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Spring 2001

Objective: 
Full-blown regression example



Introduction to leverage and influence statistics

We have discussed the use of diagnostic plots to assess the validity of the assumptions made in regression. Common diagnostics include:

· plots of the residuals themselves, to check for curvilinear trend (or auto-correlation);
· plots of the residuals (or their absolute values) versus the fitted values (or versus the x’s) to check for heteroscedasticity;
· plots of the auto-correlation function, to check for autocorrelation;
· histograms, qqplots, and symmetry plots of the residuals, to check for Normality;
· partial regression leverage plots, to check for heteroscedasticity and leverage.
In this lab, I will try to do a moderately-sized regression analysis from beginning to end. (However, this is impossible in fifty minutes.)

The Data: Let’s use a new data set, the wage data, which you can get from data.restore(“r:/common/buttrey/oa3103/wage.sdd”). The original file of documentation is there, too, as CPS_85_Wages.doc. This data measures the wages of a sample of people and their age, experience, education level, race, sex, union membership, occupation type, sector of the economy they work in, and whether they live in the South. This data, by the way, was originally gathered to look for evidence of a “gender gap” in wages. Let’s attach (wage) for simplicity. Also remember to set your contrasts.

The First Step: First, we look at the data to see what we can see. Naturally we’d look at pictures where possible. We might also look for anything that seems to stand out, although this can be misleading. The tapply() function breaks a vector into pieces and applies a function to each of the pieces: for example, tapply (Wage, list (Race, Sex), mean) computes six means (but check the sample sizes). Split() and boxplot() work well together; try boxplot (split (Wage, paste (Sex, Married))).

Next we decide on a starting point. Usually this will be guided by what we’ve seen, but, as you can tell, there isn’t always a clear indication of what’s going on in the data. In this case I’ll fit the full model, then call on stepAIC() to try and find decent models. To use stepAIC, remember to issue the command library (Mass) first.

Examining the Fit: At this stage I have at least two competing models. Let’s see how they do. I plot the residuals to look for anomalous points, and plot them against Wage, Age, and Education to look for heteroscedasticity. (Of course I should probably also plot them against every column in the model.) Also I want to see whether their distribution is roughly Normal. There is one weird point, but more than that there seems to be evidence both of heteroscedasticity and of non-Normality. The Cook’s distance is a little scary, huh? We’ll need to look into that.

The Next Step: So let’s try a transformation of the wages using, say, logs. Back we go to the beginning. What do the models look like now? My answer: still pretty good, but what if you try to plot the leverages? Answer: some bad stuff is happening. Specifically, if Union:Occup is in the model, one combination has only one observation, and this point (#240) therefore has leverage equal to 1, because it alone determines one coefficient in the model. (It’s not exactly 1, but it’s close. Can we compute it exactly?) We might accept the model as is, or try to delete that term and see what happens. By the way, try dropterm(test=”F”) on your model. You see the effect, in terms of increased sum of squares, of dropping each term one at a time (so this function is doing the “nmested F-test” for each term separately). The update() function allows you to remove or add single terms easily: here we might use update (<my model>, ~ . - Union:Occup). Notice that the dot now means “whatever was there before.” I’m going to remove this term because I don’t like having a coefficient determined by a single point. 

Leverage and Influence: Other diagnostic plots can help identify points with high leverage or with undue influence. The leverages are the diagonal entries in the “hat” matrix, and they measure the ability of each point to affect the linear model fit. We can get these from the lm.influence() function. A rule of thumb is that leverages bigger than 0.2, or 2p/n, depending on whom you talk to, are worth being aware of. So it’s common to plot the leverages and to add a horizontal line at the value 0.2 or 2p/n. Influence measures how much difference each point makes: lm.influence() gives you the coefficients (and estimates of sigma) you would have seen, had any one point been deleted. It’s hard to plot all 21 columns of this (I suppose you could use brush()). Let’s plot a few: identify() can be useful here. There’s another point with very high leverage (number 444): in fact, its leverage is 1, too, but numerically it’s just far enough from 1 so that our computations don’t crash.

Investigating Points of High Leverage: What gives these points such high leverage? It was obvious for number 240, I think, but less so for point 444. Does the data look weird? As it happens, Age, Education and Experience are perfectly linearly dependent – except for point 444. So maybe only two of these should be in the model. Of course when we remove one maybe we should remove its interactions is well. Then should we go back to stepAIC() and see if it has any last thoughts on the subject? Well, maybe, but I’m in a hurry. 

Finally, Cook’s distance measures influence on all the b’s at once. A plot is one of the choices in plot.lm (your.object, ask = T). A Cook’s distance bigger than 1 (or maybe just 4/n) is telling you something. Can we explain the points that have high Cook’s distances?

Two Final Points: Can we run cross-validation on this model? Answer: yes. We should probably use the result from the cross-validation as our estimate of the noise level (. Second, is there evidence of gender discrimination? The original documentation says “yes,” and gives a confidence interval. (Since wages are on the log scale, the confidence interval is additive here and multiplicative on the original scale.) Our answer is more complicated. We can compute the SE’s if we need to, but let’s try to draw a picture of the effects of gender. Recall that these depend on marital status and education (through interactions). So what I’m going to do is draw a graph of wages against education, with four lines: one for single women, one for single men, one for married women, and one for married men. I’ll use the median or most common setting for all the predictors other than sex, education and marital status. The code is in lab5func.txt. Can you see the different effects and interactions? What does the plot look like if you remove the interaction between education and sex, for example? If you pass in some education values, you get CI’s for E(log(Wage) | X). Try lab5func (wage.log.lm.2, c(16, 20)). What do you see?

