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ABSTRACT

Proper understanding of the results of acoustic imaging, tissue characterization, and
tomography utilizing pulsed ultrasound requires inclusion of the diffraction effects of the
pulsed wave. A method is presented for the efficient calculation of pulsed ultrasonic waves
from an axially symmetric source mounted in a rigid baffie and excited with an arbitrary time
excitation. The technique uses a spatial modal analysis based on a series expansion of the
source velocity term in either of two sets of basis functions. The choice of basis functions
iz arbitrary. The expansion is equivalent to a decomposition of the excitation into a set
of propagation modes. Each mode is then simply propagated by the technique with rapid
convergence of the solution that requires evaluation of approximately thirty (or less) terms
of a series, allowing rapid computer-based solutions of the field at an object plane or at a
receiver plane. Several numerical solutions are given.

INTRODUCTION

Different methods now exist to compute the transient radiation or diffraction of a rigidly
baffied planar source in linear, homogeneous media (Stepanishen, 1971 and 1981; Harris, 1981a
and 1981b; Guyomar and Powers, 1985 and 1986; Meideros and Stepanishen, 1984; Greenspan,
1979). These techniques typically require the use of fast Fourier transforms (FFTs) or the
evaluation of difficult integrals. A large fraction of transducers used in acoustical applications
possess radial symmetry. Such symmetry allows techniques to be developed that increase the
the calculation efficiency of these techniques. Stepanishen (1981), Meideros and Stepanishen
(1984), and Greenspan (1979) have developed series expansions of the solutions for axial sym-
metric sources that require evaluation of integrals over limits with geometrical interpretations.
The method presented in this paper is also based on the expansion of the source excitation into
an infinite series over a set of orthogonal basis functions where each of these basis functions
corresponds to a vibrational mode of a circular transducer. By using the spatial frequency
domain, however, a simpler expression can be found that allows rapid evaluation of the fields
with a digital computer. The basic effect of propagation is to redistribute the amplitudes
of the different modes. Through the development of a time-varying transfer function, it is
possible to show that the redistribution is from the higher-order modes into the lower-order
modes. As a consequence, the field can be simply calculated by summing the significant lower
order modes after calculation of their amplitudes {as affected by propagation).



THEORY

Using the result of diffraction theory, one can express the acoustic velocity potential,
#(z,y, z,t), in terms of the normal velocity, vs(z, y,0,t), on a planar emitting surface imbedded
in a rigid baflle as (Stepanishen, 1971; Harris, 1981a)

#(z,0,2,) = velz,3,0,0)55: L) (1)

where * indicates convolution over the indicated variable and R = /22 + y2 + 22.
For a separable velocity given by

V:(z’ ¥,0, t) = r(t)a(z, V) (2)
we have

$le,5.) = 10 [olev)5 2G| )

This latter expression is the convolution of the time excitation with the ’spatial impulse
response’ (Stepanishen, 1971; Harris, 1981a), h(x,y,z,t), given as

ey, 2,8) = olz,9)3 25 “

The term on the right side of the convolution is the Green’s function for lossless propagation
(Stepanishen, 1981) from a planar source in a rigid baffle.

To perform field calculations it is more efficient to work in the spatial frequency domain
using f; and f, to express the spatial frequencies. To do so, we will decompose the Green’s
function by using the properties of the Dirac delta function. Recalling that

0 = . ©

where r = /22 +y2 and r; are the N seros of f(r), we can write an expression for the
outward-traveling wave (neglecting multiplicative constants) as

(ct - B) _ b{r - T —77) o)
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Taking the two-dimensional spatial transform (and recognizing that it reduces to the
Hankel transform due to the radial symmetry), we have (Erdelyi et al., 1954)

{6‘“ } (o /B = 2)H( (7)

where B[] is the Hankel transform operator, Jo is the zero-order Bessel function, and p =
\/f3 + f3. This transform of the Green’s function is the ’propagation transfer function’.

