Buttrey

OA3103: Lab 1

Fall AY 2003

Objectives:

a) To remind the student of the essentials of handling vectors, matrices, lists and data frames in S-Plus;

b) To introduce the student to the implications of S3 classes and methods in S-Plus;

c) To prepare the student to develop his/her own functions for regression analysis.

Vectors:

A vector is a set of entries that are all of the same type. If you combine unlike things, S-Plus will convert them to a common form (often character). We can extract a subset of items from a vector with the square bracket notation (e.g. myvec[3], myvec[c(5,3)]). Negative subscripts mean “everything except” (e.g. myvec[-3], myvec[-c(5,3)]). We can also use a logical subscript, in which case we get the items for which the subscripting vector is TRUE and not the others (e.g. myvec[myvec < 2]). Wherever we can extract data, we can assign as well (e.g. myvec[myvec < 2] <- 999). Many S-Plus functions operate on vectors one element at a time.

We can give the elements of a vector names, using the names() command. Then we can extract or assign by name. This is handy because it means you never need to know which number is in which spot.

Matrices:
A matrix is a rectangular array of (usually numeric) data. In S-Plus, functions that operate element-wise on vectors (like, for example, arithmetic operators, trigonometric functions, and so on) do the same to matrices. Matrices can be created with the matrix() function; often you’ll want the byrow=T option if you’re feeding the data in row-wise. A matrix’ entries can be accessed by referring to its row and column numbers:

mymatrix[5,3] gets the 5,3-rd element of mymatrix;

mymatrix[5,3] <- 0 assigns zero to that element

mymatrix[3,] gets the third row and mymatrix[,1], the first column (as vectors);

mymatrix[] <- 0 sets every element to 0 (how is this different from mymatrix <- 0?)

You can also give names to the elements of the rows and columns, using the dimnames() function. (You can use names(), too, to refer to individual elements, but I haven’t found this useful.) This allows you to refer to the rows and columns by name, which can be handy. In fact, when you’re extracting data, you need only refer to enough of the name to make it clear what you want (but if you’re assigning, you need the whole name: we’ll see why in a second). You can do a lot of this (and some other stuff, too) in the object browser but in many cases that’s best suited for small or one-at-a-time operations. One thing that’s tricky is getting hold of non-contiguous areas of a matrix. You can do this by subscripting with a two-column matrix, the first naming rows and the second, columns.

Math-type operations on matrices act element-by-element. So, for example, a * b multiplies each element of a by the corresponding element of b. There are, of course, matrix operations as well: t() computes the transpose, %*% performs matrix multiplication, solve() computes inverses, and there are functions to compute svd, QR, and Choleski decompositions, compute eigenvalues and eigenvectors, and more.

Lists:

All the entries in a matrix have to be of the same mode (that is, all numeric, character, logical, or complex), and of course every column has to have the same length. A list is the most general data structure in S-Plus; it can contain items of different modes, of different lengths, or anything you can think of. (All of the modeling functions we will use in this course return lists.) In particular it can contain other lists, matrices, or even functions. The square bracket extraction (mylist[2]) works for a list, but it returns a list, which is not usually what you wanted. Instead, the double square bracket construction (mylist[[2]]) returns something with the correct underlying mode.

The elements of a list can have names (set and retrieved with the names() function, not dimnames()) and those names can be used in assignment or extraction. When using a name, the dollar-sign character acts as the separator. So, for example, you can get hold of the piece named a of the list mylist with the command mylist$a. Once again you only need enough of the name to ensure uniqueness, when you’re extracting. How about assigning?

Data Frames:
A data.frame is a special kind of list that happens to look like a matrix: it’s always rectangular. Let’s import the beer data into a data frame (you can use the GUI or the read.table() function.) A data.frame has to have named columns and rows (although often the row names are just 1, 2, ...). The columns can hold objects of different types; especially useful is factors, which we need on ANOVA and sometimes in regression, too. The pull-down menus work best with data frames. It’s possible to call the modeling functions directly without data.frames, but even this way it’s a little easier if you use them, because then you can use the data= option to keep from having to type in the name of the data frame every time:

Beer.lm <- lm (Calories ~ Alcohol, data = beer)
You can extract from, and assign to, a data frame using either matrix-like commands or list-type commands.
A Side Note on S3 (S-Plus 2000) Objects, Classes and Methods

The outputs of lm() and the other modeling functions are lists with class attributes. (The class() function will tell you the class(es) of an object.) Whenever an object with a class attribute is passed to a generic function, the system determines what to do by sticking together the function name, a period, and the class name and calling a function with the resulting name. So when you call the print function, print (mylm), the system looks around for a function named print.lm() and calls it if there is one. (If there isn’t such a function, it will try any remaining classes the object might have, in order, and finally it’ll call print.default()). Through this technique, the developers of S-Plus are able to write different print() functions for the different objects that are produced, and the user need do nothing at all. Of course, you could create your own functions with the same names and they would be called instead. To see all print methods, use methods (“print”); methods (,“lm”) shows all the methods for lm objects. The class/method setup is somewhat different in S4 (S-Plus 6); indeed this is the big difference between S-Plus 2000 and S-Plus 6.

The apply() family of functions:

S-Plus is at its strongest handling things in groups rather than one at a time. The apply() family of functions provides a good example. apply(mat, 1, mean) computes the mean of each row of a matrix; apply (mat, 2, var) computes the variance of each column. In a similar way, lapply(mylist, length) computes the length of each element on the list. (lapply() returns a list; sapply() does the same thing, but it returns a vector when it can.) Of course in every case you can supply your own function. You can even do that “in-line”: sapply (mylist, function(x) sum (x[x > 0])). Finally, tapply() applies a function to a vector that’s been broken into pieces depending on the value of another vector: consider tapply (beer[,"Calories"], beer[,"Rating"], mean).

Homework (due Monday):

You have a list called mylm, the output from the linear regression of Calories on Alcohol in the beer data.

1.) This list has an element called fitted. What is the mean value of fitted?

2.) What is the median value of fitted among non-light beers? Don’t re-build the model: I just want the set of fitted values from the existing beer.lm, but just for non-light beers.

3.) Construct a new data frame from just the non-American beers.

