-
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form, which were thermally isolated from the
surrounding metallic fixtures by ceramic insulations,
were heated independently using Kapton@ insu-
lated resistive tape heaters with platinum heating el-
ements. This arrangement was capable of producing
temperatures up to 400 K within a control band of
+1 K. Prior to monitoring the creep response as
outlined above, the critical shear stress required to
debond (i.e. fracture) the interface (tq) was deter-
mined for each composite at various temperatures
using constant displacement rate fiber push-out
tests in conjunction with acoustic emission monitor-
ing. All creep experiments were conducted at loads
well under those required to cause interfacial
debonding. Further details of the experimental pro-
cedure are given in Ref. [30].

Following both push-out and creep testing, the
samples were inspected using scanning electron mi-
croscopy. Additionally, the top and bottom surface
profiles of each of the as-crept samples were
inspected using a Dektak 900 high resolution profil-
ometer. The purpose of the profilometric examin-
ation was to distinguish between the contributions
of interfacial sliding and any matrix creep (in the
region immediately adjacent to the interface) to the
overall fiber-top displacement measured in our ex-
periments.

In order to obtain visual evidence of interfacial
sliding, a Pb matrix composite reinforced with a
continuous Ni or W plate was fabricated and sec-
tioned to reveal a longitudinal section of the re-
inforcement. The section was metallographically
polished, following which a pattern of ~25um
square carbon grids was deposited on it. A sche-
matic of this model composite is shown in Fig. 3.
The sample was then mounted on a specimen plat-
form with a rectangular slot (to allow the reinforce-
ment to slide down relative to the matrix), and

Tungsten Indenter

Fiber

$=1mm

SFC specimen

t=3mm

Specimen Platform

¢=1.5mm

Fig. 2. Schematic representation of the experimental approach adopted in the single fiber push-down
creep tests.
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with the interfacial creep rate being significantly
larger than the creep rate of the adjacent matrix.
Clearly, the interface has its own deformation
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Fig. 5. (a) Optical micrograph showing the as-deposited
carbon grid pattern across the reinforcement—matrix inter-
face. There is perfect alignment of the grids on both sides
of the interface. In the image, the lead matrix is on the left
and the tungsten reinforcement is on the right. (b) Optical
micrograph showing the appearance of the grid pattern in
(a) following a stress change creep test. The deformation
of the grid reveals a negligible matrix component and a
sharp discontinuity at the interface. The matrix is on the
left and the reinforcement is on the right. (¢) Fiber-top
displacement vs time plot obtained during the test to ob-
serve the interfacial sliding. As observed in (a) and (b)
above, the entire observed time-dependent displacement is
associated with interfacial sliding.
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kinetics, separate from the deformation kinetics of
the matrix.

3.2. Creep response of the interface

Figures 6(a) and (b) show representative vari-
ations of fiber-top displacement as a function of
creep time during push-down creep testing of the
Pb—quartz and Pb-Ni systems, respectively. An
apparent steady state is observed to be established
within a relatively short time following loading the
top of the fiber. This apparent steady state ensued
for a considerable length of time (depending on the
applied load and test temperature), before a tertiary
stage was observed in some of the samples. The
tertiary stage usually started once an appreciable
fraction of the total fiber length emerged from the
bottom surface, thereby causing 7., to increase sig-
nificantly.

Figures 7(a) and (b) show an SEM macrograph
and the surface profile of the top-face of a Pb-
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Fig. 6. Representative experimental creep responses of (a)

the lead—quartz interface and (b) the lead-nickel interface

at various applied interfacial shear stresses (T,..) and tem-

peratures. In all cases. an initial transient followed by an
apparent steady state is observed.
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quartz SFC sample following a push-down creep
test. The fiber is observed to have been slightly dis-
placed inwards relative to the matrix, although no
evidence of interfacial fracture is apparent. The
downward displacement of the fiber-top is clearer in
the profilometric scan in Fig. 7(b), which also
shows that there is no associated downward displa-
cement of the matrix immediately adjacent to the
fiber. This verifies the premise that the entire time-
dependent displacement noted in Fig. 6 is due to
interfacial sliding, and not due to matrix creep.

Figures 8(a)—(c) show an SEM macrograph, and
the top-face and bottom-face surface profiles, re-
spectively, of a crept Pb-Ni SFC sample. Again,
the fiber is observed to have been displaced down-
ward in the absence of any interfacial fracture. The
top-face profile shows this downward fiber displace-
ment, and no apparent matrix creep adjacent to the
fiber. Also, no interfacial crack is apparent in
Fig. 8(b) around the fiber-top. The bottom-face
profile shows the fiber protruding out, again with-
out any significant interfacial crack. Thus, clearly,
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Fig. 7. (a) SEM macrograph of the top face of a lead—
quartz SFC following push-down creep testing, showing
that the fiber has been displaced downwards slightly rela-
tive to the matrix. No evidence of interfacial decohesion is
observed. (b) Profilometric scan of the surface in (a),
showing that the fiber has been displaced downwards,
with no associated permanent matrix deformation.

in both the Pb-Ni and Pb-quartz systems, the
interface slides by a creep mechanism.

