




OA3103: Lab 4



Spring 2002

Objectives: 
1.) Multiple regression in Splus



2.) Adding interactions

3.) Regression search strategies

Introduction The data frame makes the syntax for multiple regression particularly easy in Splus. Let us start by creating a data frame for the evaporation data, perhaps by using the command evap.df <- data.frame (evap.y, evap.x). Here the response will be named evap.y and the columns of evap.x will contribute their names to the data.frame. Of course we should look at the data with spin() and brush() and whatever else comes to mind – but we’ve already done that. Also, we might consider at this stage transforming one or more x’s or the y, but let us suppose we’re reasonably happy with way things are.

Now the command lm (evap ~ ., data = evap.df) gives an additive model with all the factors (recall that the the dot indicates “everything”). You can remove individual terms the same way you remove the intercept: with the minus sign.

Interactions: An interaction is one form of departure from the simple additive model. We call it an interaction when the effect of one x depends on the level of another x. In the ozone example, the effect of wind on ozone might be different at high temperatures than at low ones. This phenomenon can’t be described in a simple additive model. An interaction appears as its own column in the X matrix. It’s constructed by simply taking the product of the two terms that enter into it. 

lm (evap ~ .^2, data = evap.df) gives a model that includes all terms, plus all second-order interactions. What happens when you try? Answer: that’s too many terms! We only have 46 data points; we can’t estimate 45 interactions plus 11 main effects. We can either remove terms, or select specific interactions with the colon (:).

Some of the other important arguments to lm() are: subset, which tells which rows should be included (default: all of them); na.action, which tells what to do with rows that have missing values (default: omit them); and x and y, which, if true, will include the x and/or y data in the output.

Search Strategies: It’s time to put into practice some of the search strategies we’ve been discussing in lecture. The major Splus functions we’ll use for this are stepAIC(), addterm(), dropterm(), and everyone’s favorite, leaps(). To get these first three you’ll need to call the “Mass” library with the command library (Mass) or with File | Load Library … from the menu.

addterm()shows you the results of adding into the model any term that’s not already in. In this case the command we want is addterm (evap.lm, scope=~.^2, sorted=T). The scope argument tells S-Plus which terms to consider adding (in this case, all main effects, which are already in, and all interactions). You are given the RSS for the original model and for each hypothetical model with one term added. Of course, all the RSS’s will be at least a little bit lower. [We’ve seen what happens when you add a column of random numbers.]  A better measure is the AIC (Akaike Information Criterion), which is essentially a measure of fit penalized by the number of parameters in the model. We seek the model with the smallest AIC; sorted=T puts them in order. A reasonable next step might be to add the term that decreases AIC the most. Similarly, dropterm() will show you the effect of deleting any single term from the model, in terms of the change in RSS and also in the resulting AIC. 

stepAIC() is a function that calls addterm() and dropterm() repeatedly in order to find the best model. It can go forwards (only adding), backwards (only deleting), or in both directions. The default direction is “both” if scope is given. So try this:

evap.0 <- lm (evap.y ~ 1, data = evap.df)

evap.out <- stepAIC (evap.lm, scope = ~ .^2, trace=F)#sim for ozone

This produces an lm object, as if you had chosen that particular “best” model ahead of time. Here “best” means that stepAIC() stops when no step decreases the AIC statistic. This seems to be a dang good model. But remember the p-values aren’t legitimate! [Note: if you try this starting with the evap.lm model that has all the terms, something weird happens and I’m not sure why.]

Viewing interactions: Here’s yet another example of what an interaction looks like. Let’s look at the relationship between wind and log ozone at two temperatures, setting rad = 100. We could do this:

plot (log(ozone) ~ wind, data = ozone.data); new <- data.frame (rad = rep (100, 10), temp = rep (55, 10), wind = seq (2.5, 20, len=10));

lines (new$wind, predict (oz.out, new), col=8) # (draw first line)
new$temp <- rep (85, 10); lines (new$wind, predict (oz.out, new))

Using leaps(): leaps() is very fast. However, it is an old-style function, so it requires a touch more work: instead of a formula we need to pass in an X matrix (or a numeric data.frame) and then a y vector. Let’s revert to the evaporation data one more time and let’s not use any interactions for the moment. Then we can say leaps (evap.x, evap.y, nbest=3) to produce a list describing the best 3 models of each size. When model size is plotted against Cp (the Mallow’s Cp statistic is much like AIC), the best size should emerge. A “good” size is one with consistently low Cp’s, and we might reasonably pick first the size which is consistently low in Cp, and then the best model of that size.
What leaps() can’t do: leaps() (although it’s fast) doesn’t handle categorical variables well. You can create the X matrix directly, with the model.matrix() command. When you have a categorical variable with k levels, this will produce k – 1 dummy variables. leaps() will treat those as totally separate, whereas a statistician would usually treat them as an indivisible group. (This is what stepAIC() does: it treats the whole set of columns as one term.) leaps() also doesn’t know the convention that interactions shouldn’t be put into a model unless the corresponding main effects are in. To leaps(), every column is just a column. Although it is fast.

Homework (due in two days): Let’s use the cpus data in the MASS library. Fit perf against all the columns except name and estperf (you can use the minus sign to exclude terms); then use stepAIC() to see if any interactions “belong” in the model. Look at a qqnorm() of the residuals. Repeat, using log(perf) instead of perf. What do you see? (P.S. Don’t print the whole trace!)

Homework (due in four days): Use the Insurance (with a capital I) data in the Mass library. Fit the additive linear model of Claims against the other terms in the model. Does it look like a good model? Draw a v4() plot of the residuals. Now use stepAIC() to add any two-term interactions that seem like a good idea. Draw a picture of the residuals from the result model as well. Finally use anova() to compare the two models with the nested F-test. What do you conclude?
