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Signals and Systems
Survival Kit

I. Signals and Systems (deterministic review)

¢ Linear system

linear
) % ju—
x(t) system Y (t)

x(1) y(n) =

¢ Causal system

* Definition: a system is said to be causal if:
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* Definition: a linear system is said to be causal if:

s+ Z-transform and Fourier transform

Z[x(n):l =
y [x(n)] =
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¢ Applications to linear systems:

Z[y(n)]=

Frly(n)]=

¢ Why are Z-transform and Fourier
transforms useful?
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II. Signals and Systems (random input review)

¢ Basic probability concepts

* Distribution function (CDF)

* CDF Properties

* Probability density function (pdf) f (x) =
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s (Cross) Correlation and covariance
function definitions

ny (2-192-2) —

R, (k,1)=

C (TI,TZ)Z

Xy

C., (k.1)=

X
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¢ Statistical Characterization of Random
Signals

® Random signals are characterized by joint
distribution (or density) of samples

® F(x;, Xy ..o Xpp Ny, 1)
=Pr[x(n,) <x,, ... x(n,) <x,]

® F(.) 1s highly complex to compute - difficult to
obtain in practice

< Stationarity:

Definition: a RP is said to be stationary if any
joint density or distribution function
depends only on the spacing between
samples, not where in the sequence
the samples occur

Example: f.(x}, Xy, ..., Xp; Ays - .05 Hy)
= F (X1 Xy ey Xps Fpag «oos Mnt)
for any value of k

If x(n) 1s stationary for all orders N=1, 2, ...

x(n) 1s said to be strict-sense stationary.
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Example: Stationary up to order 2 — wide-sense stationary.

<+ Wide-Sense Stationarity:

> Definition: a RS x(n) 1s called wide-sense
stationary (WSS) if

(1) the mean is a constant independent of “n”

(2) the autocorrelation depends only on the distance
¢ =n, —n, (1.e., x(n) 1s a seq. of uncorrelated RVs)

Consequence: the variance is a constant independent of

¢6_ 9%

n

8
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<+ Wide-Sense Stationarity (con’t):

» Definition: x[n] and y[n] are said to be w.s. jointly
stationary if:
1) x[n] and y[n] are wss stationary
2)R,, [ny, ny] =R

Xy [nl - nO]

» When x[n] and y[n] are w.s.] stationary:
ny [n19 nO] - ny [nl o nO] =
ny [y, ngl = C,, [ny— ny] =

Xy

» Properties:

R, (k)=
Co(k)=
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+» Example

Let x(n) be a real valued process of independent
variables each with mean m and variance o.
1) Compute: R (k,n) & C (k,n)
2) Let y(n) be defined as:
y(n)=x(n)+x(n-1)
Compute: R (k,n) & C (k,n)
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*»*Signal (time) Average:

<x/n]>=

*»Ergodicity:

» 1n many applications only one realization of
a RP is available

» 1in general, one single member doesn’t provide
information about the statistics of the process

> except when process is stationary +ergodic:
statistical information can be derived from one
realization of RP

» Def: aRP is called ergodic if:

all ensemble averages = all corresponding time
averages

» Ergodicity in the mean:
Def: a RP is said to be ergodic in the mean if:

» Ergodicity in correlation:

Def: a RP is said to be ergodic in correlation if:
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< Example: Independent, Identically Distributed
(I.I.D.) Random Process (RP):

A Random Process is said to be:

. an independent process 1f:

F O Xgguo X, o) = (X 0,) (X5 1)

. 1f all RVs have the same pdf f(x) => x(n) is called I.I.D.

__________________________________________________________________________________________________

Note [.I.D. processes have no memory, where a future
Value would depend on past values

« Mean of I.I.D. Process:

m(n) =
Autocovariance:

Cx(”l? n2) -

Autocorrelation:

Rx(nD n2) -
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*+ RP Example: White noise

Definition: A random sequence w(n) 1s called
a white noise process with mean m , and
variance o2, iff

E{w(n)t=m,

R, (k)= o, (k)

Notes:
1) all frequencies contribute the same amount (as
in the case of white light, therefore the name of
“white noise”)

2) if the pdf of w(n) is Gaussian: it is called
“white Gaussian noise”
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» Statistical moments
* pdf information summarized by key aspects
called statistical averages or moments

(1) mean/average

o F{x}=m_= if x 1s discrete
= if x 1s continuous
e important property of the mean — linearity!
Efox+ B} =
E{g(x)} =

(3) moments

X

o o\ = E{|x—mx

o /M =Bl

-

® variance property: O'i = EDXF } - (E[x])2

: 2
® varlance= O

— proof:
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< Useful Moments:

Skewness

Kurtosis

measures degree of
asymmetry of distribution
around the mean

(3) X—m
kW= E| —= =
X
O}
- -
A "\
/ / \
/ \ ’ \
/ vy
/ \ v \
/ \
V N\ \
7’ 4 ~ \
f’ 4/ ~ \
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measures relative flatness or
peakedness of distribution
about its mean

4
4 X—m
W =E| | 13
O-.X'
I\
] \
S T
I, Il ‘\ \\
l' ! \\ ‘\
I S SO
Note:
L» k£4) = () for normal
distribution
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s (Cross) Correlation and covariance
function properties for wss processes