Figures 9(a) and (b) show the variation of the
apparent steady state fiber-top displacement rate
with the average interfacial shear stress (t..) for
the Pb—quartz and Pb-INi systems, respectively. The
fiber-top displacement rate represents the average
interfacial shear displacement rate (¥/), since neither
the fiber nor the matrix were observed to creep
measurably, as discussed above. It is evident that
U shows a linear dependence on t,,. at all test tem-
peratures. Further, a threshold shear stress (tp),
below which interfacial sliding creep does not
occur, is observed in both systems. At 296 K, the
threshold stress is observed to be larger in the Pb-
quartz system (~1.4 MPa) than in the Pb—Ni system
(~0.7 MPa). Figure 9(a) shows that 7, decreases
with increasing temperature. Figure 10 shows a plot
of the temperature dependence of the threshold
stress in the Pb—quartz system. Despite the avail-
ability of only three data points, it appears that 7,
is nominally proportional to 1/7T.

Figures 11(a) and (b) show the temperature
dependence of U/ in the lead—quartz and lead—
nickel systems, respectively. In both cases, the
dependence is of the Arrhenius type, with the
apparent activation energy Q,p,, for interfacial
sliding being 52 kJ/mol in the Pb—quartz system,
and 66 kJ/mol in the Pb-Ni system. It is to be
noted that Figs 11(a) and (b) are plotted for a con-
stant applied stress t,.., and not constant effective
stress (Tave — 7). Therefore, O,y is convoluted with
the temperature dependence of the threshold stress.
On correcting for an assumed temperature depen-
dence of 73 (based on the model developed in
Section 3.3), it can be shown that the true
activation energy for interfacial sliding Q; is
~68 kJ/mol for the Pb-Ni system and ~62 kJ/mol
for the Pb—quartz system. The methodology utilized
for this correction is shown in the Appendix A.

Based on the above, the average interfacial shear
displacement rate may be expressed as

U = K(taye — t0)exp[—Qi/RT] (1)

where K is a proportionality constant. This provides
clear evidence of the existence of a diffusionally
accommodated sliding process at the interface. The
stress exponent of unity indicates that sliding occurs
by diffusional creep. Such sliding, as discussed sub-
sequently in Section 3.3, can occur either via matrix
diffusion or via interfacial diffusion. The measured
@; is much smaller than Q.. Also, as discussed in
Section 3.3, matrix grain boundary diffusion is unli-
kely to play any role in interfacial sliding, since the
average diffusion distance along the interface (deter-
mined by the spacing between interfacial asperities,
/) is expected to be much smaller than the matrix
grain size d. Therefore, it appears that Q; represents
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quartz SFC sample following a push-down creep
test. The fiber is observed to have been slightly dis-
placed inwards relative to the matrix, although no
evidence of interfacial fracture is apparent. The
downward displacement of the fiber-top is clearer in
the profilometric scan in Fig. 7(b), which also
shows that there is no associated downward displa-
cement of the matrix immediately adjacent to the
fiber. This verifies the premise that the entire time-
dependent displacement noted in Fig. 6 is due to
interfacial sliding, and not due to matrix creep.
Figures 8(a)-(c) show an SEM macrograph, and
the top-face and bottom-face surface profiles, re-
spectively, of a crept Pb—Ni SFC sample. Again,
the fiber is observed to have been displaced down-
ward in the absence of any interfacial fracture. The
top-face profile shows this downward fiber displace-
ment, and no apparent matrix creep adjacent to the
fiber. Also, no interfacial crack is apparent in
Fig. 8(b) around the fiber-top. The bottom-face
profile shows the fiber protruding out, again with-
out any significant interfacial crack. Thus, clearly,
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Fig. 7. (a) SEM macrograph of the top face of a lead-
quartz SFC following push-down creep testing, showing
that the fiber has been displaced downwards slightly rela-
tive to the matrix. No evidence of interfacial decohesion is
observed. (b) Profilometric scan of the surface in (a),
showing that the fiber has been displaced downwards,
with no associated permanent matrix deformation.

in both the Pb-Ni and Pb-quartz systems, the
interface slides by a creep mechanism.

Figures 9(a) and (b) show the variation of the
apparent steady state fiber-top displacement rate
with the average interfacial shear stress (tg,.) for
the Pb—quartz and Pb—Ni systems, respectively. The
fiber-top displacement rate represents the average
interfacial shear displacement rate (), since neither
the fiber nor the matrix were observed to creep
measurably, as discussed above. It is evident that
U shows a linear dependence on 7, at all test tem-
peratures. Further, a threshold shear stress (zy),
below which interfacial sliding creep does not
occur, is observed in both systems. At 296 K, the
threshold stress is observed to be larger in the Pb-
quartz system (~1.4 MPa) than in the Pb—Ni system
(~0.7 MPa). Figure 9(a) shows that t, decreases
with increasing temperature. Figure 10 shows a plot
of the temperature dependence of the threshold
stress in the Pb—quartz system. Despite the avail-
ability of only three data points, it appears that z,
is nominally proportional to 1/T.

