
NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

Approved for public release; distribution is unlimited.

3D VISUALIZATION OF THEATER-LEVEL

RADIO COMMUNICATIONS USING A
NETWORKED VIRTUAL ENVIRONMENT

by

David W. Laflam

September 2000

Thesis Advisor: Don Brutzman
Thesis Co-Advisor: Michael Capps
Second Reader: Don McGregor

 i

 REPORT DOCUMENTATION PAGE Form Approved
 OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2000

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
3D Visualization of Theater-Level Radio Communications Using a Networked Virtual

Environment.

5. FUNDING NUMBERS

6. AUTHOR
David W. Laflam

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of

Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT
The military is heavily reliant on the transfer of information among various networks in day-to-day operations. Radio-based

communications networks that support this volume of information are complex, difficult to manage, and change frequently.
Communications network planners need a way to clearly visualize and communicate mobile operational network capabilities,
particularly to network users.

By using the DIS-Java-VRML simulation and modeling toolkit, visualizations of radio-frequency energy and radio path-
profiling data can be quickly generated as 3D models. These animated 3D visualizations can be loaded into a networked virtual
environment, so that communications planners can detect a variety of problems such as radio frequency interference and gaps in
coverage. Planners can also brief senior staff, plan within their own staff, and collaborate with communications staff planners in
distant locations using such virtual environments.

DIS-Java-VRML visualization tools can provide a clear picture of the battle space with respect to the deployed
communications architecture. The prototypes presented in this thesis demonstrate the ability to generate a shared visualization that
can show a radio communications network in 3D. Such dynamic visualizations increase communications planning information
bandwidth and yield more intuitive ways of presenting information to users. Higher information density in a more intuitive format
enables better understanding with quicker reaction times. This thesis and the visualization tool discussed provide the foundation for
fundamental improvements in visualizing radio communications environments.

14. SUBJECT TERMS
Virtual Environments, Visual Simulation, Signal Planning, VRML, Java, DIS-Java-VRML, X3D 15. NUMBER OF PAGES

 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

 NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

3D VISUALIZATION OF THEATER-LEVEL RADIO COMMUNICATIONS
USING A NETWORKED VIRTUAL ENVIRONMENT

David W. Laflam

Captain, United States Army
B.S., Keene State College, New Hampshire 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING VIRTUAL ENVIRONMENTS AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
September 2000

 Approved by:

Don Brutzman, Thesis Advisor

Author:

David W. Laflam

Rudy Darken, Academic Associate
Modeling Virtual Environments and Simulation Academic Group

Don McGregor, Second Reader

Michael Capps, Thesis Co-Advisor

Michael Zyda, Chair
Modeling Virtual Environments and Simulation Academic Group

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The military is heavily reliant on the transfer of information among various

networks in day-to-day operations. Radio-based communications networks that support

this volume of information are complex, difficult to manage, and change frequently.

Communications network planners need a way to clearly visualize and communicate

mobile operational network capabilities, particularly to network users.

By using the DIS-Java-VRML simulation and modeling toolkit, visualizations of

radio-frequency energy and radio path-profiling data can be quickly generated as 3D

models. These animated 3D visualizations can be loaded into a networked virtual

environment, so that communications planners can detect a variety of problems such as

radio frequency interference and gaps in coverage. Planners can also brief senior staff,

plan within their own staff, and collaborate with communications staff planners in distant

locations using such virtual environments.

DIS-Java-VRML visualization tools can provide a clear picture of the battle space

with respect to the deployed communications architecture. The prototypes presented in

this thesis demonstrate the ability to generate a shared visualization that can show a radio

communications network in 3D. Such dynamic visualizations increase communications

planning information bandwidth and yield more intuitive ways of presenting information

to users. Higher information density in a more intuitive format enables better

understanding with quicker reaction times. This thesis and the visualization tool

discussed provide the foundation for fundamental improvements in visualizing radio

communications environments.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. THESIS STATEMENT .. 1
B. MOTIVATION... 1
C. OBJECTIVES... 4
D. METHODOLOGY ... 4
E. ORGANIZATION OF THESIS ... 5

II. BACKGROUND AND RELATED WORK.. 7
A. INTRODUCTION .. 7
B. MILITARY AND CIVILIAN SECTORS RELIANCE ON NETWORKS.................................... 7
C. RADIO PROFILING.. 8
D. IEEE DISTRIBUTED INTERACTIVE SIMULATION PROTOCOL (DIS).............................. 12
E. DISTRIBUTED INTERACTIVE SIMULATION CATAGORIES ... 13

1. PDU Descriptions .. 13
F. MULTICAST ... 14
G. JAVA.. 15
H. VIRTUAL REALITY MODELING LANGUAGE (VRML) .. 16
I. DIS-JAVA-VRML ... 31
J. EXTENSIBLE 3D (X3D)... 32
K. TOOL REQUIREMENTS.. 37
L. COMMUNICATIONS VISUALIZATION TOOLS.. 37

1. OPNET Modeler™ .. 37
2. COMNET/STK.. 39
3. MSE-NPT .. 42

M. SUMMARY.. 44
III. METHODOLOGY... 45

A. INTRODUCTION .. 45
B. OPPORTUNITY STATEMENT.. 45
C. PROPOSED IMPLEMENTATION ... 46
D. TECHNOLOGICAL SOLUTIONS.. 49

1. DIS DESIGN ... 49
2. EXTENSIBLE 3D (X3D) DESIGN .. 49
3. JAVA DESIGN ... 50

E. SUMMARY.. 51
IV. DIS EMISSIONS AND PDUS .. 53

A. INTRODUCTION .. 53
B. IEEE DIS DATA STREAM PDUS .. 53
C. DIS IMPLEMENTATION ... 53
D. RADIO COMMUNICATIONS PROTOCOL (RCP) FAMILY .. 57

1. Transmitter PDU.. 58
2. Receiver PDU .. 62
3. Signal PDU .. 65

E. SUMMARY.. 68
V. TACTICAL VISUALIZATION OF BATTLEFIELD EMISSIONS... 69

A. INTRODUCTION .. 69
B. OVERVIEW... 69
C. VISUALIZATION CONSIDERATIONS .. 70

1. Tactical Visualization .. 70
2. Dimensional Space .. 73
3. Available Graphics Techniques and Parameters.. 74
4. Mapping MSE-NPT Data to Graphics Parameters .. 75
5. Initial Visualization Recommendations ... 76

D. SUMMARY.. 78
VI. SYSTEMS INTEGRATION AND DEMONSTRATION... 79

A. INTRODUCTION .. 79

 viii

B. DEMONSTRATION.. 79
C. VISUALIZATION RESULTS ... 90
D. PROPOSED USES OF RADIO COMMUNICATIONS VISUALIZATION 93
E. SCIENTIFIC VISUALIZATION AND INTEROPERABILITY... 94
F. SUMMARY.. 94

VII. CONCLUSIONS AND RECOMMENDATIONS ... 95
A. INTRODUCTION .. 95
B. PRINCIPAL THESIS CONCLUSIONS .. 95
C. SPECIFIC CONCLUSIONS .. 95

1. Tactical Communications Visualization .. 95
2. Visualization .. 96

D. RECOMMENDATIONS FOR FURTHER WORK... 96
1. Tactical Communications Visualization .. 96
2. Model Validation ... 97
3. Visualization .. 97

APPENDIX A. MSE-NPT File Reader Code ... 99
APPENDIX B. DIS PDU CODE.. 111
APPENDIX C. DIS-Java-VRML DTD ... 129
APPENDIX D. X3D PROTOS... 133
APPENDIX E. CD-ROM ... 137
LIST OF REFERENCES.. 147
INITIAL DISTRIBUTION LIST.. 151

 ix

LIST OF FIGURES

Figure 2.1: Allocation of Radio Spectrum in the United States. .. 8
Figure 2.2: Frequency Ranges of Radio Spectrum and uses in the United States................. 9
Figure 2.3: Fresnel Zones of an antenna array, showing optimal (1) to
 marginal (3) Zones of signal power, From Ref (TB 11-5895-1544-10-1)... ... 10
Figure 2.4: Reflection and refraction of radio waves From Ref
 (TB 11-5895-1544-10-1).. 11
Figure 2.5: “Hello World” Source Code and Rendered World
 From (Brutzman, 1998). .. 17
Figure 2.6: SHF MSE Antenna in VRML World (Cylinder and Cone Nodes). 19
Figure 2.7: 2Km by 2Km VRML IndexedFaceSet of Fort Irwin California generated
 From NIMA DTED Data.. 20
Figure 2.8: MSE UHF antenna using Transform Grouping of Cylinder
 Cone and IndexedFaceSet.. ... 22
Figure 2.9: View Point High Above Airfield with communication
 coverage area shown as green half domes. .. 23
Figure 2.10: View Point close in next to Blue Flag with communication coverage............ 23
Figure 2.11: “Hello World” Source Code and Rendered World redone
 in GEOVrml. ... 29
Figure 2.12: Generated VRML terrain of Valley in Cairngorms (vertically exaggerated)
 with an overlay of 1:25000 Map which was in GIF format Form
 Ref (McCullagh 1997). ... 30
Figure 2.13: Screen capture of X3D-Edit Tool with allowed node-menu............................. 34
Figure 2.14: Screen Capture of X3D-Edit Tool showing SHF Antenna Prototype. 35
Figure 2.15: X3D Source Code for "Hello World". ... 36
Figure 2.16: VRML Source Code for "Hello World"... 36
Figure 2.17: Satellite Tool Kit (STK) screen snapshot of 2D radio profiling. 41
Figure 2.18: Satellite Tool Kit (STK) screen snapshot of 3D satellite profiling.................. 41
Figure 3.1: Methodology for Signal Planning Visualization... 46
Figure 3.2: Implementation methodology overview for signals visualization...................... 47
Figure 3.3: Detailed implementation methodology for signal visualization. 48
Figure3.4: Detailed Java connectivity design reads value from the network
 and sends data to and from the VRML scene... 51
Figure 4.1: Instantiation of a Multicast socket using Java’s built-in networking. 54
Figure 4.2: DIS networking paths to create entities in the visualization.............................. 55
Figure 4.3: DIS-Java-VRML streaming stack, as documented in Javadoc
 from the mil.navy,nps.dis consistent initialization EntityDispatcher package....... 56
Figure 4.4: Text output of the start of the Antenna Visualization sending PDUs................ 57
Figure 4.5: Transmitter PDU Diagram From Ref (DIS IEEE Std 1278.1a-1995).............. 60
Figure 4.6: Text output of test program mil.navy.nps.testing.TransmitterPduSender
 showing sending of a Transmitter PDU. .. 60
Figure 4.7: Text output of test program mil.navy.nps.testing.PduTestListener
 showing proper receipt of a Transmitter PDU.. 61
Figure 4.8: Receiver PDU Diagram From Ref (DIS IEEE Std 1278.1a-1995). 63

 x

Figure 4.9: Text output of test program mil.navy.nps.testing.ReceiverPduSender
 showing sending of a Receiver PDU. ... 63
Figure 4.10: Text output of test program mil.navy.nps.testing.PduTestListener
 showing proper receipt of a Receiver PDU... 64
Figure 4.11: Signal PDU Diagram From Ref (DIS IEEE Std 1278.1a-1995). 66
Figure 4.12: Text output of test program mil.navy.nps.testing.SignalPduSender
 showing sending of a Signal PDU. .. 66
Figure 4.13: Text output of test program mil.navy.nps.testing.PduTestListener
 showing proper receipt of a Signal PDU... 67
Figure 5.1: MSE-NPT Terrain Profile From Ref (TB 11-5895-1544-10-1)......................... 71
Figure 5.2: MSE-NPT Terrain Screen Shot of DTED Map
 From Ref (TB 11-5895-1544-10-1). ... 72
Figure 5.3: 7 major tasks for design of information visualization (Keller 1993). 74
Figure 5.4: MSE-NPT antenna data for coordinates, height and elevation
 are mapped directly to 3D rendering coordinates. .. 76
Figure 5.5: MSE-NPT file with VRML coordinates converted from
 MRGS coordinates. .. 77
Figure 6.1: DIS-Java-VRML desktop Icons.. 79
Figure 6.2: DIS-Java-VRML Start Panel for Capture the Flag entities. 80
Figure 6.3: Text output of DIS-Java-VRML Referee copied from console........................... 81
Figure 6.4: Netscape Java Security warning for reading unsigned class files. 82
Figure 6.5: MSE-NPT loader selection panel. ... 83
Figure 6.6: MSE-NPT file loader dialog box. .. 83
Figure 6.7: MSE-NPT File with VRML Mission Coordinates.. 84
Figure 6.8: Antenna Start Panel with selection choices generated by file parser............... 85
Figure 6.9: MSE-NPT file data flow for ESPDU state information. 86
Figure 6.10: MSE-NPT File Data Flow for Radio Communications Family PDUs........... 86
Figure 6.11: Antenna DIS-Java-VRML visualization startup sequence after the user
 has selected a startup MSE-NPT data file. .. 87
Figure 6.12: Antenna Control Panel allowing user to move, rotate, and send PDUs. 87
Figure 6.13: SignalPDU Sent Across the DIS Network Before and After Visualizations... 89
Figure 6.14: DIS-Java-VRML Antenna Signal Visualization far viewpoint......................... 90
Figure 6.15: DIS-Java-VRML Antenna Signal Visualization Close in
 Viewpoint showing 10 KM RAU Antenna Coverage. .. 91
Figure 6.16: DIS-Java-VRML antenna signal visualization with 10
 kilometer overlapping coverage domes... 91
Figure 6.17: DIS-Java-VRML Antenna Signal Visualization with a viewpoint
 high above the Fort Irwin.. 92
Figure 6.18: DIS-Java-VRML Antenna Signal Visualization with a viewpoint
 high above the airfield. .. 92
Figure 6.19: DIS-Java-VRML Antenna Signal Visualization with a viewpoint
 20 Km above the airfield. .. 93

 xi

List of Acronyms

AOIM - Area Of Interest Management

ASCII - American Standard Code for Information Interchange

CAVE - CAVE Automatic Virtual Environment

CECOM - Communications Electronics Command (US Army)

DIS - IEEE Distributed Interactive Simulation Protocol

DoD - Department of Defense

ESPDU - Entity State PDU

GUI - Graphical User Interface

IEEE - Institute of Electrical and Electronics Engineers

ISO - International Standards Organization

JVM - Java Virtual Machine

LCD - Liquid Crystal Display

LOD - Level of Detail

LOS - Line Of Sight

LSVE - Large Scale Virtual Environment

MGRS - Military Grid Reference System

MSE-NPT - Mobile Subscribers Equipment Network Planning Tool

NIPRNet - Unclassified but Sensitive Internet Protocol Router Network

NPS - Naval Postgraduate School

NPT - Network Planning Terminal (See MSE-NPT)

PDU - Protocol Data Unit

SIGGRAPH - Special Interest Group for GRAPHics

VE - Virtual Environment

VRML - Virtual Reality Modeling Language

X3D - Extensible 3D

XML - Extensible Modeling Language

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my classmates. Without their

long hours at the library and in review sessions this degree would not have been possible.

