Transient radiation from axially symmetric sources

Daniel Guyomar and John Powers
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A method is presented for the efficient calculation of radiated acoustic fields from a radially

symmetric source in a rigid baffle excited by an arbitrary time excitation. The technique is a modal

analysis based on the series expansion of the source velocity excitation in terms of either of two
bagic functions. Fach mode ig prnpaoatpﬂ bv the technigue with ranld convergence of the solution
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evident in 30 or less terms, allowing rapid and efficient computer-based solutlons to be obtained.

Several numerical field simulations are given.

PACS numbers: 43.20.Px, 43.88.Yn

INTRODUCTION

Different methods now exist for computing the tran-
sient radiation or diffraction of a rigidly baffled planar
source'® in lmear, homogeneous media. These techniques
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ty pluauy lcquuc the use of fast Fourier transforms { FF
or the evaluation of difficult integr. t

transducers used in acoustical applications are of radial sym-
metry. Such symmetry allows techniques to be developed
that increase the calculation efficiency of these techniques.
Stepanishen,® Meideros and Stepanishen,’ and Greenspan®
have developed series expansions of the solutions for axial
symmetric sources that require evaluation of integrals over
limits with geometrical interpretations. The method pre-
sented in this paper is also based on the expansion of the
source excitation into an infinite series over a set of orthogo-
nal basis functions, where each of these basis functions corre-
sponds to a vibrational mode of a circular transducer. By
using the spatial frequency domain, however, a simpler

ais. A& 2aigt Ial

s ha £ d that oll H 3
expression can be found that allows rapid evaluation of the

fields with a digital computer. The basic effect of propaga-
tion is to redistribute the amplitudes of the different modes.
Through the development of a time-varying transfer func-
tion, it is possible to show that the redistribution is from the
higher-order modes into the lower-order modes. As a conse-
quence, the field can be simply calculated by summing the
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plitudes (as affected by propagation).

). BASIC THEORY
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Using the resuit of diffraction theory, one can express
the acoustic velocity potential ¢ (x, y,z,¢) in terms of the nor-
mal velocity v, (x, ,0,7) on a planar emitting surface imbed-
ded in a rigid baffle as'?

B(x, y,2,t) =v,(x, »,0,t) »*% [6(ct — R)/27R ], (1)
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and R = (x? + y* + z%)"/2 For a separable velocity given by

U,(x,}’.O,t) =T(t)S(x,}’), (2)

we have
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¢ (x, p,z,t) = 7(2) * {s(x, p) ** [6(ct — R)/27R ]}.
t xy
(3)

This latter expression is the convolution of the time excita-

tion with the spatial impulse response, - A (x, y,z,¢), given as
L/ e\ ofe N ss TO7 Dy /A_D 1 ‘A
(X, y,z,f) =5{(x, y) % [o(¢f — R)}/LTR |. (4)

The spatial impulse responses of a free boundary and a resil-
ient boundary can be expressed in terms of the spatial im-
pulse response of the rigid boundary case.’

To perform field calculations, it is more efficient to work

in the enatial freauencv domain ncine £ and f to exnress
in ¢ spatial frequency gomain using J, ang j, 10 €Xpress

the spatial frequencies. To do so, we will decompose the ele-
mentary solution [i.e., the latter part of Eq. (1)] by using
the properties of the Dirac delta function. Recalling that
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expression for the outward-traveling wave as
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S(Ct R) =5[r—(02t2-—22)1/2]/( (Ct zl) ).
R ct
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Taking the two-dimensional spatial transform (and recog-
nizing that it reduces io the Hankel transform due to the
radial symmetry), we have®

DICs s DN/DY M _r.2:2 2x1/2v 7wy -\
Bio(ct—R)/R | =Jy p(cit”—2z") '"]H(ct — Z),
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where 8| - j is the Hankel transform operator, J, is the zero-
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order Bessel function, and p= (fi+fDV
The spatial transform A( .. f ,z,t) of the qnatlal im-
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pulse response of Eq. (4) can be written after ubstltutlon of

Eq. (7) as

h(f. f,20)
=§ .lf; Jf_‘y

where the multiplicative constant of 1/27 has been dropped
for simplicity. (All computer-simulated fields will be nor-

malized to the maximum value of the field.) The transfer
function Jy[ p(c®? — 22)"/?]H(ct — z) is now seen to be a

