



OA3103: Lab 9


Spring 2002

Objective: 
Introduction to tree regression

Introduction: A regression tree is a whole different type of regression model that looks like a tree. We start with all the elements in a single box (the “root node”). We also have an impurity measure, which measures how different the y’s in that node are. (Although several are possible, S-Plus uses the sum of the squared deviations from the mean of the y’s in that node.) Then we divide the members of the node into two subsets, by “splitting” at some value of one of the x’s. For example, in the beer data, we might split “Light” from “NonLight”; or “Alcohol <= 4.3” from “Alcohol > 4.3”; or “Alcohol <= 4.5” from “Alcohol > 4.5”; and so on. Obviously there are a lot of splits to consider, but that’s okay. We consider them all and choose the split for which the resulting subsets have the smallest total impurity. Error Structure: the tree weights deviances equally, so the assumption of homoscedasticity of errors is present here.

Having split the root node, we then split each of the two “child” nodes, separately. Of course there may well be different splits on the two children; that’s okay. In this way tree models take interaction into account automatically. Splitting continues until certain criteria are met. For example, by default a node with fewer than observations will not be split. Generally this produces a tree that is too big, so we need to “prune” it down to size.

Beer Example: In Splus, the tree() function fits a tree model. Try beer.tree <- tree (Alcohol, data = beer) for the moment.  partition.tree() shows what the predicted line looks like. Now add Cost to the model and see what that looks like. partition.tree() gives a good graphical representation of what the regression surface looks like. (Unfortunately, it only works on one- or two-dimensional models when the x or x’s are continuous.) The command burl.tree (beer.tree, 1, plot=F) shows you all the decreases in deviance for every split considered. Of course in real life we would supply all the columns. In this case we might do tree (Calories ~ ., data = beer[,-c(1, 10)]) to leave out the Name and Class columns. Weird note: the minus sign doesn’t work in a formula for tree() – so you can’t do Calories ~ . – Name – Class.

The return from tree() is an object of class (get this) “tree,” which has its own print() method to display stuff to the screen. Alas, the output of print.tree() is not spectacularly useful. However, the plot() and text() functions, between them, will produce a picture of your tree that is often readable. (There is also a post.tree() function that produces much output in Postscript format.) plot (beer.tree, type = “u”) produces the uniform spacing which is often clearer.

Wage Example: In Splus, the tree() function fits such a tree model. Let’s try it on the Wage data: wage.tree <- tree (Wage ~ ., data =  wage). This produces a very big tree, maybe an over-fit one. How can we tell? One way is to look at the residual mean deviance. That’s a pooled estimate of variance, so its square root is a pooled estimate of SD. Compare that to the cross-validated estimate of SD from xval(); when they’re quite different, it’s time for pruning. In fact we will always prune. 

Pruning: We will continue to discuss the stages of pruning in class, but the idea is simple. Running cv.tree(yourtree, FUN=prune.tree) on the tree object will do the cross-validation. (Details will follow.) The resulting object can be plotted; we’re looking, of course, for the size with the smallest cross-validated deviance. Then we can pick the best size of the tree. Finally we prune.tree (yourtree, best=) to produce the overall best tree. This is not the final model, but it’s a good starting point for diagnostics like meanvar.tree()  (to compare means to variances) and plots of residuals. By the way, xval() does not work on trees that have already been pruned, because S-Plus’s update() with subset= doesn’t either.

Methods for Trees: The methods() function will let you find all the methods for tree models. Notice the two particularly handy ones: summary() and predict().

How does predict() work here? When you give it a vector of X’s, it follows the tree down to the relevant leaf, and then estimates the y for that X as the average of all the y’s in that node. You could get an SD for that estimate by looking at the SD of the y’s in that node, but often there aren’t many y’s there, so a more usual choice is something like the square root of the residual mean deviance.

There are a bunch of neat things to do with tree models. Following the book “Statistical Models in S,” I have tried to divide these into pieces according to what part of a tree they work on. snip.tree() and select.tree() operate on sub-trees: the former lets you remove branches and see the effect on total deviance, and the second allows you to select specific sub-trees from a tree for comparison. 

Many of the remaining functions anticipate that you have issued the tree.screens() command, to split the screen into two pieces. (This is a special case of the handy  split.screen() function. By default, it breaks the current screen into an upper piece of full width and ¾ height, and a lower piece of full width and ¼ height.)

Methods for Splits: Burl.tree() operates on splits, showing all the changes in deviance contemplated at a node you select. This lets you see whether some variables that aren’t chosen for a split might nonetheless be useful. Identify(), path.tree() and browser() can be useful (on both terminal and non-terminal nodes). Hist.tree() operates on non-terminal nodes; it will show you histograms of the values of some variable at some node, broken down by the observations that go left at that split and those that go right. You can call hist.tree() with several different variables and see several such histograms simultaneously.  For some reason my screens are not always properly erased; one solution is to close.screen (all=T) and then re-issue the tree.screens() command.

Methods for Terminal Nodes: We can add a “rug” using rug.tree() showing how the values of some variable change over the different terminal nodes. Along similar lines is the action of tile.tree(), which shows histograms of some variable. 

Homework (due Tuesday, June 3): Build a tree model for the log of MEDV in the Boston housing data. Use cross-validation to find the “best” size of the tree. (You can go strictly with minimum deviance, or take a smaller tree with “nearly” the minimum deviance.) Plot a picture of the tree, with text, and also a histogram of the residuals. 