Figures 11(a) and (b) show the temperature
dependence of U in the lead-quartz and lead-
nickel systems, respectively. In both cases, the
dependence is of the Arrhenius type, with the
apparent activation energy Q,,, for interfacial
sliding being 52 kJ/mol in the Pb-quartz system,
and 66 kJ/mol in the Pb-Ni system. It is to be
noted that Figs 11(a) and (b) are plotted for a con-
stant applied stress T,.., and not constant effective
stress (Tuve — o). Therefore, @, is convoluted with
the temperature dependence of the threshold stress.
On correcting for an assumed temperature depen-
dence of 75 (based on the model developed in
Section 3.3), it can be shown that the true
activation energy for interfacial sliding Q; is
~68 kJ/mol for the Pb-Ni system and ~62 kJ/mol
for the Pb—quartz system. The methodology utilized
for this correction is shown in the Appendix A.

Based on the above, the average interfacial shear
displacement rate may be expressed as

U = K(tave — 0)exp[—Qi/RT] (1

where K is a proportionality constant. This provides
clear evidence of the existence of a diffusionally
accommodated sliding process at the interface. The
stress exponent of unity indicates that sliding occurs
by diffusional creep. Such sliding, as discussed sub-
sequently in Section 3.3, can occur either via matrix
diffusion or via interfacial diffusion. The measured
0; is much smaller than Q... Also, as discussed in
Section 3.3, matrix grain boundary diffusion is unli-
kely to play any role in interfacial sliding, since the
average diffusion distance along the interface (deter-
mined by the spacing between interfacial asperities,
4) is expected to be much smaller than the matrix
grain size d. Therefore, it appears that Q; represents
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Fig. 8. (a) SEM macrograph of the top face of a lead-nickel SFC following push-down creep testing,

showing that the fiber has been displaced downwards slightly relative to the matrix. (b) Profilometric

scan of the surface in (a), showing that the fiber has been displaced downwards, with no associated per-

manent matrix deformation. (¢) Profilometric scan of the bottom surface of the same sample as in (b).

showing that the fiber is protruding out of the matrix. There is no evidence of either top-face or bot-
tom-face debonding of the fiber—matrix interface based on (b) and (c).

the activation energy for interfacial diffusion in the
particular system.

In both lead—quartz and Pb-Ni systems, the cor-
rected activation energy values (Q;) are much smal-
ler than that for volume self diffusion in lead
(Qvor= 109 kJ/mol). In the case of Pb-Ni, Q;~68 kJ/
mol, which is close to the activation energy for
grain boundary diffusion in lead (Qg, = 66 kJ/mol).
In the case of lead—quartz, Q;~62 kJ/mol, which is
significantly less than Qg,. This indicates that the
interface in both cases acts as a high diffusivity path.
In the case of lead-quartz, which has a sharp inter-
face (lead and quartz have no mutual solubility),
the interface behaves much like a free surface and
displays a low activation energy, perhaps corre-
sponding to that for surface diffusion. Contrarily,
in Pb-Ni, where the interface is relatively diffuse,
the activation energy for interfacial diffusion is
close to @ In both cases, the mechanism of inter-
facial sliding appears to be interface-diffusion-con-
trolled diffusional creep with a threshold stress
(Bingham flow).

3.3. Model for diffusion-controlled interfacial sliding

In the following, a constitutive law for diffusion-
controlled interfacial sliding is developed. based on
the continuum grain boundary sliding model of Raj
and Ashby [34]. The approach followed here is
identical to that of Ref. [31] except in two respects.
First, the present model incorporates the effect of a
normal stress acting on the boundary, in addition
to an applied shear stress. In a composite, this nor-
mal stress represents the radial stress (o) acting on
the interface and has two sources. The first, which
is the dominant component, arises due to the differ-
ence between the coeflicients of thermal expansion
(CTE) of the matrix and the fiber. The second, typi-
cally smaller component results from differential lat-
eral contraction of the fiber and matrix during axial
deformation. The shear stress acting on the bound-
ary represents the interfacial shear stress (t;) that is
developed close to a fiber-end (either near a free
surface, or at a break in the fiber) during axial de-
formation. In the context of the present exper-
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apparent steady state as a function of the applied average
interfacial shear stress for (a) the lead—quartz SFC and (b)
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cement rate at a constant temperature is observed in all
cases. Additionally, a threshold stress, below which creep
does not occur, is observed. In the case of lead—quartz (a),
where data for several temperatures are available, the
threshold stress is observed to decrease with increasing test
temperature.

iments, 7; is equal to the average shear stress T,y
acting on the interface during push-down creep test-
ing. Secondly, it is assumed here that the tempera-
tures relevant for composite creep correspond to
very low homologous temperatures for the fiber,

KT o e e e B S s
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Threshold Shear Stress (MPa)
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Fig. 10. Plot of the variation of the threshold stress (zg) in
the lead-quartz SFC with temperature. 7, is observed to
be inversely proportional to temperature (7).
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and therefore the fiber does not participate in diffu-
sional transport of matter. Therefore, in the present
model, mass transport is assumed to occur (i) along
the interface and (ii) through one side of the inter-
face representing the matrix.

As in Ref. [34], the boundary (in this case, repre-
senting the fiber-matrix interface) is considered to
have a periodic topography, as shown in Fig. 12(a).
This representation is particularly well suited to a
reinforcement—matrix interface, since reinforcement
surfaces, and hence the interface, are rarely, if ever,
atomically smooth. For simplicity, the interfacial
topography is assumed to have a cosine dependence
on position, and is expressed as

I 2
X = 2 cos (—-T—rl) (2)
2 A

where /1 is twice the amplitude of the interface, 7 is
the periodicity of the interface, and x and y are the
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Fig. 11. Temperature dependence of the interfacial creep

rate for (a) the lead-quartz SFC and (b) the lead—nickel

SFC at a constant value of the applied average interfacial

shear stress. The apparent activation energies computed

from the plots are 52 and 66 kJ/mol for the lead—quartz
and lead—nickel systems, respectively.
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Fig. 12. Details of the periodic interface and the resulting normal stress distributions, as assumed in the

model. (a) Idealized representation of the periodicity of the fiber—matrix interface along the fiber length.