2)Y21H(ct —z), (8)

Yol p(c?t? —
sl o )

© 1986 Acoustical Society of America 273



time-varying spatial filter acting on the modulus of the
source spectrum. This spatial filter is shown in Fig. 1. As
time increases, the J, function decreases, thereby enhancing
the lower spatial frequencies. This wiil cause the fieid to be-
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h(pzt) =3(p)ol p(c*? —22)?1H(ct —2). (9)
Computing the spatial impulse response from Eq. (8) or Eq

velocity, multiplication by the transfer function, and an in-
verse transform of the product to obtain the field. For radial-
ly symmetric sources, however, the number of operations
can be reduced and the field can be obtained without any
Fourier or Hankel transform operation.

It is true, mathematically speaking, that a spatially

bounded function can always be decompos\%‘ into a series

expansion over a set of orthogonal basis functions. The wave

that arrives at a plane located a distance z from the source
plane will be spatially bounded. Due to causality, we know
that the wave will not reach a point on the observation plane
located a distance , from the center of the observation plane
before a time #,, given by

to=[22 + (ro — 4)*]'?/c, (10)

where 4 is the radius of the source and ¢ is the sound velocity.
For any given time ¢, this equation tells us that the spatial
domain of the wave in an observation piane iocated a dis-
tance z from the source will be between —r, and + 7,
where

1"*+ 4. (i)
For any given z and ¢, we need an expansion of the wave over
the interval [0,7,]. Since circular symmetry is present, the
expansion is over Bessel functions and we can find a
that represents the spatial impulse response of the
h(rz;p), as
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FIG. 1. Time varying transfer function for impulse temporal excitation:
Large amplitude curve has (¢*r? — z%)"/? = 0.0458 and small amplitude

........ (242 2\1/2 _ anean
curve has (¢’1? — 22)''* = 0.0830.
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K7, (12)
where the coefficients 4, are functions of z and ¢. The values
of a; depend on the particular orthogonal basis functions
chosen.

Two sets of orthogonal basis functions can be prohtably
considered®'® for circular symmetry. They correspond to

the roots of the following equations:

Jola;7) =0 (13)
and
Biro J o (Birg) + §Jo( Birg) =0, (14)

whereJ ( is the derivative of J, and £ is an arbitrary constant.
The first set of eigenvalues leads to a Bessel expansion, and
the second leads to a Dini expansion.®'° Both sets are con-
sidered below.

The orthogonality relation is
2 g s .
f"’,y fre YT (v 3\A» Ir‘z"ll(a" r0)/2, ifi =J r1en
J FYN&; 7 Jvor\&; 7)ar = l [P (1)
0 01 lfl ?é j’
where a; satisfies the relation
Jo(a, ~0) = 0. (16)

onahty, the evaluation of the series expansion
the spatial impuise response is
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coeffici ents for
h, =2 J( rh(r)Jy(a; r)dr/ry J3 (a, ry) (17
0
and the series expansion is represented by

h(r,0,t) = z h, Jy(a; r),

i=1
A similar expansion can be found for the radial velocity
distribution at the source. Expanding agam over the same
integral [0,r,], we have

0<r<r,. (18)

s(r) = ol

ANE
2, Sivo
i=1

0<r<r, (19)

where s, are the weighting constants given by

5 =2 f " rs(P) ol /R T2 (a, 1) (20)
0

B. Dini expansion

Different sets of eigenfunctions can be generated for the
eigenvalues of Eq. (14), depending on the value of £. For
simplicity, we will assume & = 0. Hence Eq. (14) will reduce
to

J1(Bi rp) =0. 21
The orthogonality condition is

rro (2 J2(B r)/2, fori=;j
J, - r)J, ryrdr={070 o . "’_
JO o(BiNJo(B; 1) iO, fori # j.

