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Introduction

Acoustic arrays can be used for imaging or direction finding. A critical measure
of the array’s capability is its resolution; here, we will be concerned with the angular
resolution of the array, that is, its ability to measure the angular bearing of the target
from the array axis. The optimum symmetrical number system (OSNS) can be used to
design a simple interferometric acoustic array and to process the data from that array to
achieve high resolution angle-of-arrival information. Small angular resolutions may be
obtained from a few elements that are spaced a few to several wavelengths apart from
each other. The OSNS scheme is based on decomposing the acoustic spatial filtering
operation into parallel sub-operations that are each simpler to perform. The results
from the parallel operations are combined into an overall high-resolution result. The
approach that we use is similar to the approach used to design an RF direction-finding
system based on the same concepts [1-5].

Figure 1 indicates the array geometry. Three array elements are indicated (i.e., there
are two interferometers); their spacing is determined (from the technique described
below) to be 1.50\ and 2.75) from the end element, where A is the nominal wavelength
of the source. (More array elements may be added, if desired, and different spacings
can be prescribed if the element spacings cannot be physically realized.) The angle of
arrival, ¢, is measured from the perpendicular to the array, as shown, and spans a range
between —90°and +90°. The array elements are receivers that are omnidirectional in
the right half-plane. The spacing of the elements and the processing of the signals from
them depends on the principles of the optimum symmetrical number system; we now
offer a short review of those principles before describing the system design.

Review of Optimum Symmetrical Number System (OSNS)

We begin by choosing N pairwise relatively prime integers (i.e., numbers taken in
pairs that contain no common divisor other than 1); these N integers constitute the
moduli of system, my, ms,...,my. (For a simple illustration, we choose N = 2 with
my = 3 and my = 4.) For each modulus, m;, we can generate the sequence,

T =10,1,2,...,m;i—1,m; —1,...,2,1,0,0,1,.. ] . (1)
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Figure 1: Array geometry.
Index | 01 2 3 4 5 6 7 8 9 10 11 12
m=3(0 1 2 2 1 0 0 1 2 2 1 0 0
me=4(0 1 2 3 3 2 1 0 0 1 2 3 3

Table 1: Sequences formed from members of two-moduli OSNS (m; = 3 and ma =
4).

Table 1 shows the two sequences for our example.

We can consider the index value (i.e., the top row of the table) as an ever-increasing
input signal. We note that the values for any particular modulus “fold” as the index
continuously increases. In the m; = 3 row of Table 1, the sequence rise to a maximum
of two, then falls back to zero, and then rises to two again. This pattern repeats every
six values as the index (the top row of the table) continues to increase. The other row
follows the pattern of rising and falling but with different maximum values and, hence,
different periods. The my = 4 row reaches a maximum of three and has a period of
eight. From this we deduce that the sequence period is 2m; and reaches a maximum
value of m; — 1. (This folding is reminiscent of the folding of a continuously varying
phase, every 27 radians.)

As we count up, we note that no column of values is duplicated until we get to an
index of 12 (that duplicates the index 11 column). Hence, the unambiguous dynamic
range for our example is 12 (i.e., there are 12 unambiguous states before repetition
begins. This value of dynamic range, M, is found from M = my-mqy---my = Hfil ™m;.
For our example, this would be M = 3 -4 = 12 levels.

Figure 2a illustrates the transfer function of the folding circuit that is used to
convert the wide dynamic range of the input signal into a small dynamic range output
signal. Parallel folding circuits with differing periodicities remove the ambiguity of
the single circuit. The folding transfer functions do not need to be linear; they can
be nonlinear. Similarly they can have both positive and/or negative values and can
extend into negative values of the input function. Examples of folding circuits include
phase detectors (mixer followed by a lowpass filter) and Mach-Zehnder electro-optic
modulators.
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Figure 2: (a) Transfer function of typical folding circuits and (b) folding circuits
followed by array of comparators functioning as counting circuits.