(b) Distribution of normal stress (s,,) along the boundary due to an applied shear stress 7. (c)

Distribution of normal stress (g,,) along the boundary resulting from the presence of a normal (radial)
residual stress og. Note that the periodicity of @, is half that of a,,.

coordinates normal to, and along the interface, re-
spectively. In the context of a composite, x and y
represent the radial and the axial fiber directions,
respectively.

When a shear stress 7; is applied on the interface,
an instantaneous elastic accommodation occurs at
the interface, resulting in a periodically varying nor-
mal stress along the interface, given by [34]

T4 . {2n
Gy = Esm(T}') (3)

where @, has the same periodicity as the interface.
This is shown in Fig. 12(b), where a,, is observed
to vary from compressive through tensile values
along the interface. It is this variation of the local
normal stress at the boundary that is believed to
drive boundary sliding through stress-assisted diffu-
sional processes [34]. In a composite, an additional

where (), the local angular displacement of the
boundary from the y-axis, is assumed to be small
(or equivalently, the ratio #2/4 > 1). This stress dis-
tribution is schematically shown in Fig. 12(c),
where g, is observed to have half the periodicity of
oy,. Like o,,, the y-position dependent a,, contrib-
utes to mass transport along the interface by gener-
ating chemical potential gradients along the
interface. Conservation of mass in the system
requires that [34]

V2 u(x,y) =0 %)

over all values of y and 0<x<oc, where u is the
position-dependent chemical potential. The bound-
ary conditions for solving the Laplacian in
equation (3) are

#0.) = sty = Qo () + 61,( 1) (6a)

normal stress component is expected to be present (o) = py — Qog (6b)
due to the radial stress induced by differential ther-

mal expansion/contraction and differential Poisson au (0 i) —0 (60)
deformation of the fiber and matrix (e.g. ay\ 4/

Refs [35,36]). Although the average radial stress in

the matrix (ogr) is independent of axial position apu 54

along the interface, the periodicity of the interface ay (O’T) S (6d)

introduces a periodicity in the normal stress acting
on the interface. This may be expressed as

2 4
o = o cost 0= 22 [ (%) feos( %) -1}
’ 2 A i

+ 2] 4)

where Q is the atomic volume of the diffusing
species (in this case, the matrix atoms), x = oo rep-
resents a distance sufficiently far away from the
interface where the normal (radial) matrix stress
equals its average value og, and y = 2/4-54/4 rep-
resents a unit length comprising one period of the
boundary over which mass is conserved. The sol-
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ution of equation (5) with boundary conditions
{6a)—(6d) yields

2n A T
) = _QA 08 — y o —anXSA
Hx,y) =y cos 5 (_1 4)e

4 i "
-+ SZB cos Tﬂ (J" — i)c_zﬁ-\f—‘- (7)
4 4
where
_ TiA
T mh
and

Maintenance of continuity across the interface
(i.c. between the matrix and the fiber) requires that
the flux of matter into or away from the interface
over any time increment At account precisely for
the local displacement of the boundary along the y-
direction. In a composite, matter may be trans-
ported between various locales along the interface
(i) along the interface via interfacial diffusion and;
or (ii) through the matrix side of the interface. This
yields

2. : aJ?!
Usinficos = —QI:J *(0,5) cos 0 -+ §; B_I,l] (8)

where U is the average interfacial displacement rate,
d; is the thickness of the interface, and J 3, and J7
are the flux of matter through the matrix (locally
normal to the interface) and along the interface, re-
spectively. This is identical to the relationship conti-
nuity equaton in Ref. [34], except that in the
present case, mass transport normal to the interface
is allowed only along one side of the interface
representing the matrix. Assuming that 4/ =<1 (i.e.
0 — 0), equation (8) may be re-written as
) ¥ dx

J 1:1 (0._}) = rj; dg;);; = (__{3- .

©)

Substituting equation (7) in equation (9) and taking
the solution at y =ni/4, n being any odd integer,
we obtain for the average interfacial shear displace-
ment rate

o 2D o 3
| =——=— |1+ or| —
ke | O 7

48,00 i\

kTR [’5“"'“(7) ]

where DT and D; are the effective matrix diffusivity
and interface diffusivity, respectively. The first term
in equation (10) represents the matrix contribution
to interfacial sliding, whereas the second term rep-
resents the interface contribution. The effective
matrix diffusivity DT incorporates the effects of