The spatial transform, ix( [z, Iy, t), of the spatial impulse response (Eq. 4) can be written
after substitution of Eq. 7 as :

B fe, fyr2,8) = 8(fz, fy)do(p\/c382 — 22) H et - z) (8)

where the multiplicative constant of 1/2x has been dropped for simplicity. (All computer-
simulated fields shown in the results will be normalized to the maximum value of the field.)
The transfer function, Jo(p/¢2t2 — 22) H{ct - z), is now seen to be a time-varying spatial filter
acting on the modulus of the source spectrum. As time increases, the Jo function decreases,
thereby enhancing the lower spatial frequencies. This will cause the field to become smoother
as time advances (Guyomar and Powers, 1985 and 1986).



For a radial distribution of source velocity, s(r), Eq. 8 can be written as

h(p,2,t) = §(p)Jo(p\/c3t2 — 23)H(ct - 2) 9)

Computing the spatial impulse response from Eq. 8 or Eq. 9 normally requires performing
a transform of the source velocity, multiplication by the transfer function, and an inverse
transform of the product to obtain the field. For radially symmetric sources, however, the
number of operations can be reduced and the field can be obtained without any Fourier or
Hankel transform evaluations.

It is true, mathematlcally speakmg, that a spatially bounded function can always be
decomposed into a series expansion over a set of orthogonal basis functions. The wave that
arrives at a plane located a distance z from the source plane will be spatially bounded. Due
to causality, we know that the wave will not reach a point on the observation plane located a
distance ro from the center of the observation plane before a time to given by

v z7 + i - A)?
to = i~ (10)
where A is the radius of the source and ¢ is the sound velocity. For any given time t, this

equation tells us that the spatial domain of the wave in the observation plane located a
distance z away from the source will be between —rp and ro where

0 =1\et2-22+ A (11)

For any given z and t, we need an expansion of the wave over the interval [0,ro]. Since
circular symmetry is present, the expansion is over Bessel functions and we can find a series
that represents the spatial impulse response of the wave, h(r, z,t), as

h(r,z,t) = E hiJo(a;r) for0<r<rg (12)

=1

where the coefficients h; are functions of z and t. The values of a; depend on the particular
orthogonal basis functions chosen.

Two sets of orthogonal basis functions can be profitably considered for circular symmetry
(Erdelyi et al., 1954; Guyomar et al., 1983). They correspond to the roots of the following
equations,

Jo(aire) =0 (13)

and

BiroJo(Biro) + £Jo(Bire) = 0 (14)

where JJ is the derivative of Jy and £ is an arbitrary constant. The first set of eigenvalues
leads to a Bessel expansion, and the second leads to a Dini expansion. Both sets are considered
below.

1) Bessel expansion

The series expansion of the spatial impulse response is given by

h(r,0,t) = Zh,-]o(a.-r) for0<r<r (15)
=1

where the evaluation of the series coeflicients is

2 fo° rh(r)Jo(air) dr
hi = r3J¢{airo)

and a; satisfies the relation,



Jo(airo) =0 (17)-

A similar expansion can be found for the radial velocity distribution at the source. Ex-
panding again over the same interval [0, ro}, we have

&(r)= ia.-]o(a.-r) for0<r<n (18)

s=1

where s; are the weighting constants given by

2= 2 [ ra(r)Jo(air) dr

; 19
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2) Dini expansion

Different sets of eigenfunctions can be generated for the eigenvalues of Eq. 14, depending on
the value of . For simplicity, we will assume that ¢ = 0. Hence, Eq. 14 will reduce to

J1(Bire) =0 (20)
The expansion of the spatial impulse response is

o0

h(r,z,t) = hiJo(Bir) (21)
X
with
2 [o° rh(r)Jo(Bir) dr
.= 22
R ¥ )
A similar expansion is obtained for the input velocity distribution,
8(r,0,t) = » a;Jo(fir) (23)
=1
with
o 2f0A ra(r)Jo(Bir) dr
R 37117 (24)