We were a good team. I would also like to thank my thesis advisors, Dr. Don Brutzman,

Dr. Michael Capps and Don McGregor for their wise counsel, patience and dedication

throughout my work on this thesis.

I would especially like to thank Dr. Michael Zyda, the creator of the Modeling,

Simulations and Virtual Environments (MOVES) curriculum at the Naval Postgraduate

School. Dr Zyda is an outstanding educator and a visionary in his field. He has provided

the insight necessary to understand the complex problems facing the Army’s modeling

and simulation community while providing the analytic and cognitive tools necessary to

find workable solutions for those problems.

Finally, I must recognize the loving support of my family, who supplied support

through phone calls and email messages. To my father, Colonel Robert J. Laflam (Ret),

who has always kept me focused on the bigger picture and to my mother, Margaret B.

Laflam, for always being there when I needed a sounding board. Thanks for always being

there.

 xiv

 1

I. INTRODUCTION

A. THESIS STATEMENT

The DIS-Java-VRML software toolkit can be used to dynamically visualize radio-

wave propagation on realistically rendered three-dimensional (3D) terrain, thereby

enhancing the capability of the Army’s Mobile Subscriber Equipment Networking

Planning Terminal (MSE-NPT).

B. MOTIVATION

The military is heavily reliant on the transfer of information among various

networks in its day-to-day operations. With fewer defense dollars available for the

development of new systems, the use of commercial-off-the-shelf (COTS) hardware and

software to build military information networks is becoming commonplace. The critical

nature of much of this radio profiling and planning information requires that knowledge

regarding communications-network performance characteristics be well understood.

These characteristics allow network managers and designers to plan for future growth of

the network, analyze network reliability, and plan for the construction of new networks.

This problem is often addressed satisfactorily for wired networks but is rarely addressed

for mobile radio communications networks.

When presented with a problem containing dynamic sources of information, it is

easiest to understand the overall impact of a solution if one addresses the problem in a

visual manner. Because the world is inherently 3D, people often tend to visualize spatial

 2

solutions to problems in 3D. Most people tend to think in 3D, yet most of the data they

interact with on a daily basis is presented in a two-dimensional (2D) format. While many

people have a high degree of spatial ability, none of this capability is exploited when they

only process in 2D. Individuals rarely communicate verbal information in a 2D aspect.

More often than not, people verbalize with respect to a 3D reference. This is scene when

a person gives someone directions to a store. People tend to give directions in a 3D

framework, such as “Go down the street and take a left,” as opposed to, “Go up the map

and across.” This points to the fact that the human brain has limitations in its ability to

process large volumes of numeric information, such as points on a map, to then make

conclusions about likely outcomes. This leads one to believe that more innovative means

of visualization are necessary to allow the signal planner and commander to step another

level of abstraction away from raw profile data, to facilitate timely and accurate decision-

making.

When military radio-communications planners can view planning-system inputs

in a graphical context, it provides them the opportunity to rapidly recognize potential

radio-profiling problem areas. Such profiling conflicts easily remain undetected when

the same information is presented in a text-based form. In the communications field,

systems that communicate must have a physical path from the sender or transmitter to the

receiver. By viewing the radio-transmission communication paths visually in the context

of geographic and tactical obstacles, the systems planner can quickly identify whether a

planned system has problems. Currently such analysis (when performed at all) utilizes

topographic maps and manually sketched overlay data.

 3

This work assumes that if a communications planner can view radio

communications systems in a 3D space, the problems between the sender and receiver

can be more quickly identified, as will integration problems among all the systems in a

network. Such visual detection of problem areas is an active field of study, as described

in “Visual Discovery and Analysis” (Eick 2000). By providing a visualization

enhancement to currently fielded systems, this work can improve a communications

staff’s ability to support warfighting commanders. The system presented in this thesis

enables them to produce and create a 3D signal flow in the designated battle space.

Performance characteristics of a network can be determined through modeling

and simulation. The DIS-Java-VRML modeling software toolkit which supports IEEE

and ISO standards can be used as an extension to traditional COTS radio-modeling

software to provide 3D visualization of the radio propagation patterns. Producing

simulations and models that are based on ISO and IEEE standards ensures that the

developer of the simulation enjoys the highest degree of integration with existing

simulations. This type of solution also provides the greatest amount of flexibility when

contracting for additional software support, by allowing the greatest number of

developers to bid on the development of the software. Standards also enable local

development of additional capabilities. This thesis demonstrates how to capture

information from an ASCII text-based form and transform it into a 3D scene for the

modeling and simulations of radio-based networks.

 4

C. OBJECTIVES

The objective of this thesis is to demonstrate the viability of using Extensible

Markup Language (XML)/ Extensible 3D (X3D) and Virtual Reality Modeling Language

(VRML) to render an ASCII MSE-NPT file into a 3D tactical battlefield visualization

system to aid radio-network planners. To develop a tactical battlefield visualization

system, the following essential software components must be developed:

• Tactical battlefield visualization system environment designed in VRML

• An interface that will transform relevant NPT data from ASCII text into
appropriate VRML and X3D (Extensible 3D) objects.

• An interface that will allow the user to reposition any of the antennas described in

the NPT File on realistically rendered terrain

• Java based DIS Software for transmitter, receiver and signals

• VRML PROTO libraries that are referenced by the DIS code

D. METHODOLOGY

The following steps were taken in order to address the above issues:

Background Study: The background notes outline all major radio

communications software currently used within the Department of Defense (DoD). It

also explains the capabilities these software packages have, focusing on their ability to

visualize information in 3D as well as how these packages share data across a network.

Framework Development: Develop a battlefield visualization framework based

on the DIS-Java-VRML toolkit. This visualization is developed to demonstrate reading in

data from the network and generating 3D visualization of radio communications on a

realistically rendered terrain model.

 5

Demonstration: The viability of this framework is demonstrated on a prepared

set of MSE-NPT Data. Information can be represented in both the current form of

VRML and also natively encoded into the coming generation of VRML called Extensible

3D (X3D).

E. ORGANIZATION OF THESIS

The remainder of this thesis is organized as follows:

- Chapter I: Introduction. This chapter includes an introduction to the

problem, and the steps in its solution.

- Chapter II: Background. This chapter provides the background and related

work on the reason for visualizing communications, introducing some of the

tools currently used by the radio network design community.

- Chapter III: Methodology. This chapter presents the problem statement and

covers design considerations in enhancing the Army's MSE-NPT visualization

capabilities with a DIS-Java-VRML solution.

- Chapter IV: DIS Emissions and PDUs. This chapter presents the

development of the DIS compliant networking code for radio

communications, and explains why the DIS Standard is a good choice for

large-scale virtual environments (LSVEs).

- Chapter V: Tactical Visualization of Battlefield Emissions. This chapter

introduces how tactical visualization of battlefield emissions are currently

done, and how use of the DIS-Java-VRML solution can improve visualization.

 6

- Chapter VI: Systems Integration and Demonstration. This chapter

provides a description of the DIS-Java-VRML framework, and demonstrates

its implementation, to include how the framework can read in an external

MSE-NPT file and generate a 3D scene. Example visualizations results are

presented in detail.

- Chapter VIII: Conclusions and Recommendations. This chapter contains

the conclusion reached and recommendations for future development with

DIS-Java-VRML in the problem area.

 7

II. BACKGROUND AND RELATED WORK

A. INTRODUCTION

This chapter reviews the fundamental concepts which are the basis for the

development and generation of 3D radio-communications profile plans. Topics

examined in this chapter include the military and civilian-sector reliance on radio-based

communications networks, radio profiling, Distributed Interactive Simulation (DIS),

Java, Virtual Reality Modeling Language (VRML), DIS-Java-VRML and Extensible 3D

(X3D), plus software-tool requirements and communications-visualization tools.

B. MILITARY AND CIVILIAN SECTORS RELIANCE ON NETWORKS

The trend in both civilian and military sectors has been toward heavy reliance on

information networks in day-to-day operations. Rapid advances in information

technology have propelled this shift from an industry-based economy to an information-

centric economy. As a result, society has shifted away from production-based transport

systems to information systems where the ability to transport information to the necessary

destinations at the needed time and in a format which can quickly be summarized by

either man or machine is the key to both corporate and military success.

This shift is particularly noticeable in the military. The military paradigm is

rapidly evolving from Carl von Clausewitz’s theory of massing combat power and

overwhelming the enemy to that of the global infosphere, where data concerning the

enemy may be transferred to the necessary location, delivering a precision strike without

requiring the classical massing of forces. The dependence on networks within the

 8

military might best be described by General Colin L. Powell’s June 1992 assessment in

of the use of networks during the Persian Gulf War:

 “Efficient management of the information increased the pace of
combat operations, improved decision-making, and synchronized various
combat capabilities. The technology developed to support these networks
proved to be vital margin that saved lives and helped achieve victory.”
(Powell, 1995)

A variety of network technologies including IP, X.25 and ATM are connected

over wireless networks that must transport a great deal of information. These wireless

links must be engineered to support a force that is mobile, and mobility is achieved with

radio systems. The best way to ensure the highest degree of transmission reliability

between these radio systems is to visually profile the links between the radios. Radio

profiling ensures the best communications throughput for the networks that are being

supported by the radio transmission systems.

C. RADIO PROFILING

Radio profiling is one of the oldest and most common techniques used to ensure

reliable communications between radio wave-based systems. The military has systems

that use all bands of the radio spectrum. See Figure 2.1 and Figure 2.2 for a detailed

description of available equipment by frequency range.

Figure 2.1: The allocation of radio spectrum in the United States.

 9

0 kHz to 30 kHz Very Low Frequency (VLF) Maritime mobile telephone service

30 kHz to 300 kHz Low Frequency (LF) Radio beacons for aircraft navigation

300 kHz to 3 MHz Medium Frequency (MF)

3 MHz to 30 MHz High Frequency (HF) Army squad radios

30 MHz to 328.6 MHz Very High Frequency (VHF)

328.6 MHz to 450 MHz
450 MHz to 470 MHz Trunked or Conventional Base Radio
470 MHz to 806 MHz Ultra High Frequency (UHF)
806 MHz to 960 MHz Greatest usage between 806 MHz to 960 MHz
960 MHz to 2.3 GHz
2.3 GHz to 2.9 GHz Wireless Communications Service

2.9 GHz to 30 GHz Super High Frequency (SHF) Transmission type for high capacity network systems

30 GHz and above Extremely High Frequency (EHF) Point-to-Point Microwave Service

Figure 2.2: Frequency ranges of radio spectrum and uses in the United States.

This thesis is focused on the frequency bands used by the US Army’s Mobile Subscriber

Equipment, which are the UHF and SHF radio bands.

Radio profiling is mapping the side or sectional elevation of the radio

transmission path as it relates to the ground from the transmitter to the receiver. It is a

graph that represents the extent to which an individual radio system exhibits traits as

determined by its antenna wave emission contour shown as a drawing of vertical lines.

The goal of the radio network engineer is to have a system with a minimum of obstacles

in the radio path. Most radio antenna planners like to place their antennas on highest

point above the ground, thus allowing for the greatest amount of line of sight (LOS)

 10

between the emitters using the most direct path or zone. Zone 1 is the optimal zone, with

the best LOS and a very direct path. Zone 3 is the least favored zone, with marginal LOS

and a very indirect path.

Figure 2-3: Fresnel Zones of an antenna array, showing Optimal (1) to
Marginal (3) Zones of signal power, From Ref (TB 11-5895-1544-10-1).

LOS enables operators to quickly and easily determine the visible and non-visible

regions around an antenna as viewed from an observer’s position. A radio-path profile

along the direct line of sight from the transmitter to the receiver is generated and shows

visible or non-visible areas, based on the terrain elevation data and obstacles noted in the

data set.