(10)

both matrix and grain boundary diffusion, and may
be expressed as
D?,? . 1D\'0l + %jbpghﬁb

where Dy, is the matrix volume diffusivity, Dy, is
the matrix grain boundary diffusivity, dy, is the
grain boundary thickness, and ¢ is a constant
which is a function of d/4, d being the matrix grain
size, such that ¢ approaches 0 rapidly as d exceeds
4. In most composites, the interfacial periodicity A
is expected to be much smaller than o, and there-
fore, Dgffx Dyg). This is certainly the case in the pre-
sent composite, as observed from Fig. 13, which
shows clear evidence of a periodic Pb-Ni interface
with the periodicity being much smaller than the
grain size (~15-25 ym, Fig. 1). It is to be noted
that although Fig. 13 reveals a periodic interface,
the periodicity relevant for diffusional transport
necessary for interfacial sliding is expected to be of
a finer scale than that revealed by the micrograph,
and therefore, A cannot be obtained directly from
the photograph. In composites where the activation
energy for interfacial diffusion is substantially smal-
ler than that for matrix volume diffusion, as is the
case in the present experimental systems (both Pb-
Ni and Pb—quartz), the second term in equation (10)
is expected to dominate. Therefore, equation (10)
may be re-written as

. 45DQ nh\>
[ g ——— i 2 —— 11
v kTh? [T + JR( i ) ] ()
yielding an interfacial shear strain rate of
45,D,Q nh\’
PPl AN, Y (i I
¥ RTh [r"" UR( J ) ] (12)

Comparing equation (11) with the experimentally
obtained equation (1), it is apparent that they
are identical, with the pre-exponential constant X
and the threshold stress 7o in equation (1) being

Fig. 13. SEM micrograph of a representative region of the

interface in a Pb-Ni SFC, clearly revealing its periodic

nature. Different scales of periodicity may be observed,
depending on the magnification.
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given by
40; D; Q2
= 13
kThH (13)
and
i 3
" —zm{@) (14)

where Dy is the frequency factor for interfacial dif-
fusion, and or in most metal-matrix composites.is
a compressive (and hence negative) stress. Clearly,
the threshold stress observed in the experiments
arises from the residual radial compressive stresses
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Fig. 14. (a) Calculated variation of the threshold stress 7,

with the interfacial geometrical parameter, i/4, for various

values of the residual radial stress ox. Here /i is twice the

interfacial amplitude, and £ is the periodicity of the inter-

face. (b) Variation of the parameter U®/(t; — 19) with /
for various values of §;Dy,.
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acting at the fiber—matrix interface, and is related
to the geometry of the interface.

Figure 14(a) shows a plot of 7y vs i// for differ-
ent values of the radial compressive stress og.
Using this plot, the #// ratio for a given interface
may be obtained once 1y is known. From finite el-
ement modeling, op was estimated to be about
§ MPa in the Pb-Ni SFC at 298 K. Finite element
analysis showed that o predominantly constitutes
the thermal residual stress component, and changes
very little upon the application of an indentation
(or push-down) stress to the top of the fiber. This is
in agreement with finite element results obtained by
Ghosn et al. [37] in SiC-Ti composites. Based on
the measured 7y value of 0.7 MPa at 296 K, and
taking op =8 MPa, we obtain h/2=x=0.11 for the
interface in the Pb-Ni SFC. Equation (11) may be
re-written as

Rl (15)

where @ = (kT/Q)e?/ET is a temperature-dependent
constant, 48;Djy/h* is a temperature-independent
constant, oy is the effective shear stress acting on
the interface (tqy = 1; — 19), and U is the average
interfacial shear displacement rate (or fiber-top dis-
placement rate). The quantities on the left-hand
side of equation (15) are experimentally determin-
able. Therefore, although it is not possible to inde-
pendently determine the interfacial width # and the
pre-exponential d;Dj, equation (15) may be utilized
to determine the ratio 48;Djg/h? from experiments.
Figure 14(b), which shows a plot of U@®/(t; — 1) vs
# at various values of 8;D;,, can be used to estimate
h and &Dy. For instance, using the ambient tem-
perature experimental values of U/ = 0.0001 ym/s at
7;=2.25 MPa, 15=0.7 MPa, and Q;=68 kJ/mol, one
obtains a 8D value close to 8 x 1072 m¥/s (~100
times the grain boundary diffusion pre-exponential
OgpDyp, Tor Pb) at i = 0.1 um. Although the exact
values of h and h/. are difficult to ascertain by
microscopic examination, it is apparent from the
geometry of the interface in Fig. 13 that #i/4 and £
values of 0.11 and 0.1 pum, respectively (where & and
/4 are the height and spacing of interfacial asperities,
respectively), are not unreasonable. Where more
accurate values of & are available, Fig. 14(b) may
be utilized to accurately determine the interface dif-
fusion pre-exponential d;D;y based on fiber push-
down creep data.

4. DISCUSSION

It is evident from the above results that bi-ma-
terial interfaces, just like grain boundaries, are
capable of sliding by diffusional creep. When a nor-
mal compressive stress is associated with the inter-
face, a threshold stress below which interfacial
sliding does not occur, is expected. Composites,
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multi-layered materials and film-substrate systems
are examples of systems with bi-material interfaces
where shear as well as normal stresses may arise in
service. Therefore, such interfaces are expected to
slide following the constitutive creep law developed
above. It is important to note that this type of dif-
fusionally accommodated sliding occurs even in
well-bonded interfaces, and is fundamentally differ-
ent from frictionally controlled sliding which has
been observed in many composites with debonded
or weak (i.e. easily fractured) interfaces (e.g.
Refs [24, 37-39]).

