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ABSTRACT

Calculation of the resolution of an imaging system or of the expected
scattered fields requires knowledge of the insonifying field. This paper
presents a method of calculating the field of a focused wave from a source
with arbitrary wave curvature and arbitrary time excitation. The method
can be used for calculating the field at any plane in front of an arbit-
rary curved wavefront of finite extent. The region surrounding the source
is assumed to be rigid baffle (although the rigid-baffle results can be
extended to include other baffle conditions). The technique finds the
spatial impulse response (i.e., the response to the source when excited by
a temporal impulse fumction) for the arbitrary spatial shape of the wave.
The solution for arbitrary time excitations is easily found by a time
convolution with this spatial impulse response, The method is demonstrated
for propagation in lossless media, but can also be extended to lossy media
as the propagation process is modelled by a multiplicative spatial filter,
that is changed according to the assumed wmedium and boundary conditions.
Monotonic focused sources with an impulse time excitation can be inter-
preted as a time-varying line source with decreasing radius. The solution
of the wave field is a superposition of the field from the present line
source and the fields from all sources in the past. The resulting plots
allow evaluation of the resolution capabilities of the field, the sidelobe
structure, and wave behavior both in front of snd behind the plane of best
focus. Examples offered include a spherical concave wave, a conical wave,
a parabolic wave, and a spherical convex wave.

THEORY

This paper describes a technique for the efficient computer computa~
tion of the transient field of a curved wave front. This wave front can be
produced from a focused transducer, from a planar array with proper phas~—
ing to produce the curved wave, or from 2 wave that has transited an
acoustic lena. It is assumed that the curved wave passes through an aper—

ture in a rigid baffle and that the medium ig linear, homogeneous, and
lossless.
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For a planar rigid-baffled transducer, it is known from diffraction

theory that the velocity potential is related to the source velocity dis-~
tribution by

0(x,y,z,t) = T(t) ¥ oslx,y) §§ [$(ct~R)/2MR] (1)

where 8(x,y) and T(t) represent the space and time-varying pa ty S i?i
known separable velocity disturbance at the input plane, R=(x +y +z

and * indicates convolution performed over the indicated variable. The
term to the right of the time convolution is the “spatial impulse res-
ponse’’ of the propagation h(x,y,z,t), The curvature of the wave can be
modelled by a spatially variable delay2 d(x,y) from a plane wave,

hix,y,z,t) = s(x,y)8lct-d(x,y)] ;;t S(ct-R)/2 W™ (2)

where d(x,y) is the spatial offset of the curved wave front from a plane
wave. All one needs for the propagation technique to be described is a

description of the wave front in terms of its relative displacement,
dlx,y).

Because of the difficulty of the spatial convolutions in Eq. 2, it is
convenient to use the spatial frequency domain. Propagation in this domain
corresponds to a time generalization of the angular spectrum theory,
leading to a linear systems interpretation of the transient diffraction.
Reference 3 shows that the spatial transform of the spatial impulse res-—
ponge is given by (neglecting wmultiplicative constants,

HE,,fy,2,t) = Ble(e)§lce-d(r)] § Jolete2t?-zD1 2Incce2) 3)
where B[*] is the Hankel transform operator, and Q=(f2+f2)1/2
The transform on the right side of Eq. 3 can be evaluated as

N s(r:)Jo( rt)rz

Bla(r)b(ct-d(x)] = * Jo[ch2t2‘22)1,2 (%)

i=1 | dd(r)!

*
| dr Jrerg

where r; (y) rqpresents the values of r for which d(r)-ct=0, Here, N is
the number of rj

The temporal impulse response h(x,y,z,t) is obtained by inverse
- transforming Eq. 4 to give

s(rz)Jo(Qr;)t;

= 2,2_,241/2
hix,y,z,t) : Jo[ch tc-z<) (5)

l
-1
: Iya(e))
]

| dr lr=r:

This equation gives the output field for an axially symmetric surface
velocity when excited by an impulse in time. The curvature of the field is
contained in the expressions for rj. (Reference 3 contains equations that
are valid for g1l ceses, not just the axisymmetric. Reference 4 considers
the effects of the assumed boundary conditions and Ref. 5 considers prop-
agation in lossy media.)

The terms of the summation represent the angular spectrum of a circu-
lar line source weighted by the function, s(r; ). The radius of such a line
varies with time according to the delay law since ry is a function of



time. The resulting field is just the summation of these line-generated
waves plus the diffraction field that has been generated by the previous
line excitations. The field computation requires only one convolution for
the each spatial frequency and one Hankel transform.

NUMERICAL SIMULATIONS

Once the geometry of the transducer is known, an elementary calcula-
tion leads to the relative displacement of the wave, d(r). Then the N
zeros of ct—d(r) are calculated. These are r;(y). These solutions are then
used in Eq. 5. Standard algorithms perform the transforms. (It is worth
noting that the calculation of the convolution uses the same products
required for the transform, thereby reducing the computational complexity
of the required operations.)

1f the displacement, d(r), is a monotonic function, then the inter-
section with the plane, z=ct, will reduce to a closed line and the summa-
tion in the equations will reduce to a single term. This is usually the
case for a focused wave. The following simulations have been investigated
using this technique: circulay wave fronts with concave curvatures of
spherical, conical and parabolic shapes.

The computations were done on a grid of 64x64 gpatial sample points
and 50 time samples. The plots show one spatial dimension vs. time for a
median through the center of the transducer. The complete three-dimension-
al calculation consumes approximately 80 seconds of CPU computer time on
an IBM 3033 mainframe compnter. For convenience the plouts have been norm-
alized to a maximum value of one. The time axis as well as the width axis
are expressed in terms of one characteristic size, A, of the transducer
(either half-width or radius, as appropriate). The time axis has a zero
value at the time when the first wave reaches the observation line, The

focal length f is 10 cm in all cases. The transducer radius, A, is assumed
to be 2.0 cm.

Figures 1 and 2 show examples of the diffraction pattern at the focal
plane for epherical and conical waves. While the solution of Eq. 5 is ob-
tained in a plane parallel to the excited surface the plots have been
shown with time as the variable to allow comparison with existing solu-
tions, Similar plots were obtained for conical waves. Additionally it is
possible® to predict the boundaries of significant wave energy if one
wishes only to know the region of the wave without knowing the details of
the wave amplitude spatial dependence.
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Figure 1 Spherical concave wave with a circular cross-section
(Impulse excitatiom, A=2.0 cm, f= 10 cm, z=10 cm)
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Figure 2 Conical concave wave with a circular cross-section
(Impulse excitation, A=2.0 cm, f= 10 cm, z=10 cm)



