OA3103: Lab 10

Fall AY 2003

Objective:
Using glm’s as classifiers

Use of classification trees

Comparison of classifiers
Background: In a classification tree, the responses are assumed to be multinomial. Recall that a multinomial response is one where each observation (independently of the others) has probability p1 of resulting in outcome 1, p2 of resulting in outcome 2, and so on, up to probability pk of resulting in outcome k. (Often we only worry about the first k–1 outcomes: since the k probabilities must add up to 1, probability pk is just 1 – ik-1 pi). For any particular set of p’s, the probability of seeing, in n trials, n1 outcomes of type 1, n2 of type 2, and so on up to nk of type k is proportional to p1n1p2n2…pknk, so the likelihood of any particular set of p’s being the truth, given the data we have observed, is just that number, considered as a function of the set of p’s. Thus the log-likelihood is a constant plus ni log pi , adopting the convention that 0 log 0 = 0. This quantity that we seek to minimize in a classification tree is the deviance: 2 times that log-likelihood.

Fitting a Classification Tree: Other than that, classification trees and regression trees are essentially the same. The difference lies only in the treatment of the y’s. You need to make sure that your y is a factor before you call the tree() function (the as.factor() command will do this). S-Plus’s implementation of factors is often screwy, so beware. Once something has been made into a factor, it can be tricky to remove the factor attribute.

The same set of tree functions that we have seen for regression trees is available when you do classification. The differences, though small, may be worth noting. Instead of an estimated average, each terminal node is labeled with an estimated class (which is just the class most often represented in that node). By default, predict() produces a vector of class membership probabilities. Naturally we select as our prediction that class whose probability is largest: we can get that directly with predict(type= “class”). The usual measure of “goodness” for a classification tree is misclassification rate, and as always we need to be careful to test a tree on data that was not used in its construction.

Biopsy Data Example: We’ve seen examples in class using the iris and kyphosis data sets. As another example, let’s use the “Breast cancer biopsy” data set adapted from the MASS library. Read in this data and the latest xval() and one.se.tree() functions: data.restore ("r:/common/buttrey/oa3103/lab9.txt").
The naïve model predicts that every observation will be in class “benign,” and has an error rate of about 34.5% on this data set.

Using a glm For Classification: We might use a logistic regression model (from glm(), perhaps using stepAIC()) for classification, using some cut-off, say of 65.5%. That is, all records with a predicted probability of malignancy greater than 0.66 (since that separates the smallest 34% of the predictions from the largest 66% in this case.) That is, the largest 34% get classified as “malignant,” and others as “benign.” With this technique we get an error rate of 3.7%. We do even better with a cut-off of 0.3. Perhaps the cutoff should be chosen by cross-validation. In any case the current version of xval() will give a cross-validated estimate of misclassification rate for glm’s (if you pass classif=T) and trees, even pruned ones.

Building the classification tree: Now we can build a classification tree using cv.tree() and prune.tree() to find the “best” model. We might use one.se.tree() to return the best size (it will actually return the tree itself but that won’t work in xval()). The tree does quite a bit better than the naïve model, though it’s not quite as good as the glm

Combining Classifiers: Since these two classifiers presumably have different strengths, we might expect to do even better when we combine them. One thing we might do is to compute both classifications, and make a judgment only when they agree. The other times we might just return “I don’t know.” How would we do here? If we were serious, we might use yet another level of cross-validation, but both our models are at least “aware” of the dangers of over-fitting (the glm therefore uses stepAIC(), the tree pruning). This command then builds a three-way array of (prediction from the tree) by (prediction from the glm) by (actual outcome). My code looks like this:

table (predict (bio.tree, type = “class”)), predict (bio.glm.2, type = “response”), biopsy[,”class”])

When I did this in my office, I got an error rate under 2% when the three agreed (which was 96% of the time). When the two disagree, of course, the situation is much less clear. Often the fact that we have high uncertainty is worth knowing.

Homework (don’t hand in): The vowel.names.txt file on the common drive describes the “vowel” data set, also found on the common drive. Using the vowel.trg.txt file as your training set, build and prune a classification tree for this data. Then find your tree’s misclassification rate on the vowel.test.txt file. Show the 10x10 table of actual class versus predicted class. (Note: your error rate will be high!)