From the data reported above, three key points
emerge. First, a continuum model seems to be ade-
quate to describe interfacial sliding, at least in the
present experimental systems. Secondly, the
threshold stress appears to originate predominantly
from the radial stresses acting on the interface. And
finally, the measured activation energy for inter-
facial sliding is quite low relative to the activation
energy of volume diffusion in Pb.

As seen in equation (10), interfacial sliding may
be governed by diffusion through both the matrix
and the interface. When interfacial diffusivity is
high compared to matrix diffusivity, the second
term in equation (10) should dominate. Otherwise
both terms have to be taken into account. Both
matrix-diffusion-driven and the interface-diffusion-
driven components are influenced by the presence
of a normal interfacial stress. When the normal
stress is tensile, this leads to a larger effective shear
stress at the interface, and hence a larger creep/
sliding rate. When the normal stress is compressive,
as is the case in most metal-matrix composites, this
results in a threshold stress below which creep can-
not occur.

Indirect evidence of diffusionally accommodated
sliding at phase boundaries and interfaces during
creep/superplastic deformation has been obtained
in many material systems, including dispersion
strengthened metals (e.g. [40-43]), eutectic
alloys [44] and discontinuously reinforced metal-
matrix composites [19,27,45-47]. The inferred kin-
etics of interfacial sliding in these systems vary
considerably. In most cases, interface sliding con-
trolled creep results in a stress exponent (n) ran-
ging from 1 to 2 [41,44], shows a temperature
dependent threshold stress below which creep
does not occur [41], and displays an activation
energy which is typically well over that for matrix
volume diffusion Q. (e.g. Refs [41,43,46]), but is
sometimes below Q.. [44].

It is generally accepted that grain boundary
sliding (or, as in our case, interface sliding) may
be represented by a continuum model of diffu-
sional creep (e.g. Ref. [34]) when the boundary
(or interface) has an abundant population of
mobile grain boundary dislocations (GBDs) which
allow the boundary to act as a perfect source and
sink of vacancies [41]. When either the density or

the mobility of dislocation sources in the bound-
ary is limited, however, the kinetics of boundary/
interface sliding is believed to become “interface
reaction controlled” [41]. Such interface reaction
control may arise from the interaction of GBDs
or interface dislocations (IDs) with interfacial dis-
persoids or asperities, which exert a drag on
mobile GBDs/IDs, resulting in a threshold stress
for creep. When the mobility of GBDs/IDs is
high, a threshold stress would be the only mani-
festation of interface reaction control. But when
the mobility of GBDs/IDs is restricted (e.g. due
to the difficulty of rearranging atoms on the more
refractory/stiffer side of the interface), interface
reaction control may also result in a high acti-
vation energy O; [41]. Thus, a treatment based on
interface reaction control [41] is able to account
for two common observations during diffusional
creep: (1) a temperature-dependent threshold
stress, and (2) an activation energy value signifi-
cantly different from that for matrix self diffusion.
The results presented in this paper suggest an
alternative source for both the temperature-depen-
dent threshold stress and the anomalous acti-
vation energy values observed during interfacial
sliding, when such sliding is diffusionaily controlled
(as opposed to interface reaction controlled). As
shown above, where an interface is subjected to a
significant normal stress (of residual and/or
applied origin) which varies in magnitude along
the interface (e.g. due to interfacial asperities), a
threshold stress, which is proportional to the nor-
mal stress, would be expected to be present. In
this case, the temperature dependence of the
threshold stress is identical to the temperature
dependence of the normal stress. This is consist-
ent with the observation that the threshold stress
in the Pb—quartz system is considerably larger
than that in the Pb-Ni system, commensurate
with the larger thermal residual radial stress
induced in Pb—quartz due to a larger difference
between the thermal expansion coeflicients of Pb
(27x107%K) and quartz (0.5x107%/K) than
between those of Pb and Ni (15 x 10 (’_,-"K).
Further, when, as in the present experiments,
the measured activation energy is low compared
with that for matrix volume diffusion, the second
term in equation (10) dominates, and hence the
measured activation energy is expected fo rep-
resent that for interfacial diffusion. Unlike in the
case of interface reaction control, where the
measured activation energy represents that for
atomic rearrangement in the relatively stiff/refrac-
tory phase (necessary to move interfacial dislo-
cations and thereby create vacancies), under
diffusion control, the measured activation energy
simply represents that for atomic diffusion along
the interface, which is a high diffusivity path.
Therefore, when vacancies are in plentiful supply,
interface diffusion control is likely to result in a
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low Q. rather than the high Q; values typically
observed under interface reaction control. Indeed,
Nimmagadda and Sofronis [47] calculated the
interfacial diffusion coefficient based on the creep
data of Rosler and co-workers [19,48], and con-
cluded that the activation energy for interfacial
diffusion in TiAl-Ti;AlC composites is signifi-
cantly lower than that for volume diffusion in the
matrix. Depending on the diffusing species, the
measured Q-value may be lower than that for
matrix volume diffusion even when sliding is
interface reaction controlled. This was noted by
Ignat and Bonnet [44], who found that dislocation
movement along interlamellar interfaces in the
Al-CuAl, eutectic is controlled by interfacial dif-
fusion of Cu. In the present experiments, the cor-
rected activation energy value for interfacial
sliding in the Pb—Ni system is close to, but some-
what higher than that for grain boundary self dif-
fusion in Pb. This is similar to the finding of
Ref. [47]. where the activation energy for inter-
facial diffusion was found to lie between those for
volume and grain boundary diffusion. Since Ni
has negligible solubility in Pb, and since the tra-
cer diffusivity of Ni in Pb (~44 kJ/mol, Ref. [49])
is much lower than the corrected Q; value, it is
inferred that @; represents the activation energy
for diffusion of Pb along the Pb-Ni interface.i In
the case of Pb—quartz, the corrected Q; is ~62 kJ/
mol. The interface is sharp because of the absence
of mutual solubility, and quartz being largely co-
valent, is unlikely to dissociate and contribute
Si** for diffusion along the interface. Therefore,
in this case too, Q; is thought to represent the ac-
tivation energy for Pb diffusion along the inter-
face. Because of the absence of mutual solubility
between Pb and quartz, the sharp Pb-quartz
interface appears to be a higher diffusivity path
than the Pb-Ni interface, which is comparatively
diffuse in character.