 11

Figure 2-4: Reflection and refraction of radio waves
From Ref (TB 11-5895-1544-10-1).

Radio profiling is important to ensure that geographically dislocated areas, which

have networks that must share data, can communicate to each other. Properly radio-

profiling links between networks ensures that communication between commanders and

their units is continuous regardless of where in the battle space they are physically

located. This is also the trend in the commercial sector. Currently such efforts can be

seen in the wide deployment of the Institute of Electrical and Electronics Engineers

(IEEE) 802.11 compliant wireless LANs, where by various companies use wireless

network connections to track shop floor inventory, to communicate with a sales staff, and

even to assist with patient monitoring when transporting a person in an ambulance. By

properly profiling the terrain in conjunction with antenna emplacement, the radio-signals

 12

planner can have the greatest area of radio coverage. Such coverage allows the radio

planner more flexible usage in that area of coverage. In the military, the greatest area of

communications coverage translates into the greatest area of command and control.

D. IEEE DISTRIBUTED INTERACTIVE SIMULATION PROTOCOL (DIS)

The IEEE Standard for Distributed Interactive Simulation Application Protocols

(DIS) is a government and industry initiative to define an infrastructure for linking

simulations. The DIS protocol IEEE 1278.1 is a set of over-the-wire communications

protocols used to standardize the way information about a simulation is packetized and

transmitted “over the wire” (i.e. via a network connection) to other computers and

computer networks. DIS was an outgrowth of the simulator-networking project

(SIMNET) done by Bolt, Beranek and Newman for Defense Advanced Research Projects

Agency (DARPA) in the late 1980’s. The intent of this project was to link a number of

computers together to create a virtual battlefield. DIS combines interactivity and

distributed processing. The receiving computers can differ from the sending computer in

architecture and operating systems. As long as all the computers in the system have

implemented the DIS protocol correctly, they are able to communicate within a

simulation. DIS messages are composed of a series of ordered data fields to ensure wide-

scale interoperability, communicating state information (such as position, orientation,

velocity and acceleration) among multiple entities participating in a shared network

environment. The underlying transport protocol for the DIS packets is usually multicast.

 13

E. DISTRIBUTED INTERACTIVE SIMULATION CATAGORIES

This protocol is broken down into five general categories for which there are

PDUs. Each area provides a common description or specification for writing code, which

has been agreed upon by the IEEE specification committee.

1. PDU Descriptions

a) Entity State –Provides information including appearance, location,

velocity, orientation, acceleration, position and movement of articulated parts

for simulated entities. Location and movement changes are dead reckoned and

this PDU is sent at a variable rate necessary to correct dead reckoned

parameters. The Entity State PDU may also be sent periodically as a heartbeat,

or to compensate for lost PDUs.

b) Emissions – Provides and includes PDUs that control the point of origin,

power, frequency, direction, scan pattern, and other parameters of electronic

or acoustic emissions. This information is used to stimulate simulated sensors

capable of detecting and responding to such information. In electronic warfare

(EW) environments, these parameters change frequently. In an active EW

environment, emission packets are sent as frequently as entity state packets.

c) Data Stream PDUs -- Represent voice samples, computer-to-computer

communications, images, or any other digital bit stream. These are heavily

used in simulations that include voice radio, intelligence and tactical

command-and-control systems.

 14

d) Environment – Breaks up atmospheric or oceanographic data into a series

of PDUs, each of which describe changes in the simulated natural

environment.

e) Fire & Detonation -- Carry the information needed to describe the firing

of a ballistic (unguided) weapon and the detonation of the projectile. The

amount of information per PDU is fairly small and the total series of PDUS

are limited to the amount of ammunition the participants can carry. Weapon

firing tends to come in bursts.

Interoperability is vital within the communications arena as well as within the

modeling and simulation community. When a military command exchanges messages

with a subordinate military command, each message needs to correctly received.

Similarly, if a commander can share an identical picture of the battle space with

subordinate commanders, the mission plan is more clearly understood. By being able to

better visualize the radio network, planning officers can more accurately communicate

problems relating to the radio communications infrastructure to a non-communications

planning officer. Utilizing the DIS protocol with 3D virtual environments also provides

an opportunity to share one’s visualization with staff members located at distant

locations.

F. MULTICAST

Multicast combines the best parts of two types of network communications:

broadcast and point-to-point links. Any given host, in addition to having its own Internet

address, can belong to a large number of multicast groups. Each multicast group has its

 15

own special Internet address with in a certain range of addresses set aside for this

purpose. When any host sends a message to a multicast address, that message is sent to

the entire host range belonging to the multicast group. In effect, this approach is much

like having a separate subnet on the Internet. Sending a multicast message is easier and

more efficient than sending a copy of a point-to-point message to every participant on the

network. Hosts that are not subscribed to the group can ignore the packets on the network

at the hardware level. Since there is no central server and no duplicated bandwidth,

multicast scales well. The lack of a central servers means that people can join and leave

the network-simulation without having to worry about authentication procedure each

time. The signals visualization presented in this thesis implements a DIS multicast

between each network simulation.

G. JAVA

Java™ is a programming language specifically designed for use in the distributed

environment of networks and Internet. Java can be used to create complete applications

that may run on a single computer or be distributed among servers and clients in a

network. The primary resource for this language is http://java.sun.com . Some of the

noteworthy characteristics of Java include:

• The programs created are portable in a network. The program is compiled into

Java byte code which can be run anywhere in a network on a server or client that
has a Java virtual machine.

• The code is "robust," meaning that the Java objects can contain no references to
data external to themselves or other known objects.

http://java.sun.com/

 16

• Java is object-oriented, which means that, among other characteristics, similar
objects can take advantage of being part of the same class and inherit common
code.
(Deitel, 1999)

Using Java as the development programming language insures that the system

will be compatible with the greatest number of computer platforms.

H. VIRTUAL REALITY MODELING LANGUAGE (VRML)

Virtual Reality Modeling Language (VRML) is a language for describing Web-

based 3D models and possible user interactions with them. One key feature of VRML is

that it is an ISO standard designed to be used over the in a Web browser environment.

Using VRML, a developer can integrate a set of visual models into a Web-based setting

with which a user can experience by viewing, moving, rotating, and otherwise interacting

with the scene. For example, a user can view a room and use controls within the web

browser to move about the room, mimicking what they might see if one were walking

through the room in real space. The various examples explored in this thesis employ the

approved (VRML97) standard.

The fundamental design structure in VRML97 worlds is a scene graph. A 3D

scene graph describes the three-dimensional world, including the objects it contains, their

visual properties, their behaviors and how they interact. By encoding content into groups

of nodes one can divide the scene into smaller parts, optimizing the scene. To display

objects like primitive shapes such as Box, Sphere, Elevation grids, and complex Indexed

Face Sets, one creates these nodes and adds to their behaviors. The nodes also specify

groupings of sub-nodes and can indicate interaction and movement of events throughout

 17

the scene graph. There are the two basic steps used to design a scene graph: building a

world with visual nodes, and then describing the interaction through behavior nodes.

VRML provides the standardized interchange language to create such virtual worlds so

they can be viewed with any VRML-capable Web browser. Figure 2.5 implements

several of these VRML nodes to create a virtual earth (Brutzman, 1998).

Figure 2.5: “Hello World” Source Code and Rendered World.
From Ref (Brutzman, 1998).

 18

1. Basic Nodes

VRML has a rich variety of nodes that can be employed to develop a scene graph.

The following is an overview of key nodes necessary to understand the design of the

example communications visualization virtual world presented in this thesis.

a. Visual Nodes

 The visual aspect of a scene graph is expressed through its geometry. In

VRML the Shape node has four primitives: the Box, Cone, Cylinder and the Sphere.

These primitive shapes are inserted into the scene graph as nodes and define a specific

shape in the geometric field. These nodes can be grouped, sized, scaled, colored, and

textured as appropriate to build entities in the virtual world.

 The Shape node is also used to build more complex objects such as the

MSE SHF antenna in Figure 2.6. These complex objects can be built using a

combination of a cone and a cylinder or in the case of the terrain for the model it was

generated as a VRML IndexedFaceSet. An IndexedFaceSet node is an array of polygons

used to map out an object in the virtual world

 In general, an object is often built with the help of a CAD (computer aided

design) program or similar authoring tool. The software then converts and exports the

object to a VRML compatible IndexedFaceSet node. For example, the terrain map in

Figure 2.7 was built using a Java3D program the reads and generates VRML terrain files.

It was written in cooperation with Mr. John Kim of NIMA.

 19

Figure 2.6: SHF MSE Antenna in VRML World (Cylinder and Cone Nodes).

This program reads a file and converts the “post” height data in a VRML IndexedFaceSet

node, which then can be viewed in a web browser. The IndexedFaceSet node provides a

mechanism for creating complicated, realistic shapes in VRML. Once calculated, the

object is placed as a value in the geometric field of the Shape node and can be

manipulated like any primitive shape. Shape nodes are used to build primitive

geometries, which can then be integrated into more sophisticated scene graphs.

The Shape node also contains an Appearance node that presents the author

with intricate control over the color of an object. The Appearance node is used in

conjunction with the Material node and Texture node to apply colors and texture images

to an object. A terrain map or image can be placed over the elevation data in a virtual

world to present a realistic setting (Brutzman, 1998).

 20

Figure 2.7: 2Km by 2Km VRML IndexedFaceSet of Fort Irwin California
generated from NIMA DTED data.

b. Grouping Nodes

Grouping nodes combine sets of nodes for the purpose of creating entire

objects, which can in turn be manipulated as another scene graph. These nodes are

grouped in a way that makes sense to the viewer of the scene, usually describing a spatial

or logical relationship. Grouping nodes are the Group node, Transform node, Billboard

node, Collision node and the LOD (level of detail) node. The most basic of these nodes

is the Group Node. The Group node simply identifies subordinate nodes, which are to be

 21

collected together in a fashion similar to gathering all the parts of the geometry of an

object. These subordinate nodes are referred to as the children of the Group node. The

Transform node is a bit more flexible, which makes it a critical grouping node. Like the

Group node, the Transform node not only brings geometric parts together but also is

capable of moving the grouped nodes within a local coordinate system. The Transform

node can specify translational and rotational changes of position to children of the nodes.

This represents a fundamental spatial capability of a scene graph. The Transform node

can be combined with Interpolator nodes to create animation in the virtual world

(Brutzman, 1998). Interpolator nodes define a piecewise-linear function f(t) on the

interval (0, 1). A variety of Interpolator outputs are available for producing positions,

orientations, colors, etc. The piecewise-linear function is defined by n values of t, called

key, and the n corresponding values of f(t), called keyValue. The cycle of the TimeSensor

driving normalized Interpolator key input determines the duration of the interpolator

period.

c. Viewing Nodes

The Viewpoint node defines a specific location in the local coordinate

system from which the user can view the scene. It also allows a scene graph to include

predefined camera angles. A set of carefully designed viewpoints can make navigation of

a virtual world easier for the viewer. These predefined views of the world are easy to

access via the interface bar of the VRML browser offering practical navigation. By

having predefined viewpoints, exploration is faster in large virtual worlds, thus enabling

 22

the user to go to the correct point in the scene quickly. Viewpoint information can also

be displayed in the plug-in for the browser.

Figure 2.8: MSE UHF antenna using Transform Grouping of Cylinder, Cone and
IndexedFaceSet.

In the Cosmo Software VRML Plug-in displays (shown above), viewpoint

information is at the bottom right of the screen. The related NavigationInfo node permits

a virtual world to control how a viewer moves about the scene. A viewer may be forced

or guided to walk (rather than fly) through a scene (Brutzman, 1998).

 23

Figure 2.9: View Point high above airfield with communication
coverage area shown as green half domes.

Figure 2.10: Viewpoint next to Blue Flag with communication coverage.

 24

d. Interpolators and Route Nodes

After the geometry and rendering for virtual objects are developed and

positioned in a scene graph, it is often necessary to animate these objects. Animation in

VRML is accomplished using interpolators and routes. Interpolator nodes are designed

for linear key-framed animation. An interpolator node defines a piecewise-linear

function f(t) on the normalized time interval (0, 1), and continuously returns a series of

values of interest. The 3D browser calculates interim states between key values so that

the animation transitions smoothly from the start state to the end state. The most

common interpolators are the position and orientation interpolators. These interpolators

are used to create translational and rotational animation of objects in the scene graph.

Interpolators are available for most base types, and their functionality can be furthered

extended by using Script nodes.

After these calculations are completed, the values must be passed as

events into the Transform node of the object for the movement to take place. This value

passing is done via ROUTEs, which dispatch events from one node to the next node. For

example a ROUTE, a connection between VRML nodes, can take the calculated changes

from an interpolator and redirect the data into the Transform node. The modified field in

the Transform node implements the behavior changes in the scene graph. (Ames, 1997)

This thesis work uses event passing to adjust the radius of the communications domes

and position of the antennas on the virtual battlefield.