EFFICIENT FIELD CALCULATIONS

We now want to find a series expansion for the spatial impulse response in terms of the
series coeficients s; of the spatial excitation s(r). The derivation is done in terms of the Bessel
expansion. The Dini expansion would be similar except that f; would appear insread of a;.
The Bessel series expansion of the spatial impulse response is given by Eq. 15,

h(r,0,t) = Z hiJo(a,r) for0<r<r (25)
=1 .

with expansion coeflicients given by Eq. 16,
2 [o° rh(r)Jo(air) dr

b= T airo) (26)
Since h(r) is zero for r > ro, we can replace the upper limit by co. Equation 26 becomes
w .
B = 2 [y rh(r)Jo(air) dr. (27)

réJZ(a;ro)



The Hankel transform f(p) of a function f(r) is defined by the integral,

Fey= [ rrte)ator) ar (28)
and, so we can write Eq. 27 as

_ 2h{ay)
R EHEED) (29)

Similarly since s(r) is zero for r > A and since ro > A, we can write the series coeflicients a;
as

_ 25(0.‘)
%= E T 1%0)

We can solve this equation for #(a;) as

(o) = s;r3JE (airo)

s (31
From Eq. 9, we have the expression for the Hankel transform of the spatial impulse response,
h(p,2,t) = 3(p)Jo(p/c2? — 22)H(ct - 2) (32)
Substituting Eq. 32 into Eq. 29 and letting p = a;, as indicated, Eq. 29 becomes
B = 25(a;)Jo(ai\/c%t2 — 22 H(ct — z) (33)
o roJi{airo)
Substituting Eq. 31 we get
hi = &;Jo(a;\/e%t2 — 22)H(ct - 2) (34)
and Eq. 25 becomes
hir,z,t) = Za.-Ju('y,-\/ c2t? — 22)Jo(~r)H(ct — 2) (35)
=1

where 75 1s ay for this Besacl cxpansion or §; for the Dini expansion.

Equation 35 is the desired result that shows how each mode of the source is propagated.
The Jo(7:v/¢%t? — 22)Jp(7ir) term is a time-varying propagator that decreases the amplitude
of the i-th mode of the expansion. (The H(ct — z) term ensures causality.) The filter,
therefore, serves to enhance the lower order modes. As time increases, the argument of the
filtering function increases, favoring the lower order modes.

Two special cases can be identified (Greenspan, 1979; Stepanishen, 1981). For ct = 2,
the spatial impulse response becomes

h(r,z,t) =Y 8 Jo(7:r) foret=2z - (36)

=1
which is an exact replica of the spatial distribution of the source. On-axis (r = 0}, the spatial
impulse response 18

(> ]

h(0, z,t) = Z 8;Jo(7iV/c%t? — 22)H(ct - 2) whenr=10 (37)

=1

which is also a replica of the source spatial distribution but it is obtained along the time axis,



NUMERICAL SIMULATIONS

Using Eq. 35, the spatial impulse response is easily computed. For each value of 2, one
finds the value of rq for each time of interest from Eq. 11. One then finds N gzeros of Eqgs.
17 or 20. The number N required depends on the convergence of the field. Thirty values
were arbitranly chosen as adequate for these computations. (The choice was borne out by
comparison with known exact solutions.) Caleculation of s; is done from either Eq. 19 or
Eq. 24 and then the sum of the products in Eq. 35 is found to produce the spatial impulse
response. While the summation is theoretically infinite, the fast convergence of the series
ensures that only a few terms of the series are required to evaluate the fields with sufficient

accuracy. The solution to the field with a nonimpulse temporal excitation requires evaluation
of the temporal convolution of Eq. 3.

The following plots have been evaluated using thirty-two points along the radial axis, r,
and fifty points along the time axis. The plots are normalized to unit amplitude and the axes
are expressed in terms of the source diameter, A. All of the field patterns are observed in
a plane at a distance of 10 cm from the source plane. The source radius is assumed to be
1.7 cm. The time axis begins at t = z/c (i.e., when the first portion of the excited waveform

arrives at the observation plane). The average CPU time was about 6 seconds on an IBM
3033 mainframe computer.