Since the activation energy values observed here
are consistent with those for interfacial diffusion
(and not the anomalously high values expected
when vacancies have to be created via dislocation
motion [41]), it seems that the interfaces for both
model composites have adequate sources and
sinks of vacancies. Interfacial sliding in both cases
is therefore diffusionally controlled, allowing the
use of a continuum approach. Significantly, the
continuum approach is able to account for the
presence of a temperature-dependent threshold
stress which is frequently encountered in diffu-
sional creep, but has so far been explicable only
by invoking an interface-controlled mechanism.
This approach is clearly attractive in situations

tAlthough Pb has limited solubility in Ni, the tracer dif-
fusivities of all elements in Ni are very low (activation
energies are well upwards of 100 kJ/mol [49]), and there-
fore @; cannot represent diffusion of Pb in Ni.
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where (1) an abundant supply of vacancy sources
and sinks are available at the interface, and (2)
when significant residual stresses (which result in
normal interfacial stresses) exist in the material.
Indeed, much of the early observations of
threshold stresses in diffusional creep were in dis-
persion strengthened systems containing a ceramic
dispersoid in a metallic matrix (e.g. Refs [40,42]),
where substantial differences in the coefficients of
thermal expansion (and therefore large residual
stresses) are expected between the constituent
phases. The present work suggests that such in-
ternal residual stresses may lead to threshold
effects even under diffusion control,

Although in the present work, the measured Q;
values were found to be low, it is possible to obtain
anomalously high activation energy values even
when vacancies are readily available for sliding to
be diffusionally controlled. Equation (10) may be
re-written in the form

A ] ] )cJT'
U=K1— Tlh]CXP[ — R’l},]

+ Kafti — 2:t.1}cxp[ - ET} (16)
where K, and K, are appropriate constants,
th = or(wh/2), and as discussed before, 0T~ Q)
when the interfacial periodicity A is less than the
grain size d. Taking the first derivative of In U with
respect to 1/7, we obtain

dnU g Lo
AYTY T BT ti—tm T — 2t

_ Qvol + Qi )
R

(7

Thus, when the contributions of matrix and inter-
face diffusion are of comparable magnitudes, the
apparent activation energy Q,,, obtained by plot-
ting In U vs 1/T at a constant applied 7; is larger
than @, even if 1y, is not temperature dependent.
In general, 7, is related to oy, which is temperature
dependent, and therefore, the activation energy
value obtained from a In U vs /T plot is likely to
be anomalously large. Additionally, in composites
or multi-phase alloys, the stiffness difference
between the constituent phases is likely to have
some contribution to og. making ¢, dependent on
the applied stress, and possibly altering the stress
dependence of U.

Thus, the results presented here suggest the
means to rationalize some of the observations as-
sociated with diffusional creep in multi-phase sys-
tems based on a continuum approach. Significantly,
the present experiments allow studying the creep
behavior of the interface in isolation from the rest
of the system, and therefore, arc believed to be
more closely representative of the interface per se
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than data available hitherto. Clearly, additional
work is necessary before it can be established
whether the proposed mechanism is capable of cap-
turing the principal characteristics of diffusional
flow in complete systems, when such flow is con-
trolled by interfacial sliding.

5. CONCLUSIONS

The interfacial creep characteristics in model
single fiber composite systems with two different
types of interface (sharp and diffuse) were studied
using a single fiber push-down approach. When the
elastic modulus of the fiber is much larger than that
of the matrix, this set up results in a nearly constant
interfacial shear stress along the specimen thickness,
provided: (1) the sample is thick relative to the fiber
diameter, and (2) the opening in the base plate is
only slightly larger than the fiber diameter. Use of
this experimental approach allowed isolation of the
interfacial creep response, without the convoluting
effects of associated matrix deformation.

Both types of interface were found to display dif-
fusional creep (n = 1), with a threshold stress that
decreases with increasing temperature. The acti-
vation energy associated with interfacial sliding was
found to be close to or less than that for grain
boundary diffusion in the lead matrix. High resol-
ution profilometry as well as microscopic obser-
vation of the matrix region immediately adjacent to
the interface suggested that most (if not all) perma-
nent deformation was associated with interfacial
sliding, rather than matrix deformation. This,
coupled with the low measured activation energy
values, suggested that interfacial creep in the pre-
sent experimental systems is interface diffusion con-
trolled.