The prerequisite node for driving an animation process is the TimeSensor

node. The TimeSensor node provides the clock that the interpolators use to

 25

systematically output positional data. In this signal visualization, TimeSensor is used to

adjust the frequency of the number of beam cones sent from one directional antenna to

another directional antenna.

e. Sensor Nodes

There are six types of sensor nodes in the VRML specification. These

sensors are the TimeSensor, VisibilitySensor, TouchSensor, PlaneSensor, SphereSensor,

and CylinderSensor. Sensors provide the primary means for a viewer to interact with a

virtual world (Brutzman, 1998). They are trigger-based on either time or user

intervention. The visualization presented in this thesis uses both time and user input to

control antennas on the virtual battlefield. A TouchSensor, which activates whenever a

mouse cursor or pointing device is placed over or clicks on an object, detects when to

display DIS information on the antennas. Sensor functionality can be further extended

using Script Nodes.

f. Script Node

 The VRML Script node is used to integrate imperative programming

languages such Java and JavaScript (formerly known as EcmaScript) into the scene

graph. The Script node is used to connect programmed behaviors into a scene. Script

nodes typically signify a change or user action, receive events from other nodes, and

contain a program module that performs some computation, thereby effecting change

somewhere else in the scene by sending events. (VRML SPEC, 1997) The Script node

adds the flexibility needed to develop more sophisticated scene-graph behaviors not

inherent in the VRML specification. This thesis visualization uses the Script node to

calculate the size of the transmission cones and radio coverage domes. The Script node is

 26

frequently used to perform network access or physics calculations such as those needed

by VRML interpolators and sensors.

g. PROTO and EXTERNPROTO Definitions

The PROTO and EXTERNPROTO definitions are used to effectively

create new VRML nodes as combinations of other predefined VRML nodes. This

technique is useful when developing large, specialized scene graphs for objects or models

that are needed in a virtual world. PROTOs can be used to construct complex objects and

behaviors that are referenced either multiple times or in the same VRML file. A PROTO

defining an antenna needs only be built once, and then it creates instances whenever the

user needs that type of antenna. PROTOs are a key mechanism for efficiently creating

large and intricate virtual worlds. In order to achieve efficient code re-use, the

EXTERNPROTO construct is provided to group PROTOs into libraries in files, which are

external to the main scene. This permits storing geometry of complex objects or models

on a local hard drive or on a network-accessible storage device for shared access.

2. GeoVRML

The VRML specification is a powerful tool for representing 3D worlds.

However, the specification does not directly represent or utilize geographic concepts such

as latitude/longitude coordinates or the corresponding navigational movement associated

with these coordinate systems. GeoVRML 1.0 (www.geovrml.org) defines geo-

referenced scene-graph objects and data (such as maps and 3-D terrain models), to be

viewed over the web by a user with a standard VRML plug-in for their web browser.

This work was initially developed at the Stanford Research Institute (SRI) and is now

http://www.geovrml.org/

 27

available to the public. SRI and the GeoVRML working group developed a large set of

VRML nodes and software tools to simplify implementing geographic constructs in

VRML97 specification. The key components of GeoVRML are the PROTO nodes

designed for referencing and interpolation of virtual worlds through geographic

mechanisms. The GeoVRML PROTOs use underlying Java code and Script nodes to

perform the physically based calculations and perform geographic modeling. The

GeoVRML suite is a “Recommended Practice” of the Web 3D Consortium. (Iverson,

1999)

GeoVRML nodes perform functions similar to the corresponding nodes defined in

the VRML97 specification. The left side of Figure 2.11 shows a GeoVRML code

fragment used to rebuild the geo-referenced virtual scene displayed in the right side of

Figure 2.11. While this example code is missing a large number of VRML declarations

needed to provide geo-referencing, the major nodes required to render the scene are

present. The virtual Earth appears to be similar to the "Hello World" Earth of Figure 2.5

but it is more sophisticated. The two virtual worlds provide similar visual representation

of the Earth, but the original "Hello World" Earth is a sphere wrapped with a texture map

of the Earth. The Earth built in Figure 2.11 is composed of elevation grids geo-

referenced by latitude and longitude. This provides the planner with a way to correctly

represent the coordinates that they use to plan their areas of radio coverage in the virtual

world by using geographical coordinate systems corresponding directly to the Military

Grid Referencing System (MGRS) (TB 11-5895-1544-10-1).

 28

GeoVRML provides a solution to the lack of geo-referencing in VRML. The

ability to convert the raw digital terrain elevation data (DTED) post height information

provided by NIMA into correctly geo-referenced maps for the virtual world allows the

planner the flexibility to plan a mission for any type of terrain. The rapid availability and

ease of access to DTED data ensures that it is possible to achieve minimal delay between

the initial plan and its visualization on a geo-referenced virtual map.

a. GeoOrigin

Coordinate reference systems currently supported by the GeoVRML suite

assume that the virtual world begins at the center of the earth. In order to gain optimal

precision of the model, GeoVRML provides the GeoOrigin node to specify the local

coordinate system. Only one GeoOrigin node is used within a scene. It directs the

browser where to look inside the VRML world and to interpret the geologic data (Reddy,

2000).

 29

Figure 2.11: “Hello World” source code and rendered scene redone in GeoVRML.

b. GeoLocation

The ability to place objects in specific locations of a scene graph is of

fundamental importance in the military, where maps are used in the planning of every

mission. The GeoLocation node presents the capability to place objects in a virtual world

using a geological reference frame. This node performs in a manner similar to the

Transform node of VRML97 specification (Reddy, 2000).

c. GeoPositionInterpolator

The original Transform node required the PositionInterpolator node to

create smooth movement for animation. The GeoLocation node also has an associated

interpolator. The GeoPositionInterpolator node performs the function of calculating key

 30

values and intermediate positions in geographical coordinates (Reddy, 2000). The ability

to move and update the location of an antenna in the scene is required as the virtual

battlefield changes. The ability to record and to position changes in the simulation helps

the planner who is working to plan an active mission.

d. GeoViewpoint

The GeoViewpoint node behaves like a standard Viewpoint node. The

GeoViewpoint node relocates the viewer's orientation and position to an absolute posture

in the geo-referenced coordinate frame. The GeoViewpoint node supplies a practical

means for maneuvering about complex GeoVRML worlds.

Figure 2.12: Generated VRML terrain of Valley in Cairngorms (vertically exaggerated)
with an overlay of 1:25000 Map which was in GIF format Form Ref (McCullagh 1997).

 31

I. DIS-Java-VRML

DIS-Java-VRML is a tool kit that provides DIS connectivity with the integration

of the Java™ programming language, and VRML 3D modeling capabilities. It provides

the developer with a set of libraries and examples in which they can develop networded

3D virtual worlds. “DIS-Java-VRML is an open source software toolkit and library of

applications that enables VRML 3D scenes to be DIS compliant through the use of Java

networking code” (Brutzman 2000 email). The DIS-Java-VRML working group’s goal

was not to invent a new protocol design but to develop a Java class library and

architecture for exchanging DIS packets over the Internet. Through the use of the script

nodes in VRML, the Java classes use the event in and event out fields in VRML to update

the scene. A developer using DIS-compliant code ensures that his or her simulation will

operate with other DoD Simulations. The connecting of 3D virtual worlds with

networking provides an optimum environment for a 3D collaborative planning tool. This

tight integration of the DIS networking code with VRML presents an opportunity for a

web-based virtual battlefield. A shared virtual battlefield with commanders and planners

at different locations benefits from this type of capability.

“DIS, Java and VRML can provide all of the pertinent capabilities needed to
implement large-scale virtual environments (LSVEs). DIS is essentially a
behavior protocol tuned for physics-based (i.e. "real world") many-to-many
interactions. Java is the programming language used to implement the DIS
protocol, perform math calculations, communicate with the network and
communicate with the VRML scene. VRML 3D graphics are used to model and
render both local and remote entities in shared virtual worlds.” (Brutzman 2000
website)

 DIS-Java-VRML development software and models are available at
(http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml).

http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml

 32

J. EXTENSIBLE 3D (X3D)

The next-generation VRML specification is referred to as Extensible 3D (X3D).

Extensible 3D contains the XML encoding of VRML97 specification. By using XML,

the new X3D standard includes constructs a document type definition (DTD) tagset that

allows users to develop well-formed and validated scene graphs. XML also provides

X3D with extensibility, meaning the ability to define and integrate new nodes at runtime.

Extensible 3D has fundamental nodes and structures similar to VRML97 standard and is

fully backward compatible.

X3D allows users to create geometries that contain metadata. Metadata is data

that describes the contained geometries to other applications. The rapid encoding of

geometries and the ability to define new geometries, ensures that the most accurate

representations are rendered correctly. The utilization of the metadata is powerful

because it provides the communications planners with definable geometries and the

ability to transform, organize, and render data in ways that suits their needs.

Using an X3D software development kit and the X3D-Edit authoring tool,

developers can produce validated scene graphs with error-free editing. This tool utilizes

IBM's Xeena XML editor, which has been configured to facilitate straightforward

development of scene graphs that conform to the X3D DTD. The X3D-Edit tool converts

X3D documents to VRML97 via an Extensible Stylesheet Language (XSL) stylesheet and

automatically launches a browser for convenient debugging. Figure 2.13 shows a screen

capture of X3D-Edit (Extensible 3D Task Group, 2000).

 33

Extensible 3D provides the critical link between the XML documents and

visualization presented in this thesis. Although VRML97 is the basis for many of the

models developed, X3D provides the structure and flexibility to transform XML

documents to valid scene graphs. Figure 2.15 and Figure 2.16 show examples of X3D

and VRML code, which render identical virtual worlds. Using a X3D/VRML approach

provides interoperability between web-based simulations.

 34

Figure 2.13: Screen capture of X3D-Edit Tool with allowed-node menu.

 35

Figure 2.14: Screen capture of X3D-Edit Tool showing SHF Antenna Prototype.

 36

Figure 2.15. X3D Source Code for
"Hello World".

Figure 2.16. VRML Source Code
for "Hello World".

#VRML V2.0 utf8
Group {
children [

Viewpoint {
description "initial view"
position 6 -1 0
orientation 0 1 0 1.57 }

Shape {
geometry Sphere { radius 1 }
appearance Appearance{

texture ImageTexture {
url "earth-topo.png"}}

}

Transform {
translation 0 -2 1.25

rotation 0 1 0 1.57
children [

Shape {
geometry Text {
string [" Hello” "world!"]}

appearance Appearance {
material Material {

diffuseColor 0.1 0.5 1 }}

}
]

}
]

}

<X3D>
<Scene>

<Group >
<Viewpoint

description='initial view‘
orientation='0.0 1.0 0.0 1.57‘

position='6.0 -1.0 0.0‘
/>
<Shape>

<Sphere radius='1.0'/>
<Appearance>

<ImageTexture
url='"earth-topo.png" “

/>
</Appearance>

</Shape>
<Transform

rotation='0.0 1.0 0.0 1.57'
translation='0.0 -2.0 1.25'>

<Shape>
<Text string='"Hello" "world!"'/>
<Appearance>

<Material
diffuseColor='0.1 0.5 1.0‘

/>
</Appearance>

</Shape>

</Transform>

</Group>
</Scene>

</X3D>

 37

K. TOOL REQUIREMENTS

While researching this thesis, the author preformed a literature survey to locate a

software toolkit that might help develop a system based on a common open standard for

data interchange. This system is intended to allow the 3D visualization of radio profile

information, overlaid on a realistic terrain model, to be shared among many participants

on open or classified networks. Open standards and high-quality content-development

authoring are the primary tool requirements.

L. COMMUNICATIONS VISUALIZATION TOOLS

Three major software tools are being used currently to model communications

networks within the US Army Signal Corps. These tools are OPNET Modeler™ by MIL

3 Inc (MIL 3, 1987), COMNET™ III from CACI Products Company (COMNET, 2000),

and the MSE-NPT (MSE-NPT, 1997) software developed under contract for the U.S

Army Communications Electronics Command by General Telephone Equipment (GTE)

Corp. These tools each have unique capabilities. The focus of this thesis is on each

software suite’s ability to perform radio profiling and produce three-dimensional (3D)

visualizations of radio wave propagation.

1. OPNET Modeler™

OPNET Modeler™ by MIL 3 Inc. is a computer-aided system for the design,

simulation, and analysis of communications networks, computer systems, applications

and distributed systems. MIL 3 Inc. introduced OPNET in 1987. Over 500 civilian and

 38

Department of Defense (DoD) organizations are currently using OPNET™ (MIL 3,

1987).

OPNET™ provides the user with the ability to model from the Wide-Area

Network (WAN) down through the process and state level. Various degrees of modeling

resolution provide the user with the added flexibility to model current or design future

communications and computer networks, systems and applications. OPNET™

communications modeling software was selected by the J-6 NETWARS program to

develop future communications packages for the Army. OPNET™ is a commercial off-

the-shelf (COTS) program which can be installed on a number of platforms: Sun SPARC

Solaris 2X; Sun SPARC Sun OS; HP UNIX and Intel-based implementations of

Windows™ NT and Windows™ 2000.

OPNET™ can model multiple client/server applications (email, database, file

transfer, etc.), peer-to-peer delays, server backlogs, and transaction response times and

throughputs. OPNET™ can also models satellite systems and mobile communications

nodes, but it does not focus on radio wave propagation. Some military systems libraries

are available for the product, and these can be obtained from various DoD agencies. This

system costs $18,000 per year and is used at the strategic and engineering levels.

OPNET™ network modeling requires a programming background and a solid

understanding of statistical methods as well as a complete understanding of analog and

digital communications. OPNET™ uses a proprietary method for the storage of

information via its relational database management systems (RDMS).

 39

2. COMNET/STK

COMNET™ III from CACI Products Company is a network planning tool

designed with an object-oriented environment to model Local-Area Networks (LANs),

Wide-Area Networks (WANs) and Metropolitan-Area Networks (MANs). Network

models are created graphically and require no actual programming by the user

(COMNET, 2000).

