

OA3103: Lab 3

Spring 2001

Objectives:
1.) Prediction of the regression line at a point or set of points

2.) Introduction to multiple regression and interaction

Introduction: We have talked about computing the regression line, and about forming confidence intervals for the slope, possibly to see if 0 is a plausible value for the slope. If it is, then we are safe in concluding that there’s no linear relationship between y and x, if the model is correct (a step that requires further investigation).

We also know how to do prediction: given estimates b0 and b1 of the intercept and slope, our estimate of E(y) for a particular value of x, say, x0, is just b0 + b1x0. That’s easy enough to do by hand. If we had several x’s, though, that computation might get tedious. The predict() function will give us not only a predicted value but also (if se.fit = T) a standard error for that prediction. The t-distribution (with n(2 d.f.) gives the upper and lower bounds of the 95% CI.

Log(ozone) example: In the ozone.data data, fit the log of ozone against wind. It’s tedious to keeping typing in “ozone.data,” so S-Plus lets you “attach” a data.frame to the search path (see “Note on the Search Path,” below). After the command attach(ozone.data) you can access the columns of the data frame directly.

Question: What is a 95% confidence interval for the height of the line when the wind speed is 15 miles per hour? Answer: we construct the new data, either as a simple vector with a “1” on the front for the intercept or as a data.frame with a column named “wind.” Predict() then gives us the estimate (2.73 ppm) and the standard error (.120 ppm). There are 109 degrees of freedom, so the relevant point of the t-distribution comes from qt (.975, 109); it’s 1.98. So finally the confidence interval goes from 2.73 – (1.98 * .120) up to 2.73 + (1.98 * .120).

Let’s do that for a whole sequence of x-values spanning the data, and plot them (as I did in class). This is what I mean by the “CI for a line”: a whole bunch of separate confidence intervals for the height of the line, at a lot of different points. Create a data.frame of “new” data, with a column of winds (which in this case might just be a sequence from 2.3 up to 20.7). Feed this into predict() with se.fit=T, and we get back a list, from which we can extract the predictions and the SE’s. Then it’s an easy matter to draw the two lines. Why aren’t they straight?

Now we can draw the very same picture but with ozone on the original scale (to give to your client who never understood logs.) We do this by exponentiating everything. The fitted line is not straight on this scale, because of the transformation – but the relationship isn’t linear on this scale, either.

Multiple Regression: It’s a simple matter to include additional predictors. Let’s revert to un-logged ozone for simplicity (in practice I might not), but this time use all three predictors. The syntax here could be lm (ozone ~., data = ozone.data), with the dot indicating “everything except the thing on the left.” Does it look as if the additional predictors help predict ozone? (Answer: yes.)

Here’s one way to visualize what our model is saying. First let’s construct a grid of possible values of rad, temp, and wind. The function sapply (ozone.data, range) tells us the range of each column. Now we build a grid of all possible combinations, say, ten from each variable:

grid <- expand.grid (rad = seq(7, 334, len=10), temp = seq(57, 97, len=10), wind = seq(2.3, 20.7, len=10)) # gives 1000x3 df

grid$ozone <- predict (ozone.lm, grid) # add predicted values

We can plot this plane with the “filled spline surface,” for example. This shows us the predicted plane (for two of the three variables); we can then Insert | Plot | 3D Scatter Plot to add the actual points from the ozone.data data frame. Of course here the data set is ozone.data, not grid.

Adding an Interaction Term: We’ve just started talking about interaction terms. Let’s add to the model the term representing the interaction between wind and temperature. A quick way to do this is with the powerful update() function: ozone.lm <- update (ozone.lm, ~ . + wind:temp). Now predict()again and draw the plane. Is the interaction term’s effect clear?

Homework (Due Tuesday, April 24): We know how to use S-Plus to get SDs and CIs for the regression line at a particular value of x; predict()does this for us. (By the way, there’s a note in the documentation about using predict() with data-dependent transformations; that’s something you might keep in the back of your mind.) When se.fit = T, predict()gives the SD for the line (that is, for the estimate of E(y|X)). Often, though, we’re interested in the “prediction interval” at a particular x, that is, the interval into which future observations (not just E(y|X) but the y’s themselves) could be expected to fall with a certain confidence. There is no S-plus function for this.

1.) Write a function that takes in a linear model object (that is, the output from lm()) and some new data (that is, a data.frame with a named column) and produces a prediction interval for that new data. This should work on any lm object, so you will want to call predict() inside your function, to get the information you need. While you’re at it, include an argument that will let the user choose the confidence level (90%, 95%, whatever). Try to handle multiple rows without looping.

2.) Produce an interval that will hold 99% of the calorie values of future beers produced with 4.7% alcohol.

Homework (Due Thursday, April 26): Construct a linear model for ozone that includes terms for temperature and wind and their interaction but no “rad” terms. Draw a plot of ozone versus wind and superimpose the line predicted by the model when temperature equals 60 and the line predicted when temperature equals 90. One way to do this is to add to the data frame with “new winds” a column named “temp,” all of whose values are 60. Use predict() to get y-values predicted for this data frame by the model, and connect the wind and predicted values to get a line. Then change the “temp” column to 90 and draw the other line. Label your axes and lines and to give your graph a title.
Note on the search path: The search path is a set of places where S-Plus looks, in order, for any name you type in. You can see the contents of the path using search(). You can add and remove directories with the attach() and detach() commands; this is one way to manage different projects. You can also attach and detach data frames or lists. By default, they go into position 2, which means their names will be hidden by objects with the same name in the database on position 1. The masked() function tells you what objects are being hidden.
