

OA3103: Lab 6

Spring 2001

Objective:
Non-linear regression plus the bootstrap in Splus
Introduction: On the common drive is a file called “elisa.s” that is based on some real data that was collected at a lab up in the San Francisco Bay area. Use data.restore() on that file: it will create an item called elisa.10 and some other stuff. “Elisa” stands for “enzyme-linked immunosorbent assay” and it’s a common technique in “assays” in which the potency or other characteristics of some substance are measured.

In this data there are seven x values, fixed as part of the design, and at each x value there are two y values representing replications. Our object is to fit a model that takes the curvature into account. Let’s use our friend the logistic model: y = 0 + 1 / [1 + exp (2 * [log(x) – 3])]. The log of x is often a good place to start with this model.

Handling zeros: What do we do with the values x = 0? We can’t take logs of these. One thing people do is to simply ignore them. Another thing – it sounds like cheating – is to increase those values by a small amount, like, say, .01. (This is “small” relative to the biggest non-zero value.)

Fitting the Model: What are some good starting values for the algorithm? Here’s my code: nls (y ~ b0 + b1/(1 + exp (-b2 * (log(x) - b3))),data = elisa.10, start = list (b0 = 0, b1 = 2, b2 = 1, b3 = 2))

Let’s fit the model and draw the predicted line. You can, as you know, use predict() on an nls model, so that makes it easy. You can even specify se.fit=T in this call. Remember that these standard errors are relying on the assumptions of iid Normal errors, and also on asymptotic theory.)

Confidence and Prediction Intervals: Predict() can tell us the E(y) we expect for an x of 5. What’s an approximate 95% CI for that prediction? We could use the t distribution, but we’ve seen that the standard errors for the coefficients from predict() can be too small, compared to the bootstrap estimate. So it probably makes sense to use the bootstrap here, as well, perhaps using the boot.pred.funk() function I’ve supplied. This function just calls nls() and then predict(); we can use bootstrap() to call it a thousand times and look at the SDs of the predictions.

Calibration Intervals: What x do you predict if you observe a y of 1? (This inverse problem, often called “calibration,” is important in, for example, medicine. For example the y might be a thing you measure on the patient (some chemical activity), and you want to deduce the level of x (say, viral particles)). We can solve for log(x) = 3 (1/ 2) * (log(1/(y – 0) - 1)). The log.inv() function I’ve supplied takes in a model and a y and produces the corresponding x. How might we get an estimate of the SD for that prediction? Answer: the bootstrap, possibly using the function boot.calib.funk().

Homework (due Thursday, May 17th):

(i) Do Hamilton’s exercise 5.16, p. 180. The data is in the common directory as eggs.txt as well as on my home page.

(ii) Give a bootstrap estimate of standard error for the b0 (asymptote) parameter. This is the parameter Hamilton calls (in his equation 5.18, p. 164.