Network traffic files can be imported from various systems. Animation provides

the user with the ability to monitor the network flow. COMNET III ™/STK uses familiar

objects like computer nodes, routers, and links which can be edited by the user to design

a specific network topology. The basic steps used to build a model using COMNET III ™

are to define a topology and establish traffic and computer loads. Reports selected by the

user are automatically generated during the simulation run.

COMNET III™ software is available for Windows™ 98, Windows™ NT,

Windows™ 2000, all major UNIX computers.

Wide-Area Networks (WANs) and Local-Area Networks (LANs) are easily

modeled through the use of subnets and WAN cloud icons. These provide the user with

various views of the network hierarchy. WAN clouds can be used to model frame relay,

cell relay (ATM) and packet switching (X.25). Packet switching (X.25) is the type of

switching most common on today’s battlefield in Mobile Subscriber Equipment (MSE)

communications shelters.

 40

COMNET III™ provides radio communication modeling through the use of an

add-on package called the Satellite Tool Kit (STK) ™ from Analytical Graphics, Inc.

STK™ provides radio and radar modules and lets users select from among several single-

beam antenna types, then define and orient the type selected. In addition, the radio

module lets users specify wave polarization parameters.

COMNET III™ supports single-beam antennas and multi-beam antennas and

includes properties for polarization and antenna orientation. Users can visualize

communications system in both 2D and 3D. Figure 2-17 is a 2D representation, which

presents the coverage in a 2D projection view of terrain with satellite wave propagation,

and Figure 2-18 is a 3D representation, which shows the area coverage for a satellite

system in space.

COMNET III™ and STK provide for networked visualization through the use of

the DIS Protocol. STK/DIS module is a DIS software application designed to create

complex virtual scenarios for communications systems simulation. The STK/DIS module

connects with the DIS to read protocol data units (PDU) and then populate a shared

scenario. The PDU Entity State data (position, attitude and dead-reckoning algorithmic

parameters) is used to define the state of the STK object. The resulting scenario is a

complex virtual-reality planning tool that is accurate and up to date. STK/DIS exercises

are used by the military for training, test and evaluation, and concept analysis.

 41

Figure 2-17: Satellite Tool Kit (STK) screen snapshot of 2D radio profiling.

Figure 2-18: Satellite Tool Kit (STK) screen snapshot of 3D satellite profiling.

 42

This software system costs $48,500 and is used at the local installation

engineering departments. Use of COMNET III™ requires a programming background

and a solid understanding of statistical methods, as well signaling and digital

communications. The Satellite Tool Kit (STK) package is recommended by the

Communications and Electronics Command (CECOM) for modeling space-based

communications platforms. COMNET III™ uses its own proprietary method for the

storage of information with its RDMS.

3. MSE-NPT

The Mobile Subscriber Equipment (MSE) Network Planning Tool (NPT) is a set

of radio-profiling software and hardware that was developed under contract for the

CECOM (MSE-NPT, 1997). The MSE-NPT is a Modified Table of Organizational

Equipment (MTOE) item for all communications units that have MSE transmission

equipment. This radio-profiling tool is issued to all units that have radio transmission

equipment, and the field version of the NPT is customized for MSE equipment. Major

components of MSE include node centers (NCs), radio access units (RAUs), large

extension nodes (LENs), small extension nodes (SENs), mobile subscriber

radiotelephone terminals (MSRTs), and system control centers (SCCs).

NPT is a network-planning tool designed with an object-oriented software

architecture to engineer radio systems in the MSE shelters. One such radio is the

AN/GRC-224 SHF radio system operating in the 14.50 to 15.35 Gigahertz (GHz) range.

They are found in the AN/TRC-190 LOS radio terminal shelters used for short-range

communications from 2 to 5 kilometers. MSE-NPT also engineers systems utilization on

 43

the AN/GRC-226 UHF radio system operating 225.0 to 400.0 Megahertz (MHz) (BAND

I) and 1350.0 to 1850.0 MHz (BAND III) ranges. These radios are found in the AN/TRC-

190 LOS radio terminal shelters used for long-range inter-nodal communications from 20

to 50 kilometers. MSE-NPT can also engineer systems based on the AN/VRC-97 VHF

MSRT radios. The AN/VRC-97 radio has a tuning increment of 25 KHz and can shift

automatically to find an unused channel for communications. The AN/VRC-97 works

much like a spread-spectrum cell phone.

A user-designed NPT network is created using a 2D graphical user interface

(GUI) and requires no actual programming by the user. A good knowledge of reliable

link-performance fundamentals is required. The operator must have an understanding of

the specific capabilities radio for each interface type. The MSE-NPT uses familiar

modeling objects based on standard military symbology for communications shelters,

links between shelters and tactical units. The basic steps to build a model using MSE-

NPT including: defining the communication nodes with their geographic locations,

profiling the terrain from transmitter to receiver, and checking the profile simulation

results. The MSE-NPT system does not provide a simulated load on the system. It does

provide a detailed analysis and description of propagation loss, fresnel zone clearance,

multi-path fading, link margin, path reliability and climate factors.

The NPT does not provide the ability to network multiple planning terminals,

which can only be configured to run in a stand-alone fashion. Nevertheless a user is able

to load multiple network configuration files into the same terminal to view the networks

by overlay. The NPT only uses military-standard NIMA DTED products for its

 44

geographic baseline. The primary output product provides the user with a color 2D view

of the network overlaid on these DTED Maps.

The MSE-NPT system does not have a unit cost since it is provided to each Army

unit as part of the MSE equipment package. A prerequisite for proper MSE-NPT

operation is that the operator attends the Army’s Battlefield Spectrum Management

Course per the guidance of the Army’s Signal Center (http://www.gordon.army.mil).

M. SUMMARY

This background work has provided an overview of the tools and technologies

that are used in communications planning. These tools and technologies when connected

to a network and integrated can together provide the signals planner with an enhanced

visualization capability.

http://www.gordon.army.mil/

 45

III. METHODOLOGY

A. INTRODUCTION

This chapter describes the design for a system to develop and generate a 3D radio-

communications profile plan. This chapter also explains the how technologies discussed

in Chapter II relate to these communications-visualization techniques. Later chapters

present more specific details on the DIS-Java-VRML implementation.

B. OPPORTUNITY STATEMENT

Signal-communications planning is currently performed by manually plotting

antenna positions on terrain maps, indicating the area of coverage on each map using

range-fan and radio-profile information. This task requires an individual with a

considerable amount of experience in radio planning. Such individuals must be familiar

with the deployed radio equipment, and must also understand weather and terrain effects

for the particular radio systems that they are planning for. The manual planning method

has been used successfully for a number of years. However, as networks combine the use

of data and voice circuits, the planner considers a greater number of variables. This

growth has made communications planning a complex and difficult problem to

understand. It is possible to simplify this overall planning problem by using methods of

information visualization and scientific visualization.

 46

C. PROPOSED IMPLEMENTATION

The general design of the 3D communications visualization can be decomposed

into five steps, as listed in Figure 3.1. These five steps define the major steps of the

implementation. A flow chart illustrating typical workflow is shown Figure 3.2

1. Input information: A user performs an initial design of a signal plan

using the MSE-NPT system in accordance with current doctrine. Then the generation of
the raw MSE-NPT file and terrain locations of antennas with MGRS positions then
convert MGRS positions to VRML positions, or MGRS to Northing and Easting.

2. Separate out the antenna information: This step is the process of
gathering the antenna specific information, like the frequency, polarization, antenna
height, azimuth, elevation, and antenna type.

3. Process the input: This step is the creation of the Java antenna objects,
which have an associated SignalPDU, ReceiverPDU, or TransmitterPDU. Several
examples are provided.

4. Provide a networked copy of the data: This step connects the Java
antenna objects and their associated SignalPDU, ReceiverPDU, or TransmitterPDU and
then broadcast this associated information across the DIS network.

5. Display the visualization: This step links of the associated SignalPDU,
ReceiverPDU, or TransmitterPDU data to a graphic representation and displaying it in
the scene. Changes can be tested using the Antenna Control panel, then saved back to a
MSE-NPT File.

Figure 3.1: Methodology for signal planning-visualization.

This general design pattern is similar to that of DIS-Java-VRML design and

leverages previous work of the DIS-Java-VRML helicopter demonstration framework,

for visualization of signal communications plans. A more detailed methodology,

incorporating many of the technologies discussed in the previous chapter. Figure 3.2

shows a detailed elaboration of the five-step process, including a technological solution

for each requirement.

 47

The foundation of a virtual signal communications plan is the MSE-NPT profile

data. This data provides the input information needed to start the visualization, which is

the first step in the methodology. The MSE-NPT Terminal generates the profile data.

Input Information

Process
Input

Terrain Database

Provide a Networked
Copy of Antenna

Posistion
Data Structures

Display
Visualization

Gather Antenna
Paramater
Information

Connect the Graphic
Representations to
the Data Structure

Graphic
Representations of

Antennas

Modify antenna
paramters

Update of MSE-NPT
File

Figure 3.2: Implementation methodology overview for signals-visualization.

After the DIS-Java-VRML framework is started, the MSE-NPT data file is

selected and loaded by the user. This file contains a number of parameters about each

antenna, such as its position in MRGS. A Java file reader was developed to parse this

information from the MSE-NPT data file, perform steps two and three, and transform it

into an antenna data structure. The file reader can also parse the MSE NPT numeric data

and transformation into DIS PDUs.

The fourth step is to associate the MSE-NPT data structure and the PDUs being

sent to it. This is executed within the DIS-Java-VRML framework by connecting the

SignalPDU, TransmitterPDU, or ReceiverPDU to the associated unique antenna ID in

 48

the antenna vector. The PDUs are implemented in Java in accordance with the IEEE

DIS specification.

Step 5

Step 2 & 3

Step 4

Step 1

Start the
DIS-Java-VRML

Framwork

Select Antenna
Visualization

(Java)

Terrain Database
(GeoVRML)

Java Vector of
Antenna

Posistions

Display Web Based
Visualization in

VRML of
Operational Exercise

Load the Antenna File
VRML Cordinates

or
MRGS Cordinates

Process Fils
Java File Reader

Application
(Gather Antenna

Paramater
Information)

Send Information Across
Network

(EntityStatePDU,
TransmitterPDU, ReceiverPDU,

SignalPDU) with DIS-Java

Broad cast acroos the network

Read from the terrain sever

Connect the VRML
Graphics to DIS-Java

with VRML
Transform Nodes
and Script Nodes

X3D / VRML
Antenna PROTOs
SHF, UHF, RAU

Read in from external file

Updates Sent to Scene

MSE-NPT Terminal File
Input information from standard

signal-planning tool

Modify antenna
parameters with the

Antenna Control panel

Updated MSE-NPT
File

Updates Sent to Scene

Updates Sent to Scene

Figure 3-3: Detailed implementation methodology for signal visualization.

The final step is when the PDUs are sent to the DIS-Java-VRML framework via

the DIS networking code. By sending the PDUs it will connect the VRML antenna

graphical representation to the antenna data structure and then displays the graphical

representation of the antenna with the SignalPDU, TransmitterPDU or ReceiverPDU

data. Changes to the antennas in the VRML virtual world are done via the Antenna

 49

Control panel. These Java based panels are generated for each antenna instance. The

control panels are the users primary means of controlling the positions as well as which

PDUs are to be sent to the scene. The graphical representation of the antennas were

developed in X3D and then automatically translated into VRML.

D. TECHNOLOGICAL SOLUTIONS

This thesis utilizes a number of the technologies from Chapter II to solve a variety

of design challenges. The author chose to use DIS to solve the common network

protocol, and to use X3D for the construction of the graphical representations of the

antenna, with the Java programming language connecting all the pieces.

1. DIS DESIGN

The DIS network communications protocol has a number of families of PDUs for

communications. By using an agreed-upon format for network communications, this

visualization should interact with other visualization using this protocol in the same

manner. The author implemented Java classes providing DIS Radio Communications

family protocols in Java. A detailed discussion is provided in Chapter IV.

2. EXTENSIBLE 3D (X3D) DESIGN

X3D provides the ability to generate the graphic representations of objects and

provides interoperability between web-based simulations. The author developed all the

graphic representations of antenna as VRML PROTO Nodes. These PROTOs provide

the basic rendering geometries of the SHF, UHF, and RAU antenna systems. These

 50

PROTOs can also be translated from their native XML encoding into VRML encoding

using XSL style sheet X3dToVrml.xsl that is provided with the X3D-edit authoring tool.

3. JAVA DESIGN

Java is very important to this visualization. Java provides the communication

between the Script node and the DIS network. This connectivity provides for event

passing so that the visualization reflects the current state of the DIS network. There are

two aspects to the communication between the Script node and the program bound to it.

The first concerns the means of using events to actually transfer data from the Script node

into the Java program. An event-handler Java class file does this. This class in this case

is the SignalPDUScript.class for the SignalPDU. The second aspect concerns the

opposite case how to get the data from the java program back to VRML. This is done

with the Script node, which is defined in the vrml.node package and provides a

mechanism for users to manage the interaction between the VRML nodes and the Java

programs (Brutzman 98). By importing this package into a Java program, VRML events

can be passed back to the program. The author developed a SignalPDUScriptPROTO

that performs this type of event passing, which is shown in Figure 3.3.