Figure 2b shows the folding circuits followed by a bank of comparators. The com-
parators indicate the range of the corresponding folding-circuit output voltage as a
“thermometer” code (i.e., the comparators successively turn on and then off as the
input signal increases). Combining the comparator outputs in a logic-gate array allows
the user to determine a digital representation of the input value. There are m; — 1
comparators for each channel, each with a different threshold voltage. The threshold
voltage T;; for the j-th comparator of the i-th channel is found by dividing the input
signal dynamic range into M equal segments and using the transfer function to find
the corresponding output value, which is the desired threshold value.

Direction-finding System Concept

Our simple two-modulus example produced only 12 quantization levels, too few for
practical use. If we choose our moduli as m; = 6 and my = 11, we will obtain 66
levels, a value with more utility. For each modulus, the periodic sequence described
above can be constructed. These sequences have periods of 2m; (i.e., 12 and 22, for our
example) and the combination of all sequences extends unambiguously for M values
where M = mymgy...my =611 = 66, in our example).

The spacings of the N array elements (measured from a base element) are deter-
mined by d; = M\/4m; where X is wavelength of the source [5]. For our conceptual
system, the element spacings from the base element are 2.75\ and 1.5\.

The signal processing of the system (shown in Fig. 3) measures the phase of the
i-th element relative to the base element. The phase detectors consist of a mixer and a
low-pass filter and produce a (normalized) output voltage of v; = cos(2d; sin ¢/\) where
¢ is the angle of arrival with values between -90°and 4+90°. The phase-detector voltage
is a periodic waveform when plotted against sin¢. While the voltage out of a single
phase detector has too many ambiguities to measure the exact phase, the voltages out
of multiple phase detectors, each with a different period when plotted against sin ¢,
can be used to resolve the ambiguities and produce a more exact measurement. In



particular, the range of sin ¢ from —1 to +1 (corresponding to the range of ¢ values
of —m/2 > ¢ < +m/2) can be subdivided into M different resolution cells. Hence, the
resolution of sin ¢ is 2/M = 2/(mymy---my). For our example, this value would be
2/66 = 0.030. Each resolution cell for sin ¢ can then be transformed into a (nonuniform)
resolution cell for ¢.
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Figure 3: Block diagram of signal processing.

The signal processing required to perform the calculation of the angle of arrival
consists of phase detectors feeding a bank of m; — 1 comparators. (For our example,
there are 5 and 10 comparators in the two comparator banks.) The threshold voltages
of each comparator are set in accordance with the OSNS theory with output of each
comparator bank being a thermometer code representing the value of the input in
terms of the corresponding OSNS sequence. A digital processing circuit, consisting of
an EPROM or an ASIC, converts the thermometer-code output of each comparator
bank into a Gray-code output and then combines all of the Gray-code outputs into the
high-resolution decimal representation of the angle of arrival (AoA).

The threshold voltages of the comparators are found as follows. We know that there
are m; — 1 thresholds to find for a given modulus, m;. In addition, the range of sin ¢
is divided up into M even increments of size, A(sin¢) = (1 — (—1))/M = 2/M (where
we recognize that the extreme values of sin¢ are 1 and —1). For our example, we are
seeking five threshold values for m; = 6 and ten threshold values for my = 11. The value
of the increments of sin ¢ is 0.0303, as described, and, so, the values of (sin¢); at each
increment are —141(0.0303), —1+2(0.0303), —1+3(0.0303), ..., —1+ M (0.0303) = +1.

For m; = 6, we know that the phase-detector output voltage, v,;, will be

2md
Upp = COS < 7; Lsin ¢> = cos (5.57sin @) , (2)

where dy = MM/4my = 2.75)\.