A continuum model was utilized to account for
the effect of normal interfacial stresses (due to ther-
mal residual stresses and/or Poisson cffect) on the
kinetics of diffusion-controlled interface sliding. The
model showed that both matrix and interfacial dif-
fusion may contribute to interfacial creep, the stress
dependence of strain rate due to both matrix and
interface diffusion being linear. Furthermore, in
both cases, the effective interfacial shear stress is
reduced by a threshold stress which is directly re-
lated to the normal/radial compressive stress acting
on the interface, as well as the interfacial topogra-
phy. When interfacial diffusion is rapid compared
to matrix diffusion, the measured activation energy
for interfacial creep represents that for interfacial
diffusion, as in the present experiments. When the
matrix and interface diffusion contributions are
comparable, the apparent activation energy value
obtained by plotting In(displacement rate) against
1/T is expected to be anomalously high.

The experimental results were found to be in
qualitative agreement with the model. Based on the
model and experiments, it is hereby proposed that
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fiber—matrix interfaces undergo thermally activated
sliding via diffusion-controlled diffusional creep.
Significantly, all experimental observations, includ-
ing the temperature-dependent threshold stress and
the observed activation energy values, may be ade-
quately explained using this model, without invok-
ing interface reaction control of diffusional creep.
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APPENDIX A

Effect of temperature dependence of ty on measured Q
The experimentally obtained form of the interfacial
shear displacement rate is
U = K(zj — 10)exp[—0Qi/RT] (A1)

where 7; is the applied interfacial shear stress. Taking the
first derivative of In U with respect to 1/7, we obtain

iln U __Eiln(r,-—tn)_(g _ Oup
a(yT) " a(/T) R)™ R

(A2)

2.00 104 — ——T T
o} 42 1
s 1.6010*F ~
H L j
S L
= L LN
4L -

EI.ZD 10° ‘\:_\s Lead - Quartz

=] i -

' 8.0010° - T~

g & 5 ~o-

n L ]

g 400 10° - Lead-Nickel ]
I @0 - C-0-0--0-0-0--0 ]
D;_l PR IS S S T T W S T T N TR T T N T N1

280 300 320 340 360 380 400
Test Temperature (K)

Fig. 15. Deviation of the true activation energy ¢; from

the measured activation energy Q,,, within appropriate

test temperature regimes for Pb-Ni and Pb-quartz. This

deviation is due to the temperature dependence of the
threshold stress 7.

where Qqpp is the experimentally measured apparent acti-
vation energy, and ; is the truc activation energy.
Therefore
[Qapp—Qi] _dIn(mi—z) 1 3G~ 1)
R ToAYT) 1i—19 0(1/T)
1 31'0

T L - a/T) (A3)

at constant t;.

Based on the analysis in Section 3.3, the threshold shear
stress 7o may be represented as [equation (14)]

3
fn=2t7n(g)
A

where oy is the radial compressive stress acting on the
fiber—-matrix interface (primarily of thermal residual ori-
gin), and # and 2 are twice the amplitude and periodicity
of the interface, respectively. The temperature dependence
of 1y thus arises from that of the residual radial stress og.
Since 7 is observed to vary linearly with 1/7 (Fig. 10), o
may be represented as

A
oR = UREJ(T"‘ B)

where opg is the value of the radial residual stress at ambi-
ent temperature, and A and B are constants. The constants
A and B may be estimated using the following boundary
conditions:

or =opo at T=300K and o =0 at T=523K. (A6)

(Ad)

(A35)

Based on finite element analysis, the radial residual stres-
ses induced at the Pb—Ni and Pb—quartz interfaces during
cooling from an assumed fabrication temperature of 543-
300 K were computed to be about 8 and 10 MPa, respect-
ively. Combining equations (A4), (A5) and (A6), and
assuming that A/i=x0.1 [reasonable for both systems
according to Fig. 14(a)], we obtain

T = c-(%ﬂ 1.3)

where € = 0.5 for Pb-Ni and C = 0.6 for Pb-quartz.
Substituting equation (A7) in equation (A3) yiclds

(A7)

(A8)

T 1 11!
=0i— Qupp=R| sz —m+=
AQ = 0i = Qupp [704C T 704}
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where AQ is the deviation of the true activation energy O;
from the measured value Qypp.

Figure 15 shows a plot of AQ in the appropriate test
temperature regimes for the Pb-Ni and Pb-quartz sys-
tems, based on the data in Figs 11(a) and (b). From the
magnitudes of AQ and Q,,, (66 kJfmol for Pb-Ni and
52 kl/mol for Pb—quartz), it is clear that Q; lies between
68 and 69 kJ/mol for Pb—Ni and between 59 and 65kJ/
mol for Pb—quartz. The larger deviation of @; from Qypp
for the lead-quartz system is attributable to the larger

thermal residual stress present in lead—quartz at ambient
temperature, which in turn leads to a stronger temperature
dependence of the radial stress (and therefore the
threshold stress). Clearly, relatively little error is associated
with the determination of @; in Pb-Ni, and Q; can be
taken to be 68 kJ/mol. In Pb—quartz, because of the higher
thermal expansion mismatch, and hence the larger tem-
perature dependence of residual stress, the error is larger,
with the mean @; for the lead—quartz interface being
about 62 kJ/mol.