(22)
This leads to an expansion of the spatial impulse response
expressed as



h(r9z)t) = z h JO(B r)} (23)

s(r,0,t) = z S; Jo(ﬂi r), (25)
i=1
where J,( B; r,) = 0 with
;=2 [ rs(rdo( B, /R T3 B ) (26)

Il. EFFICIENT FIELD CALCULATIONS

We have established the fact that the spatial source ve-
locity term and the spatial impulse response can be expressed
on the interval [0,7,] as a series of the form

s(r0,2) = % s: Jo(v; r),
2. SiJolV;

i=1
where ¥, are the roots of either Eq. (16) or Eq. (20). We
now seek a computationally efficient way to relate them. The
Appendix shows ihat

h(rzt)

(27)

Equation (28) is the desired result that shows how each
mode of the source is radiated. The

Jo[7: (P2 =222 )Jo(y: 1)

term is a time-varying propagator that decreases the ampli-
tude of the ith mode of the expansion. [The H(ct — z) term
ensures causality.] The filter, therefore, serves to enhance
the lower-order modes. As time increases, the argument of
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e mtenng function mcreases, IaVOl'lIlg the lower-order
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Two special cases can be identified.5® For ¢t =z, the
temporal impulse response becomes

h(rzt) = z s; Jolyir) (ct=2z),

I, NUMERICAL SIMULATIONS
TTaiomea D £700 n_- L1 2e mmaile: amenonzidnd Toacw oL
USINg LAf. (40, UIC HCIU IS Cadlly COINnpuied. ror cacn
value of z, one finds the value of 7, for each time of interest

from Eq. (11). One then finds N zeros of Eq. (16) or Eq.

(21). The number N required depends on the convergence of
the field. Thirty values were arbitrarily chosen as adequate

275 J. Acoust. Soc. Am., Vol. 79, No. 2, February 1986

; M
56| N
H. /////A
S I’/////////////
///////////////////ﬁMMM
W& msnrg NCE i

FIG. 2. Temporal impulse response for a circular piston transducer using
the Bessel expansion (4 = 3.4cm, z=1cm).

for these computations (The choice was borne out by com-
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done from either Ea. (20) or Ea. (26) and then the sum of
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4 =1
the products in Eq. (28) is found. While the summation is
theoretically infinite, the fast convergence of the series en-
sures that only a few terms of the series are required to evalu-
ate the fields with sufficient accuracy. The response to a non-
impulse temporal excitation requires evaluation of the
temporal convolution of Eq. (3).

Tha {"n"r\nnnn nlate have he,
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along the radial ax1srz_mc_] ,5‘
pressed in terms of the source diameter 4. All of the field
patterns are observed in a plane at a distance of 10 cm from
the source plane. The source radius is assumed to be 1.7 cm.
The time axis begins at # = z/¢ (i.e., when the first portion of
the excited wave arrives at the observation plane). The aver-
age CPU computer time was about 6 s on an IBM 3033

mamframe computer.
Figures 2 and 3 show the field calculated for the tempo-
ral impulse response of a circular uniformly excited trans-
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FIG. 3. Temnnral impul
the Dini expansion (A4
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ducer using the Bessel and Dini expansions. There is no ap-

parent difference between the representations. Despite the
high spatial frequency content of the circular step wave at
t = z/c, we note that the limited series of 30 terms still de-
scribes the field quite well. The effect of the truncation of the
series is apparent at that location in the form of the “ringing”
of the field in the regions of discontinuity (due to the Gibbs

1 A A,
phenomenon). Astime progresses and the high-order modes

are filtered out, the convergence becomes better. The solu-
tions of Figs. 2 and 3 compare well with closed-form solu-
tions for the uniform piston.!->6-8:10-13

It is worth noting that there are two stages in the wave
propagation through an observation plane as time increases.
First, an exact replica of the shape of the source field is re-

1 J— 1 1 ima nracaadce
ceived (at t =z/c), and then is distorted as time proceeds.

After a while the field splits into two portions separated in
space. These are the “edge waves”'"'? used to describe the
wave propagation for the larger values of time. These waves
are observed to separate further as time progresses.

Figure 4 shows the field calculated with the Dini expan-
sion for a spatial excitation of the type

s(r)y =J,(7.66r/A4), (31)

corresponding to the first mode of a vibrating free circular
membrane. The similarity between the source distribution
and the field along the radial axis and the propagation axis is
evident.

Figure 5 gives the temporal impulse response for a trun-
cated Gaussian source excitation as calculated with the Dini
expansion. The 1/e point is located at » = 0.981 cm from the
center. Since the excitation consists of primarily low spatial
frequencies, the effect of the propagation spatial filter on the
field shape is small.