 51

VRML
Time Sensor

Cycle Interval

fraction_chaged VRML
Interpolator

set_fraction

value_changed

VRML PROTO
Signal PDU

translation

rotation

VRML
Script Node

Url

eventIn

elevation

azimuth

EventOut

VRML PROTO
SHF Anttena

translation

rotation

elevation

azimuth
 JAVA DIS PDU

 If Signal Sent
 return
 else
 send positionupdate

 Figure 3-4: Detailed Java connectivity design reads value from the network and sends

data to and from the VRML scene.

E. SUMMARY

This chapter provided a design overview. By taking the problem of visualization

and breaking it into it smaller parts, each one can be addressed as a part of the whole.

This approached allowed the author to approach each with a different technology

solution. When these solutions are combined together into the DIS-Java-VRML

framework and integrated into a web-based solution. This web-based visualization

provides a solution to the difficult problem of the visualization of communications

 52

networks. The detailed implementation of the parts is presented in Chapter VI, Systems

Integration and Demonstration.

 53

IV. DIS EMISSIONS AND PDUS

A. INTRODUCTION

This chapter discusses the practical factors involved in implementing the DIS

protocol in this visualization. Subjects examined in this chapter include DIS Data Stream

PDUs, DIS implementation, and the Radio Communications Family PDUs.

B. IEEE DIS DATA STREAM PDUs

In this thesis the author has developed a set of data stream PDUs that are focused

on radio communications. In the Radio Communication Family of the DIS specification

there are sets of PDUs, which accurately define the specification for radio

communication. Within this family there are the TransmissionPDU, ReceiverPDU, and

SignalPDU.

C. DIS IMPLEMENTATION

The DIS standard is implemented in Java, primarily programmed by Don

McGregor and Don Brutzman at Naval Postgraduate School as part of the Web3D

Consortium’s DIS-Java-VRML working group (http://www.wed3d.org). This work adds

the Radio Communications Protocol Family to this ongoing effort, which deal with the

parameterization of radio communications. A number of other PDUs are also employed,

including the EntityStatePDU (ESPDU). The ESPDU contains the entity’s EntityID,

location, orientation, and velocity information. This signals visualization is implemented

with the Radio Communication Family of PDUs, which include the TransmitterPDU,

ReceiverPDU, SignalPDU and ESPDU for state information. Coding these three PDUs

http://www.wed3d.org/

 54

provides the ability to send the communications status across the network and update the

shared virtual battlefield residing on distributed participant computers.

The first step in implementing DIS is establishing the network interface to read

and write via multicast. The java.net library is the network interface to the operating

system and contains all of the networking methods needed. The program first opens a

multicast socket with a port number and then calls the joinGroup() method, which joins

the socket to the provided multicast group address as shown in Figure 4.1.

try {
multicastAddress = InetAddress.getByName(MULTICASTIP);
multicastSock = new MulticastSocket(APP_PORT);
multicastSock.setTimeToLive(1);
multicastSock.joinGroup(multicastAddress);

}
catch(IOException ioe) {
System.out.println(“Establish multicast UDP port error: “
+ ioe.getMessage());
return;

}

Figure 4.1: Instantiation of a Multicast socket using Java’s built-in networking.

The underlying DIS implementation is an invisible set of code to the user, but

remains straightforward from the programmers’ perspective. DatagramStreamBuffer,

BehaviorStreamBuffer and EntityDispatcher objects begins threaded operation and then

will handle the network interface, instantiate with the multicast IP address and port, and

converting the datagrams to (and from) application PDUs. The VRML visualization

receives values from the current EntityDispatcher, which pulls incoming PDUs from the

network and dispatches them to the correct entity; in this case, the correct antenna.

Figure 4.2 and 4.3 show these relationships. Further detail can be found in the DIS-Java-

VRML Javadoc and source-code examples.

 55

Figure 4.2. DIS networking paths to create entities in the visualization.

For signal visualization only the entity location field of the ESPDU was used.

Since entity velocities are not implemented, the antenna simulators include no dead

reckoning. Although this does not delay the 3D rendering process, when antenna updates

are received the entity jumps to the new position. This may result in less believability for

the visualization because the antenna is immediately repositioned to the changed value.

Adding velocity information while repositioning antennas is a worthwhile entry-level

task for future work.

 56

Figure 4.3: DIS-Java-VRML streaming stack, as documented in Javadoc from the
mil.navy.nps.dis.EntityDispatcher package.

 57

C:\vrtp\demo\helicopter>java demo.helicopter.StartPanel -pause 30
Pause before starting..............................
multicast timeToLive ttl=15
RTP headers prepended=false
entering actionPerformed() w/args...

event = java.awt.event.ActionEvent[ACTION_PERFORMED,cmd=Antenna] on
button0
* * * Stand by start Antenna Panel (listen 10 seconds for other
players...)
TEST jButton_OpenFile_actionPerformed

Antenna 5880, 10TH, 0, 0, 15.0, 183, SHF Good Line Read
Antenna 58I01, 10TH, 17000, 17000, 15.0, 181, SHF Good Line Read
Antenna 58I02, 10TH, -12000, 6000, 15.0, 183, SHF Good Line Read
Antenna 58I03, 10TH, 4500, -8000, 15.0, 183, SHF Good Line Read
Antenna 58I05, 10TH, 5000, 5000, 15.0, 198, SHF Good Line Read
Antenna 58I06, 10TH, 22000, -26000, 15.0, 183, SHF Good Line Read
Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: *** constructor new instance
multicast org.web3d.net.DatagramStreamBuffer

(224.2.181.145, 62040)
(this should only appear once..)

Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: strategy.invokePrivilege(this,
"createMulticastSocket", [224.2.181.145/224.2.18
1.145 62040]);
org.web3d.vrtp.net.DatagramStreamBuffer: joined multicast address
224.2.181.145, port 62040
org.web3d.vrtp.net.DatagramStreamBuffer: setDEBUG false
BehaviorStreamBuffer: commencing datagramStreamBuffer.run ()...
org.web3d.vrtp.net.DatagramStreamBuffer: run:
strategy.invokePrivilege(this, "doRun");
org.web3d.vrtp.net.DatagramStreamBuffer: commence doRun ();
Listening for other vehicles........BehaviorStreamBuffer: shutdown ();

Figure 4.4. : Text output of the start of the Antenna Visualization sending PDUs.

D. RADIO COMMUNICATIONS PROTOCOL (RCP) FAMILY

The PDUs of the Radio Communications protocol family are described in

paragraphs 5.3.8.1 through 5.3.8.3 of the IEEE DIS specification. This family has the

TransmitterPDU, ReceiverPDU, and the SignalPDU, now coded in Java and added to the

DIS-Java-VRML code library. The PDU and attribute definitions are extracted and

accepted in complete detail here. Implementers need to remain consistent with these

 58

semantic definitions in order to maintain functional interoperability with other DIS

systems.

1. Transmitter PDU

Transmitter PDU provides detailed information about a radio transmitter, which is

communicated by issuing a Transmitter PDU. See Appendix A for implementation. The

Transmitter PDU must contain the following fields:

• PDU Header. This field shall contain data common to all DIS PDUs.
• Entity ID. This field shall identify the entity that is the source of the radio

transmission.
• Radio ID. This field shall identify a particular radio within a given entity. Radio

IDs shall be assigned sequentially to the radios within an entity, starting with
Radio ID 1. The combination of Entity ID and Radio ID uniquely identify a radio
within a simulation exercise.

• Radio Entity Type. This field shall indicate the type of radio being simulated.
• Transmit State. This field shall specify whether a radio is off, powered but not

transmitting, or powered and transmitting
• Input Source. This field shall specify which position, (pilot, co-pilot, gunnery

officered.) or data port in the entity utilizing the radio, is providing the input audio
or data being transmitted.

• Antenna Location. This field shall specify the location of the radiating portion of
the antenna.

• Antenna Pattern Type. This field shall specify the type of representation used for
the radiation pattern from the antenna.

• Antenna Pattern Length. This field shall specify the length in octets of the
Antenna Pattern Parameters field.

• Frequency. This field shall specify the center frequency being used by the radio
for transmission. This frequency shall be expressed in units of hertz.

• Transmit Frequency Bandwidth. This field shall identify the bandpass of the radio
defined by the Radio ID field and the Radio Type field,

• Power. This field shall specify the average power being transmitted in units of
decibel-milliwatts.

• Modulation Type. This field shall specify the type of modulation used for radio
transmission.

• Crypto System. This field shall identify the crypto equipment utilized if such
equipment is used with the Transmitter PDU.

 59

• Crypto Key ID. This field, shall indicate that the crypto equipment is in the
baseband encryption mode, and when set shall indicate that the crypto equipment
is in the diphase encryption mode.

• Length of Modulation Parameters. These fields shall specify the length in octets
of the modulation parameters.

• Modulation Parameters. These fields shall specify modulation type
• Antenna Pattern Parameters. These fields shall specify the radiation pattern from

the antenna, its orientation in space, and the polarization of the radiation.

(Table continued on next page)

 60

Figure 4.5: Transmitter PDU Diagram From Ref (DIS IEEE Std 1278.1a-1995).

C:\vrtp>java mil.navy.nps.testing.TransmitterPduSender
Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: *** constructor new instance
multicast org.web3d.net.DatagramStreamBu
ffer

(224.2.181.145, 62040)
(this should only appear once..)

Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: strategy.invokePrivilege(this,
"createMulticastSocket", [224.2.181.14
5/224.2.181.145 62040]);
org.web3d.vrtp.net.DatagramStreamBuffer: joined multicast address
224.2.181.145, port 62040
org.web3d.vrtp.net.DatagramStreamBuffer: setDEBUG false

Sending the Transmitter PDU

C:\vrtp>
Figure 4.6: Text output of test program mil.navy.nps.testing.TransmitterPduSender

showing sending of a Transmitter PDU.

 61

C:\vrtp>java mil.navy.nps.testing.PduTestListener
Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: *** constructor new instance multicast
org.web3d.net.DatagramStreamBu
ffer

(224.2.181.145, 62040)
(this should only appear once..)

Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: strategy.invokePrivilege(this,
"createMulticastSocket", [224.2.181.14 5/224.2.181.145 62040]);
org.web3d.vrtp.net.DatagramStreamBuffer: joined multicast address 224.2.181.145,
port 62040
org.web3d.vrtp.net.DatagramStreamBuffer: setDEBUG false
BehaviorStreamBuffer: commencing datagramStreamBuffer.run ()...
org.web3d.vrtp.net.DatagramStreamBuffer: run: strategy.invokePrivilege(this,
"doRun");
org.web3d.vrtp.net.DatagramStreamBuffer: commence doRun ();
Testing the get methods
In PduTestListener, received a TransmitterPdu, EntityID = (site, application,
entity ID) = (32, 33, 7)
In PduTestListener, received a TransmitterPdu, RadioID = 0
In PduTestListener, received a TransmitterPdu, RadioEntityType = entityKind = 0
domain = 0 country= 0 catego
ry =0 nomenclatureVersion = 0 padding1 = 0
In PduTestListener, received a TransmitterPdu, TransmitState = 3
In PduTestListener, received a TransmitterPdu, InputSource = 2
In PduTestListener, received a TransmitterPdu, AntennaLocation =
mil.navy.nps.dis.WorldCoordinate@d107f
In PduTestListener, received a TransmitterPdu, elativeAntennaLocation =
mil.navy.nps.dis.EntityCoordinate@360 be0
In PduTestListener, received a TransmitterPdu, AntennaPatternType = 44
In PduTestListener, received a TransmitterPdu, AntennaPatternLength = 10
In PduTestListener, received a TransmitterPdu, Frequency = 100
In PduTestListener, received a TransmitterPdu, TransmitFrequencyBandwidth = 330
In PduTestListener, received a TransmitterPdu, Power = 555
In PduTestListener, received a TransmitterPdu, ModulationType =
SpreadSpectrum = 0 Major = 0 Detail = 0 sSystem = 0

In PduTestListener, received a TransmitterPdu, CryptoSytem = 30
In PduTestListener, received a TransmitterPdu, CryptoKeyId = 40
In PduTestListener, received a TransmitterPdu, LengthOfModulationParameters = 12
Test the toString Method
In PduTestListener, received a TransmitterPdu, Transmitter Object. =
EntityID = (site, application, entity ID) = (32, 33, 7)
RadioID = 0
RadioEntityType = entityKind = 0 domain = 0 country= 0 category =0
nomenclatureVersion = 0 padding1 = 0
TransmitState = 3
InputSource = 2
Padding1 = 0
AntennaLocaction = mil.navy.nps.dis.WorldCoordinate@26b249
RelativeAntennaLocation = mil.navy.nps.dis.EntityCoordinate@2f0db
AntennaPatternType = 44
AntennaPatternLength = 10
Frequency = 100
TransmitFrequencyBandwidth = 330
Power = 555

Figure 4.7: Text output of test program mil.navy.nps.testing.PduTestListener showing

proper receipt of a Transmitter PDU.

 62

2. Receiver PDU

The Receiver PDU provides detailed information about the communication an

emitter’s receiver state shall be communicated with a Receiver PDU. See Appendix A for

implementation. The Receiver PDU must contain the following fields:

• PDU Header. This field shall contain data common to all DIS PDUs.
• Entity ID. This field shall identify the entity that is controlling the radio

transmission. The source entity may either represent the radio itself or represent
an entity (such as a vehicle) that contains the radio.