EC4570.WinterFY03/MPF

17



¢ Correlation and covariance functions main
properties (for wss processes)
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s How to compute correlation estimates

x () knownt=0—>1t=1T,
Assume
x (¢) ergodic (why?)
 For discrete data: x=[x (0), ,x (N)]*
R_(kAf) =

 Quality of estimate? — find mean and variance
of R_(kAt)=

(1) E|R,(k)]=

01/02/03 EC4570.WinterFY03/MPF
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(2) Var[

AN

12

(]2 Y

[N-k] =

R} (i)+ R, (i+k)R, (i-k)]
when N >>k

EC4570.WinterFY03/MPF
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Alternate Estimator: Biased Estimator

R_(kAt) =

Quality of estimate:

(1) E| R, (kAT)|=

(2) Var[ﬁx(kAT)] = N1+1 Z.O:

[R2(i)+ R,(i+ k)R (i - k)]
k>0

21
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Biased/Unbiased estimator Summary

Biased Estimator

Unbiased Estimator

R (kAT)=

E| R, (kAT)|=

Var[ﬁx (kAT)} =

=

Var [

Var[ﬁx (k) \
bias of E[Rx (k)] \

N-k 1 N-k

when N = +o©

;x(i)x(i+k) Iéx(kAT)=N+1_ka(i)x(i+k)
TSR () | E[R(AT)]= R, (K)
1+11(Rx) Var[zé(kAT)} - [N]_Vk]z £(R,)
when k > N
Var[}%(kAT)]/ + 00
R, (k) E| R(k)| > R, (k)

01/02/03
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Biased Cross-Correlation of datx and daty
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Time Diffecence (msec)

Unbiased Cross-Correlation of datx and daty
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III. Basic Density Functions and Related
Properties

L] [ 2
¢ Gaussian density x ~ N (mx, o. )

* Real random variable i)

09 = T

* Complex random variable

Jdx) =

* (Gaussian density property
A
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s How to compute P(X > a) when X is
Gaussian

* P(X>a)=

* Q-function

— 00)=

01/02/03 EC4570.WinterFY03/MPF
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How to apply the Q-function ?

oA A

EC4570.WinterFY03/MPF
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Example:

The voltage X at the output of a noise
generator 1s assumed to be N(0, 1)

Find P(X>2)
P1< X <3)

EC4570.WinterFY03/MPF
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s Central Limit Theorem (CLT):

Describes the limiting behavior of the distribution
function of a normalized sum of [.I.D. variables

Define:
, S Thm

" o
where s, = x; m=Ex]; 0" =varx]
=

As n gets large, z, ~ N(0,1)
As n gets large, s, ~ N (nm,nc?)

28
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Example: Application of the CLL'T

Suppose orders at a restaurant are IID with a mean price
m=$8.00 and standard deviation O =$2.00.

Estimate the probability that the first 100 customers
spend a total of more than $840.00

EC4570.WinterFY03/MPF
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* Rayleigh density
* filx) =

* Applications: Rayleigh densities are found in
in communication applications when dealing
with envelopes, etc...

Ex: x~N (0, 02) x,y independent
y ~ N(O, 62)

fo (x.3)=

EC4570.WinterFY03/MPF
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small o

/
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“ Cauchy density

1
72(1+x2)

fi(x)=

o
A
\W )|

0.1¢

Ul

1/2 = 1/m tan (T,
o1 (To) |

0.0¢
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¢ Uniform density

* flx) =

EC4570.WinterFY03/MPF
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¢ Chi-squared density (Z ]%z)

-

1 (NV/2)-1 (_ 1 j 0
£(x)=12"r (N2 T T2 ) T

0; x<0

\

N = number of degrees of freedom N > 1)

I'(a) = Gamma function defined as:

['(a)= ft"_l exp(—t)dt

N
* Pdf found when x = le.z x. ~ N(0,5%)
i=1

34
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* Application:

— Special case N =2, c>=1

1 1
fio(x)=1 ECXP(_EX)’ n>0 (exponential pdf )

0; n<0
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% Non-central 3’ density

2
* Generalization of A density

* Found for

* Complete description:

1 (N-2)/4 1 2 1/2
fi(x)= (ij exp(—%) Lo {%}U(}C);

202\ 1

A=AN <---- Non centrality parameter

37
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¢ Monte Carlo performance evaluation

* Computer evaluation of a probability

* Useful in cases where one cannot determine
analytically or numerically expression of the
form

P {x> K}

* Can be found in detection problems where we
may wish to evaluate probability that a given
statistic exceeds a threshold

Example:

— Assume we have a data set
{x(O),---,x(N—l)}; x(n)~N(O,c72) 11d

— Assume we want to evaluate:
1 N-1
Py K|
n=0

(1) Analytical derivation

EC4570.WinterFY03/MPF
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(1) Monte Carlo derivation
(a) Generate data using
1 N-1
(b) Compute 7 =—> x(n)
N n=0
(c) Repeat (b) M times to yield M realizations of T
{]LTP...,TM}
(d) Probability evaluation:
1. Count the number of 7;’s that exceed K: M,
2. Estimate P{T>K}= %
* How to pick M ?

if a relative error

‘true probability -- estimated probability
E =

true probability
1s desired 100 (1 — o) % of the time

0 (a/2) (1-P)]

we need: M > ,
s P

where P = probability being estimated

41
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Example: Determine P {7 > 1} with a relative error

£ =0.01% for 95% of the time
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