To compare the fields obtained by the two expansions, Figs. 1 and 2 show the field
calculated for the spatial impulse response of a circular uniformly-excited transducer using
the Bessel and Dini expansions. There is no apparent difference between the representations.
Despite the high spatial frequency content of the circular step wave at ¢ = z/c, we note that
the limited series of thirty terms still describes the field very well. The effect of the truncation
of the series is apparent at that location in the form of ‘ringing’ of the field in the regions of
discontinuity (due to the Gibbs phenomenon). As time progresses and the high-order modes
are filtered out, the convergence becomes better. The fields of Figs. 1 and 2 compare well
with closed-form solutions for the uniform piston (Stcpanishen, 1971 and 1981; Harris, 1081b;

Greenspan, 1979; Guyomar et al., 1983; Oberheltinger, 1961; Tupholme, 1969; Weight and
Hayman, 1978).
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Figure 1 Spatial impulse response for a circular pistou trausducer using the Dessel
expansion (A=3.4 cm, 2=10 cm)

Figure 3, 4, and 5 illustrate the convergence of the Dini series for ten, fifteen, and twenty’
terms, respectively. More terms are required near et = 0 due to the higher spatial frequencies
there. As time progresses and the spatial frequency content is less due to the filtering action
of the propagation, fewer terms are required to reach an accurate representation of the field.

Figure € gives the spatial impulse response for a truncated Gaussian source excitation as
calculated with a Dini expansion. The 1/e point is located at r=0.981 cm from the center.
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Figure 2 Spatial impulse response for a circular piston transducer using the Dim
expansion (A=3.4 cm, z=10 c¢m)
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Figure 3 Ten-term Dini series impulse response for a square transducer (A=3.4 cm,
z=10 cm)
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Figure 4 Fifteen-term Dini series impulse response for a square transducer (A=3.4
cm, =10 cm)

Since the excitation consists of primarily low spatial frequencies, the effect of propagation
spatial filter on the field shape is small.

While the velocity potential is a useful quantity, it has little physical significance. One
can obtain the acoustic pressure, p(z,y, z,t), from the potential by the relation,
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Figure 5 Twenty-term Dini series impulsc response for a square trausducer (A=3.4
cm, £=10 cm)
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Figure 6 Spatial impulse response for a circular transducer with a truncated Gaus-
sian spatial excitation e~12("/4)” uging a Bessel expansion (A=3.4 cm, 2=10 cm)

d
p(z,y,2,t) = Po% (38)

where po is the density of the medium. Assuming axial symmetry, the acoustic pressure at
an observation point will be

2 o)
p(r,z,t) = % E 8:J1 (V2 - 22)Jp(vr) (39)
i=1

This equation provides a direct way to compute the pressure spatial impulse response from

the input velocity distribution. The computations are as easy and fast as the computation of
the potential.

For a time excitation other than an impulse, one must convolve (in the time domain)
the spatial impulse response with the time-varying excitation function as in Eq. 3. The
convolution can be done either in the space-time domain or in the spatial frequency domain
as the order of the inverse spatial transform and the temporal convolution is interchangeable.

Figure 7 represents the transient pressure response of a uniform circular piston excited by
a positive pulse excitation of time duration equal to 0.02A seconds. The noticeable difference
between this response and the spatial impulse response for the same geometric source (Fig. 1
or 2) is due to the time derivative of Eq. 38 followed by the smoothing of the convolution of

Eq. 3.



Figure 7 Transient pressure wave from a uniform circular piston excited by a pulse
using the Bessel expansion (A=3.4 cm, 2=10 cm)

SUMMARY

A method for rapidly calculating the acoustic potential field or the acoustic pressure
field from an axially symmetric source has been presented . The method is based on two
possible series expansions of the source velocity spatial distribution. The expansions are
rapidly convergent, and, therefore, are efficient in calculation. The method does not use any
Fourier or Hankel transforms, nor does it require evaluations of integrals (other than to obtain
the s; coefficients). All operations are carried out in the space domain. The sampling intervals

in time and space are independent of each other and the field solutions can be represented as
desired.
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