• Radio ID. This field shall identify a particular radio within a given entity. Radio
IDs shall be assigned sequentially to the radios within an entity, starting with
Radio ID 1. The combination of Entity ID and Radio ID uniquely identifies a
radio within a simulation exercise.

• Receiver State. This field shall indicate the state of the receiver, which shall either
be idle or active.

• Received Power. This field shall indicate the radio frequency power received,
after applying any propagation loss and antenna gain.

• Transmitter Entity ID. This field shall identify the entity that is the source of the
transmission that is currently being received. The selection of the received
transmitter depends on the characteristics and state of the simulated receiver.

• Transmitter Radio ID. This field shall identify the particular radio within the
entity cited in item f that is the source of the radio transmission.

 63

Figure 4-8: Receiver PDU Diagram From Ref (DIS IEEE Std 1278.1a-1995).

C:\vrtp>java mil.navy.nps.testing.ReceiverPduSender
Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: *** constructor new instance
multicast org.web3d.net.DatagramStreamBu
ffer

(224.2.181.145, 62040)
(this should only appear once..)

Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: strategy.invokePrivilege(this,
"createMulticastSocket", [224.2.181.14
5/224.2.181.145 62040]);
org.web3d.vrtp.net.DatagramStreamBuffer: joined multicast address
224.2.181.145, port 62040
org.web3d.vrtp.net.DatagramStreamBuffer: setDEBUG false

Sending the Receiver PDU

C:\vrtp>
Figure 4.9: Text output of test program mil.navy.nps.testing.ReceiverPduSender showing

sending of a Receiver PDU.

 64

C:\vrtp>java mil.navy.nps.testing.PduTestListener
Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: *** constructor new instance
multicast org.web3d.net.DatagramStreamBu
ffer

(224.2.181.145, 62040)
(this should only appear once..)

Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: strategy.invokePrivilege(this,
"createMulticastSocket", [224.2.181.14
5/224.2.181.145 62040]);
org.web3d.vrtp.net.DatagramStreamBuffer: joined multicast address
224.2.181.145, port 62040
org.web3d.vrtp.net.DatagramStreamBuffer: setDEBUG false
BehaviorStreamBuffer: commencing datagramStreamBuffer.run ()...
org.web3d.vrtp.net.DatagramStreamBuffer: run:
strategy.invokePrivilege(this, "doRun");
org.web3d.vrtp.net.DatagramStreamBuffer: commence doRun ();

Testing the get methods

In PduTestListener, received a Receiver PDU, EntityID = (site,
application, entity ID) = (99, 20, 8)
In PduTestListener, received a Receiver PDU, RadioID = 77
In PduTestListener, received a Receiver PDU, ReceiverState = 50
In PduTestListener, received a Receiver PDU, ReceiverPower = 8.3
In PduTestListener, received a Receiver PDU, TransmitterEntityID =
(site, application, entity ID) = (0, 0, 0)
In PduTestListener, received a Receiver PDU, TransmitterRadioID = 222

Test the toString Method

In PduTestListener, received a ReceiverPDU, ReceiverObject. =
EntityID = (site, application, entity ID) = (99, 20, 8)
RadioID = 77
ReceiverState = 50
Padding = 0
ReceiverPower = 8.3
TransmitterEntityID = (site, application, entity ID) = (0, 0, 0)
TransmitterRadioID = 222

Figure 4.10: Text output of test program mil.navy.nps.testing.PduTestListener showing
proper receipt of a Receiver PDU.

 65

3. Signal PDU

The Signal PDU is the actual transmission of voice audio or other radio emissions

data must be communicated by issuing a Signal PDU. See Appendix A for

implementation. The Signal PDU must contain the following fields:

• PDU Header. This field shall contain data common to all DIS PDUs.
• Entity ID. This field shall identify the entity that is the source of the radio

transmission. The source entity may either represent the radio itself or represent
an entity (such as a vehicle) that contains the radio.

• Radio ID. This field shall identify a particular radio within a given entity. The
Entity ID, Radio ID pair associates each Signal PDU with the preceding
Transmitter PDU that contains the same Entity ID, Radio ID pair. The
combination of Entity ID and Radio ID uniquely identifies a particular radio
within a simulation exercise.

• Encoding Scheme. This field shall specify the encoding used in the Data field of
this PDU. The sample rate is in samples per second for audio data. The bit rate is
in bits per second for digital data. The interpretation of the Data field of the Signal
PDU shall depend on the value of encoding class.

• TDL Type. This field shall specify the TDL Type as a 16-bit enumeration field
when the encoding class is the raw binary, audio, application-specific, or database
index representation of a TDL message. When the Data field is not representing a
TDL Message, this field shall be set to zero.

• Sample Rate. This field shall specify either the sample rate in samples per second
if the encoding class is encoded audio or, the data rate in bits per second for data
transmissions. If the encoding class is database index, this field shall be zero.

• Data Length. This field shall specify the number of bits of digital voice audio or
digital data being sent in this Signal PDU.

• Samples. This field shall specify the number of samples in this PDU.
• Data. This field shall specify the audio or digital data conveyed by the radio

transmission. If the encoding class is encoded audio, the Data field shall be
interpreted as containing audio information digitally encoded as specified by the
encoding type. If the encoding class is raw binary data.

 66

Figure 4.11: Signal PDU Diagram From Ref (DIS IEEE Std 1278.1a-1995).

C:\vrtp>java mil.navy.nps.testing.SignalPduSender
Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: *** constructor new instance
multicast org.web3d.net.DatagramStreamBu
ffer

(224.2.181.145, 62040)
(this should only appear once..)

Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: strategy.invokePrivilege(this,
"createMulticastSocket", [224.2.181.14
5/224.2.181.145 62040]);
org.web3d.vrtp.net.DatagramStreamBuffer: joined multicast address
224.2.181.145, port 62040
org.web3d.vrtp.net.DatagramStreamBuffer: setDEBUG false

Sending the Signal PDU

C:\vrtp>
Figure 4.12: Text output of test program mil.navy.nps.testing.SignalPduSender showing

sending of a Signal PDU.

 67

C:\vrtp>java mil.navy.nps.testing.PduTestListener
Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: *** constructor new instance
multicast org.web3d.net.DatagramStreamBu
ffer

(224.2.181.145, 62040)
(this should only appear once..)

Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: strategy.invokePrivilege(this,
"createMulticastSocket", [224.2.181.14
5/224.2.181.145 62040]);
org.web3d.vrtp.net.DatagramStreamBuffer: joined multicast address
224.2.181.145, port 62040
org.web3d.vrtp.net.DatagramStreamBuffer: setDEBUG false
BehaviorStreamBuffer: commencing datagramStreamBuffer.run ()...
org.web3d.vrtp.net.DatagramStreamBuffer: run:
strategy.invokePrivilege(this, "doRun");
org.web3d.vrtp.net.DatagramStreamBuffer: commence doRun ();

Testing the get methods

In PduTestListener, received a SignalPdu, EentityID = (site,
application, entity ID) = (14, 17, 9)
In PduTestListener, received a SignalPdu, RadioID = 77
In PduTestListener, received a SignalPdu, EncodingScheme = 50
In PduTestListener, received a SignalPdu, TDLType = 55
In PduTestListener, received a SignalPdu, SampleRate = 888
In PduTestListener, received a SignalPdu, DataLength = 357
In PduTestListener, received a SignalPdu, Samples = 411
In PduTestListener, received a SignalPdu, Data0 = 4
In PduTestListener, received a SignalPdu, Data0 = 4
In PduTestListener, received a SignalPdu, Data0 = 4
In PduTestListener, received a SignalPdu, Data0 = 4
In PduTestListener, received a SignalPdu, Data0 = 4
In PduTestListener, received a SignalPdu, Data0 = 4
In PduTestListener, received a SignalPdu, Data0 = 4
In PduTestListener, received a SignalPdu, Data0 = 4
In PduTestListener, received a SignalPdu, Data0 = 4
In PduTestListener, received a SignalPdu, Data0 = 4
In PduTestListener, received a SignalPdu, Data0 = 4

Test the toString Method

In PduTestListener, received a SignalPdu, SignalObject. =
EntityID = (site, application, entity ID) = (14, 17, 9)
RadioID = 77
EncodingScheme = 50
TdlType = 55
SampleRate = 888
DataLength = 357
Samples = 411
data = 4 4 4 4 4 4 4 4 4 4 4

Figure 4.13: Text output of test program mil.navy.nps.testing.PduTestListener showing

proper receipt of a Signal PDU.

 68

E. SUMMARY

This chapter presents many of the practical factors involved in implementing the

DIS protocol in this visualization. Using the DIS protocol allows this visualization to

have a common agreed-upon format which other computers on the network can

understand. When the visualization is shared among multiple participants, each one can

view a common picture of the signals overlaid on the same virtual battlefield.

 69

V. TACTICAL VISUALIZATION OF BATTLEFIELD
EMISSIONS

A. INTRODUCTION

This chapter explores a 3D visualization model designed to present the results of

the DIS-Java-VRML simulation. The chapter presents an overview of signals

visualization, tactical visualization and visualization in general. It also addresses the

issues of dimensional space, pertinent 3D graphics techniques, and how the visualization

parameters to correspond MSE-NPT data files. The chapter concludes with visualization

recommendations for tactical visualization.

B. OVERVIEW

Simulations typically require some form of visualization. Whether the

visualization is in the form of text tables or 2D graphic plots, the simulation must produce

data in a logical and orderly grouping of similar information. Before the advent of

computer data collection, information was collected in tables and occasionally plotted on

paper or acetate, usually by hand. With the advent of computer technology, the mainstay

of data visualization shifted from text tables to 2D graphic plots as seen in Figure 5.1,

usually prepared manually using a presentation or graphics package. With the increase in

computational power of computers and the widespread availability of 3D rendering

software, both for the web and stand-alone use, it is possible to undertake paradigm shift

in visualization using 3D rendering.

 70

In the Army of today, tactical signal planning is still performed from radio-profile

tables, 2D fresnel plots and transmission range fans. Such an approach was sufficient

twenty years ago when less signal data was processed and evaluated. Today the sheer

volume of planning data from radio frequencies, antenna polarization, and radio ranges

(as well as the overlay of the data communications network information) demands a more

robust visualization of the incoming data. The logical next step in signals planning is the

addition of third dimension to these visualizations. Margarida Karahalios discusses the

history of data visualization in her thesis titled, “Underwater Source Localization Using

Scientific Data Visualization,” in which she states that half of the human neo-cortex is

devoted to visual information processing. Since the human brain is wired for

stereoscopic visual data input, which is typically 3D in nature, the natural conclusion

continues to be 3D representations.

C. VISUALIZATION CONSIDERATIONS

There are many visualization considerations that should be taken into account

when developing a system of this type. This section addressed the areas of tactical

visualization, dimensional space, available graphics technique and parameters mapping

MSE-NPT data to graphics parameters, and some initial visualization recommendations.

1. Tactical Visualization

In the U.S. Army today, visualization of four-dimensional space-time is generated

through the use of 2D representations. These representations have various combinations

of unit operational graphics, based on the position and time sequence with information

 71

presented by phase of operation. Threat overlay, logistical overlay, communications

planning overlay, and operational strategy are examples of representations, in widespread

use. Typically these 2D representations are evaluated in real time by showing the

situational picture of the current battle space. This is often performed on separate

computers displays at the same time, with several computer operators and one supervisor

interpreting the 2D representations. The supervisor’s mission is to mentally integrate the

representations and develop a four-dimensional (space-time) mental model of the current

tactical picture in the real world. The signal planner must also see how the tactical

picture fits together with the signal support plan to ensure the commander has the

communications coverage he needs.

Figure 5.1: MSE-NPT Terrain Profile From Ref (TB 11-5895-1544-10-1).

 72

In years past, when voice and data message volume was much lighter and fewer

communication shelters were deployed, planning requirements for the signal planner

were not crushing. Today, increased voice and data traffic have dramatically increased

the volume of information processed by the signal planner along with the time needed to

plan mission and responsibilities. This frequently leads to an information overload for

the planner. It is extremely difficult for an information-overloaded supervisor to make

accurate decisions while mentally integrating several overlays into a multiple-

dimensional overlay representation.

Figure 5.2: MSE-NPT Terrain Screen Shot of DTED Map
From Ref (TB 11-5895-1544-10-1).

 73

In the Army, visualization of radio-wave propagation has not progressed much

past the 2D state of the art, as shown in Figure 5.1 and 5.2. Typically the extent of

visualization is colorful 2D plots. Nevertheless, when complex communication overlays

are being investigated, ingenious use of 3D representations with color can provide the

signal planner with a higher order of data-variable representation. Producing a simulated

four and five-dimensional profile representation. Like most physically based solutions,

judicious simplification and abstraction are a must. Scientific visualization of radio-wave

propagation data will also benefit from careful simplification and abstraction.

2. Dimensional Space

Radio-wave propagation data is typically a volumetric data set covering an area

on and above the ground, as opposed to a surface data set, which strictly covers the

ground level. In addition, wave propagation data has various parameters of interest that

can consider as additional dimensions. Radio-frequency intensity level, bit-error rate

(BER), and signal-to-noise ratio are three examples of these extra dimensions. In the

visualization discipline, such a problem domain is termed a “high-dimensional data

space.” For the examples mentioned above, 3D or 4D representations might be generated

to simultaneously render all relevant planning parameters. How can such representations

be generated? In 2D plotting, the techniques of coloring and use of contours can

transform a representation into a pseudo three-dimensional representation. Similar

techniques can be applied in 3D renderings. By mapping additional dimensions to

graphics quantities besides spatial, pseudo high-dimensional space plots can be generated

(Keller 1993).