While the velocity potential is a useful quantity, it has
little physical significance. One can obtain the acoustic pres-
sure p(x, y,z,t) from the potential by the relation

i o) ad .
P(x, y.2,t) =po——, , (32)

A

1.00

3

It

A

iy

VELOCITY POTENTIAL
-0.250.00 0.25 0.%0 0.7%

3

FIG. 4. Temporal impulse response for a circular transducer with a
J,(7.66r/4) spatial excitation using the Bessel expansion (4 =3.4 cm,
z=10cm).
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FIG. 5. Temporal impulse response for a circular transducer with a truncat-
ed Gaussian spatial excitation [exp — 12(r/A4)?] using the Bessel expan-
sion (4 = 3.4cm, z = 10 cm).

where p, is the density of the medium. Assuming axial sym-
metry, the acoustic pressure at an observation point will be
p(rz,t) =cpy/(’t? — )2

X Z S; J1[7’,(C t? )I/Z]Jo(% r). (33)

i=1
This equation provides a direct way to compute the output
pressure distribution from the input velocity distribution.
The computations are as easy and fast as the computation of
the potential.

_ Figure 6 shows the pressure pattern radiated by a circu-
lar piston source as calculated using the Bessel expansion.
The temporal differentiation of Eq. (32) is evident in the
resultant pressure field.

IV. ARBITRARY TIME EXCITATION

For a time excitation other than an impulse, one must
convolve (in the time domain) the temporal impulse re-
sponse with the time-varying excitation function as in Eq.

FIG. 6. Transient pressure wave from a uniform circular piston excited by a
pulse (of duration 0.024 s) using the Bessel expansion (4 = 3.4cm,z = 10

cm),

t
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(3). The convolution can be done either in the space-time
domain or in the spatial frequency-time domain as the order

of the inverse transform and the temporal convolution calcu-
lations is interchangeable

A method for rapidly calculating the acoustic potential
field or the acoustic pressure field from an axially symmetric
source has been presented. The method is based on two pos-
sible series expansions of the source velocity spatial distribu-
thl’l The expans1ons are rapidly convergent and therefore

ntegrals. All operations are carried out in the s
The sampling intervals in time and space are independent of
each other and the field solutions can be represented as de-
sired.
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APPENDIX

In this Appendix, we wish to relate the spatial impulse
response A (r,z,t) to the coefficients s; of the series that repre-
sents the spatial term of the input velocity distribution. We
will find this expression for the Bessel expansion. The deriva-
tion for the Dini expansion is similar. We have the Bessel
expansion for 2(r,z,t) from Eqgs. (18) and (17):

h(rzt) = Y h; Jo(a, r), 0<r<ry, (A1)
frned
where
7o
n; = 2J‘; I‘I’T(I’)Jo(&', 7)&’1"/1’(2) J% {ai 1"0). (A2)

Since A(r) is O for r > r,,, we can change the upper limit of the
integral to co:

0
’ (C g im » 2
h = LJ n{ryola; ridr/rg J i A3)
o
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i a; 7yl

The Hankel (or Fourier—Bessel) transformf( p) of afunc-
tion f (r) is defined as

f(p)=BLf ("] (A4)
ro
= J rf (r)Jo( pr)dr (AS)
(V]
and hence Eq. (A3) can be written as
hy =2k(a,) /% T3 (a; 7o) (A6)
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Since s(7) is O for r > 4 and since r,> A by Eq. (11), we can
show in similar fashion that the coefficients of the source

CXP?J}SIOH are g}"’CI‘, b"

s, =25(a;) /5 J? (a, o) (A7)
Finding §(;) from this equation, we have
Sa;) =rh Ji(a; rys;/2. (A8)

From Eq. (9), we have an expression for the Hankel trans-
form of h(r,z,t) given by

R(pzt) =5(p)Wol p(cit? —22) 2 |H(ct — 2). (A9)
Substituting (A9) into (A6) and letting p = @, as indicated,
Eq. (A6) becomes

25(a; Wyl a; (*t? — 2%)*|H(ct — 2)

; - (A10)
s Ji(a; ry)
Using {(A8), we have
by =s; Jo[a,; (12 — )" H(ct —2) {(All)
and Eq. (A1) becomes
_ - 2,2 _2y1/2
h(rzt) = 'Zl s; Jola; (¢t —27)"""]
=
X H(ct —2)Jo(a; r). (Al12)

This is the desired relation. The Dini expansion will produce
the same result except that B, will appear instead of a;.
Equation (A12) is repeated in the text as Eq. (28).
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