Similarly, for my = 11, we find that the phase-detector output voltage, v,s, will be

Upay = COS (27;d2 sin qzﬁ) = cos (3msing) , (3)

where dy = M\/4my = 1.50\. Table 2 shows the values of (sin ¢); for the first eleven
increments and the corresponding values of v,; (my = 6) and v,2 (me = 11). Ignoring
the repeated values and the values of +1 and —1, we find the five required threshold
values for m; = 6 to be —0.5, —0.866, 0, 0.5, and 0.866. Similarly, we find the ten
threshold values for ms = 11 as —0.959, —0.841 —0.655, —0.415, —0.1423, 0.1423,
0.415, 0.655, 0.8141, and 0.959. The computed threshold values are also valid if one
converts each value of sin ¢ into the corresponding values of ¢.

Figures 4a and b show the phase detector voltage (normalized) for the m; = 6
case plotted against sin ¢ and ¢, respectively. Superimposed on the plots are the five
thresholds of the corresponding comparators. Similarly, Figures 4c¢ and d show the
normalized voltages for the my = 11 case. The corresponding threshold voltages are
also superimposed on the plots.

The predicted resolution of the angle-of-arrival is shown in Fig. ba. The quantity,
sin ¢, is evenly divided into M resolution cells, resulting in a nonuniform division of ¢
that is evident in part (b) of the figure. The errors in sampling the phase (deviations
from the ideal straight-line plot) are also shown in the figure. The errors in the mea-
surement of sin ¢ are uniform at 0.0303 over the entire range of values. The errors in ¢
are 1.73°(0.0303 radians) for small values of ¢ (broadside) and increase to a maximum
error of 14.25°(0.249 radians) for ¢ equal to £90°(end-fire direction).

Summary

We have presented the concept of designing an acoustic array and its signal process-
ing based on the properties of the Optimum Symmetrical Number System (OSNS). The
folding properties of the OSNS can be applied to the folding properties of the electronic
phase detectors in the array processing system. Table 3 summarizes the relations be-
tween the OSNS assumptions and the array system properties. The number of moduli,
N, determines the number of elements (/N + 1)and the number of processing channels.
It also contributes to the total number of comparators required. The product of the

J (Sin ¢>] Upl Up2

1 —-0.970 0.5 —0.959
2 —0.939 | —0.866 —0.841
3 —0.909 -1 —0.655
4 —-0.879 | —0.866 —0.415
5 —0.848 —0.5 —0.1423
6 —0.818 0 0.1423
7 —0.788 0.5 0.415
8§ —0.757 | 0.866 0.655
9 =0.727 1.0 0.8141
10 —0.697 | 0.866 0.959
11 -0.667 0.50 1

Table 2: Computed values of (sin ¢); and the corresponding values of phase-detector
voltage, vy for my; = 6 and vy for ma = 6. These voltage values represent the
thresholds of the comparators.
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Figure 4: (a) Normalized response of phase detector vs. the sine of the angle of
arrival for m = 6, (b) normalized response of phase detector vs. the angle of arrival
for m = 6, (c) normalized response of phase detector vs. the angle of arrival for
m = 11, and (d) normalized response of phase detector vs. the angle of arrival for
m = 11. Threshold voltages for the corresponding comparator banks are shown as
horizontal lines.

moduli determines the dynamic range of the system, M. This property determines the
element spacing and the angular resolution. Generally, for a given resolution, one can
tradeoff the overall length of the array against the number of channels (and the number
of comparators).
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Figure 5: Simulated angle-of-arrival results and error for (a) sin¢ and (b) ¢.



Property Value
Moduli mi, Mo, ..., my
Number of processing channels N
Dynamic range M =TI¥, m;
Number of transducers N+1
Element spacing (from end) di=MMN4m; (i=1...N)
Resolution of sin ¢ 2/M
Resolution of ¢ (degrees) ~ 180/M (for small ¢)
Number of comparators for i-th channel m; — 1
Total number of comparators N (my—1)

Table 3: Summary of system properties.
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