MORS Mini-Symposium

Data Mining Ex. 1: Classification

Objective:
Classification techniques: k-NN and tree classification

Tree regression in CTree

Introduction: XLMiner is a data mining tool produced by Resampling Stats (web site: www.resample.com). It acts as an add-in to Excel and provides the ability to fit a number of data mining models: regression (linear, tree, k-nearest-neighbor), classification (logistic, tree, naïve Bayes, neural network), association rules, and clustering (k-means, hierarchical, principal components).

In this exercise we will install XL Miner, open one of the sample data sets, and produce some classification models. Bad news: if your Excel version is 97 or earlier, XLMiner will not run.
Installing XL Miner: Install XLMiner in the usual way, by double-clicking on the XLMinerSetup executable. This is a 30-day trial version. After the program is installed, double-click on the XLMiner icon in your new program group, or choose Start | Programs | XLMiner | XLMiner. After the first time you start, the add-in will be loaded automatically every time you start Excel. You should now see the XLMiner menu on the main menu bar.

Sample Data: Let’s use the famous “Boston housing” data collected in the 1970’s. This has been installed where XLMiner lives: on my machine, that’s c:\Program Files\XLMiner\Datasets. The “description” tab gives a brief description. Each row of the data describes the conditions in a particular town or neighborhood near Boston; the response variable for regression is MEDV, the median value of owner-occupied homes in that area (presumably in $1000’s). CAT.MEDV is 1 if MEDV > 30, and 0 otherwise. This is the response variable we will use in classification models.

Partitioning the Data: Many data mining algorithms are extremely flexible, so left to themselves they will over-fit the data. The first thing many users will want to do is to partition their data into separate pieces. We can then fit the model using one piece of data (the “training set”), and evaluate the fit by applying the model to the second piece (the “test set”). We might alternatively use three pieces: a training set, on which to build the model; a “validation set,” to guide the progress of the model, and then a test set on which to gauge the accuracy of the final model. Partitioning will normally be the first step in data mining. An alternative is cross-validation, in which ten (say) models are fit, each omitting a different tenth of the data. Then we do prediction on the omitted tenth and combine those predictions for an overall estimate of quality.

Let’s use XLMiner’s partition algorithm (XLMiner | Partition Data…) to create our partitions. Choose all the variables except CAT.MEDV from the “variables” list and move them to the “variables in the partitioned data” list. Set the random seed to 12345 (click on “Set seed for randomization”) so that everybody doing the exercise gets the same results.

Classification: XLMiner implements the classical techniques of logistic regression and linear discriminant analysis. In addition it offers the classification tree and the neural network, naive Bayes and k-nearest neighbor classifiers. Let us construct a classification tree and a k-NN model on the training set, then evaluate them on the test set. Choose XLMiner | Classification | Classification tree, set up the model (CAT.MEDV as output, everything else except MEDV as input) and pick “prune tree.” The resulting output includes the confusion matrix for the validation set (the “Output” sheet), the predicted values for the validation set (the “Valid1” sheet) and the tree picture (the “Best_Prun1” sheet). This model has an error rate of under 5%.

The k-NN classifier is fit in a similar way. Here the crucial parameter is the number of nearest neighbors. Three seems to be a good choice here. Again the resulting model’s error rate is under 5%. Can we combine the two classifiers? Sure: copy the predictions from the tree and put them next to the predictions from k-NN. Then create a new column with a formula like =if(B6=C6,if(C6=F6,1,0)," ") meaning “if the two models predict the same thing, then put a 1 if they’re right and a 0 if they’re wrong; if the two models predict different things, put a blank.” The average of that column gives the conditional error rate Pr (both wrong when they agree). There are 202 records in the training set; the two methods agree on 192 and, when they agree, they’re wrong only 2.6% of the time.

 CTree: An alternative to XLMiner for constructing classification trees is CTree, freeware courtesy of Angshuman Saha. :If you open that spreadsheet the example, using the well-known Fisher iris data, is simple to run. (The Boston example is straightforward, too, but it requires a bit more clicking.) Notice that the set of inputs is a little different from the ones in XLMiner. However the tree diagram is very attractive as well as interactive.

Other Classification Models: The naive Bayes classifier requires categorical inputs and therefore can’t be used with the Boston data. In this model we start with Pr (X = x | Y = y) for X an input variable and Y the output. Then we can use Bayes’s theorem and the assumption that the X’s are indepdendent (that’s the naive part) to estimate Pr (Y | X). These classifiers often perform well, as do neural networks, which are also available. Neural networks are widely used and have been very successful. They do, however, tend to run slowly.

Areas of Active Research: Scaling these algorithms up to handle huge data sets; parallelizing computations; problems when one class is very rare or very common; combining several different types of models (as above); using the output of one model as input to another (“chaining”); creating ensembles of models from perturbed versions of the original data, and letting the members of the ensemble vote; using separate k-NN (say) classifiers within the leaves of a tree; handling time series or repeated measures data.