 74

3. Available Graphics Techniques and Parameters

A number of 3D techniques must be considered when mapping multiple

dimensions of data to a visual representation. When choosing the most appropriate

visualization technique, visualization designers must consider what the parameters of the

data are. In general term the signal planner needs to represent the propagation data over

the terrain with respect to the movement of forces and operational flow of the battle

space. In general terms visualization technique needs to take into consideration the seven

major areas of information visualization as shown in Figure 5.3.

1. Comparing: images, positions, data set, sub sets of data
2. Distinguishing: importance objects activities, ranges of value
3. Indicating direction: orientation, order direction of flow
4. Locating: position relative to axis, object map
5. Relating: concepts with regards to, value and direction, position and shape,

temperature and velocity, object type and value.
6. Representing values: numeric value of data
7. Revealing objects: exposing, highlighting, bring to the front, making visible,

enhancing visibility.

Figure 5.3: Seven major tasks for design of information visualization (Keller 1993).

The signal planner is concerned with all the above areas. The signal planner

needs to compare and distinguish wave propagation overlays for frequency de-

confliction. The signal planner also needs to indicate the direction and location of the

antenna emitter, and particularly the direction of antennas to be masked from enemy

detection. By providing the commander with a representation of the signal plan

 75

connected to the operational movement plan, signal planners can more easily recognize

any potential problems. Representing the power output of the antennas as graphic

primitives simply exposes a communications problem in a non-technical fashion. For

this reason, when one decides to implement high-dimensional space-data rendering,

careful attention must be given to ensuring that the visual parameters employed do not

overlap in such a way that an ambiguous or incomprehensible data visualization results.

Such fundamental challenges form the basis of scientific visualization research.

4. Mapping MSE-NPT Data to Graphics Parameters

The task of mapping MSE-NPT data must be addressed carefully. Support for

multiple types of MSE-NPT file layouts is problematic, due to the number of way in

which they can be formatted. Also the development of a set of geometric representations

for the antennas (as well as the corresponding wave formations for the emitters), is

challenging. If the wave formation does not approximate the true wave output from the

emitter, such misrepresentations can cause interpretation problems when attempting to

understand the emitter’s true capabilities. The power output intensity of the wave,

antenna dish azimuth, and antenna dish elevation must also be taken into consideration.

By using clear VRML graphic representations in conjunction with the corresponding DIS

PDU types for transmitters, receivers, and signals, a hierarchy of physical and logical

parameters can be developed. In other words as the MSE-NPT file is parsed in, each

field corresponds to a part of the 3D scene. This one-to-one correspondence of

parameters to graphic representations ensures the most accurate representation of the

MSE-NPT data. Examples of physical parameters include the location and direction of

 76

the antennas. An example of a logical parameter is colorization of wave intensities in

combination with textual information provides the user, with any additional information

that could not be rendered as a geometric object in the scene. The hierarchy of

parameters must be selected in a way that the parameters on the lower end of the

hierarchy have little influence on the parameters on the higher end. Careful design of this

type of hierarchy may prevent the rendering engine from eliminating important data from

the visualization.

5. Initial Visualization Recommendations

The initial recommendation for visualizing MSE-NPT data is that three spatial

components are mapped onto three spatial coordinates of the visualization system. This

one-to-one correspondence forms the coordinate field and the elevation field as shown in

Figure 5.4.

Figure 5.4: MSE-NPT antenna data for coordinates, height and elevation are mapped
directly to 3D rendering coordinates.

 77

For this initial test of the DIS-Java-VRML visualization, the MRGS coordinates

were manually converted into their corresponding VRML coordinates. The updated

MSE-NPT file shown in Figure 5.5 contains the VRML coordinates. The description

field is mapped to appropriate VRML geometry, which is loaded into the visualization

via a PROTOINSTANCE fieldValue update in the MSE-NPT file.

Figure 5.5: MSE-NPT file with VRML coordinates converted from MGRS coordinates.

The antenna power out, azimuth and elevation values are loaded from the

corresponding MSE-NPT file into the TransmitterPDU, ReceiverPDU and SignalPDU.

These values are rendered in the visualization as an directional transparent geodesic dome

and a transparent dynamic beam, each with an associated text box enabling quantitative

interpretation in a 3D context. The antenna power out is mapped to color so as the signal

planner moves around the scene he can easily identify if receivers are within a coverage

area or not. These initial visualization recommendations are provided as a starting point

 78

for evaluation of the most important planning parameters provided by the MSE-NPT File.

More work is needed to finish visualizing the full set of analytic data.

D. SUMMARY

With current communications planning requirements continuing to accelerate,

innovations from signals-visualization can ease the information burden placed on the

field planner evaluating the operational requirements. Creative and ingenious ways of

displaying 3D data must be devised if higher information density is to be processed by a

human. This new level of abstraction will provide enhanced understanding of the

problem under consideration, and significantly enhance one’s ability to make more rapid

decisions.

 79

VI. SYSTEMS INTEGRATION AND DEMONSTRATION

A. INTRODUCTION

This chapter discusses the development of the DIS-Java-VRML visualization of

the MSE-NPT for signal planners. It also provides a step-by-step demonstration of how to

run the DIS-Java-VRML visualization.

B. DEMONSTRATION

This section steps through the procedures for the setup of the MSE-NPT

visualization. After the user installs the DIS-Java-VRML distribution,

(http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml), four icons are added to

desktop for easy access into the visualization. A complete set of the installation

instructions appears on the “download” page in each DIS-Java-VRML distribution.

Figure 6.1: DIS-Java-VRML desktop icons.

Each icon has a separate function. These icons are linked to batch files, which

can be edited for ease of system reconfiguration. The “Player Select” icon allows the

user to select the control panel for an entity in which they are interested. The “Play

Capture the Flag” icon is the central starting point for the DIS-Java-VRML framework

http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml

 80

and it initiates, the player selection, the VRML world and the referee. The “Referee” is a

Java-based application, which provides the arbitration between the entities in the tank and

helicopter simulation regarding the flag capture and release. There are currently human

controlled and agent controlled tank and helicopter simulations, single and team

humanoid controlled simulations, and the MSE-NPT antenna visualization.

After the user starts the visualization by clicking the “Play Capture the Flag,” icon

the start panel appears as shown in Figure 6.2. This is the central selection menu for the

game. This panel was easily configured to include the Antenna panel. Since the core

programming language is Java, all developers need to have some proficiency in Java to

make such changes.

Figure 6.2: DIS-Java-VRML Start Panel for Capture the Flag entities.

After a selection has been made on the start panel, the user will see two console

windows on the desktop. One window displays the status of the Referee, and the other

window corresponds to the control button being pressed by the user. The referee serves a

vital purpose within the Capture the Flag game since it is the arbitrator between all

entities in the visualization. The referee monitors the position, ID and status of each

entity. If there is a conflict between two different entities regarding the flag capture, it is

the function of the referee to arbitrate who is in control. This loading and arbitration is

shown in Figure 6.3.

 81

C:\vrtp\demo\helicopter>java demo.helicopter.Referee -pause 40
Pause before starting..
multicast timeToLive ttl=15
RTP headers prepended=false
Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: *** constructor new instance multicast
org.web3d.net.DatagramStreamBuffer
 (224.2.181.145, 62040)
 (this should only appear once..)
Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: strategy.invokePrivilege(this, "createMulticastSocket",
[224.2.181.145/224.2.1
1.145 62040]);
org.web3d.vrtp.net.DatagramStreamBuffer: joined multicast address 224.2.181.145, port 62040
org.web3d.vrtp.net.DatagramStreamBuffer: setDEBUG false
BehaviorStreamBuffer: commencing datagramStreamBuffer.run ()...
org.web3d.vrtp.net.DatagramStreamBuffer: run: strategy.invokePrivilege(this, "doRun");
org.web3d.vrtp.net.DatagramStreamBuffer: commence doRun ();
Listening 10 seconds for other Referee..........
No other Referee heard, starting up!
found FortIrwinTerrain.wrl, loading...
sending CreateEntity PDU...
sending Comment PDU with URL...
send initial red Pdu. send initial blue pdu.
red keepAlive PDU sent blue keepAlive PDU sent
red keepAlive PDU sent blue keepAlive PDU sent
red keepAlive PDU sent blue keepAlive PDU sent

Figure 6.3: Text output of DIS-Java-VRML Referee copied from console.

 This is particularly useful in the antenna visualization, where each antenna has a

unique entity ID and Radio ID. If another user were to load an MSE-NPT file with the

same set of information, the referee would only load antennas with an ID that did not

conflict with those already loaded in the system. In the antenna visualization, these

entities are the antenna emitters.

The networked visualization must load Java class files from the hard drive, the

user must allow their browser to load these class files. This security measure ensures that

the user only loads class files that are recognized and authenticated. Figure 6.4 shows the

 82

Netscape permissions dialog needed to load unsigned classes. The class files that are

subsequently loaded provide the connectivity between the VRML Visualization and the

DIS-Java based networking. Future work in DIS-Java-VRML will sign these classes.

Figure 6.4: Netscape Java Security warning for reading unsigned class files.

 After the “Antenna” button is pressed, the user is presented with the MSE-NPT

File reader dialog box as seen in Figure 6.5. This is a separate Java-based application

written to parse the MSE-NPT files into a format that can be understood by the DIS

protocol. The user can then select from a number of options: read file, process and close,

about, and exit. The user should choose to read in an MSE-NPT file. Once selected, the

user will see a file dialog box seen in Figure 6.6.

 83

Figure 6.5: MSE-NPT loader selection panel.

After selecting the directory containing the MSE-NPT file, as seen in Figure 6.7,

the user opens it. This loads the file into the computer memory. Next, the user must

process the file.

Figure 6.6: MSE-NPT file loader dialog box.

Once the user selects the “process and close” button, the MSE-NPT file reader process,

the MSE-NPT file reader reads the file line by line parses it into Java antenna objects and

then closes the data file. These objects are then loaded into the start panel, as shown in

 84

Figure 6.8. There are two other buttons on the panel. The “About” button gives a brief

description of the program and the “Exit” button terminates the application.

Figure 6.7: MSE-NPT File with VRML mission coordinates.

The MSE-NPT file reader then initiates the DIS-Java-VRML antenna start panel.

The start panel allows the user to see the final configuration of the antenna visualization.

It has options for the multicast address, multicast port, DIS site ID and DIS application.

The user can select all of the antennas or just a portion of the file that has been loaded.

There is also a button to start the visualization, a button to exit, and a button to rejoin the

visualization already in progress. The rejoin button is useful when the user only wants to

view a few antennas at first, and then later wants to add more antennas to the

visualization. This panel is shown in Figure 6.8. Agent control functionality is not

provided but remains a promising candidate for future work.

 85

Figure 6.8: Antenna Start Panel with selection choices generated by file parser.

The connectivity between the VRML visualization and the network is enabled by

the use of the antenna control panel. The control provides the user with means of

interacting with the visualization. The panel is connected to both the entity state PDUs

and radio communications family PDUs. This connectivity can be seen in Figures 6.9 and

6.10. The entity state PDUs affects the physical state of the antenna, including its

location and orientation. The radio communications family PDUs updates the

information visualization in the scene by sending or receiving SignalPDUs,

 86

ReceiverPDUs or TransmitterPDUs. Sending PDUs corresponding to antenna panel

setting is enabled by toggle boxes on the control panel.

Figure 6.9: MSE-NPT file data flow for ESPDU state information.

Figure 6.10: MSE-NPT File Data Flow for Radio Communications Family PDUs.

 87

C:\vrtp\demo\helicopter>java demo.helicopter.StartPanel -pause 30
Pause before starting..............................
multicast timeToLive ttl=15
RTP headers prepended=false
entering actionPerformed() w/args...

event = java.awt.event.ActionEvent[ACTION_PERFORMED,cmd=Antenna] on
button0
* * * Stand by start Antenna Pannel (listen 10 seconds for other
players...)
TEST jButton_OpenFile_actionPerformed

Antenna 5880, 10TH, 0, 0, 15.0, 183, SHF Good Line Read
Antenna 58I01, 10TH, 17000, 17000, 15.0, 181, SHF Good Line Read
Antenna 58I02, 10TH, -12000, 6000, 15.0, 183, SHF Good Line Read
Antenna 58I03, 10TH, 4500, -8000, 15.0, 183, SHF Good Line Read
Antenna 58I05, 10TH, 5000, 5000, 15.0, 198, SHF Good Line Read
Antenna 58I06, 10TH, 22000, -26000, 15.0, 183, SHF Good Line Read
Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: *** constructor new instance
multicast org.web3d.net.DatagramStreamBuffer

(224.2.181.145, 62040)
(this should only appear once..)

Got strategy of org.web3d.vrtp.security.SunSecurityStrategy
org.web3d.vrtp.net.DatagramStreamBuffer: strategy.invokePrivilege(this,
"createMulticastSocket", [224.2.181.145/224.2.18
1.145 62040]);
org.web3d.vrtp.net.DatagramStreamBuffer: joined multicast address
224.2.181.145, port 62040
org.web3d.vrtp.net.DatagramStreamBuffer: setDEBUG false
BehaviorStreamBuffer: commencing datagramStreamBuffer.run ()...
org.web3d.vrtp.net.DatagramStreamBuffer: run:
strategy.invokePrivilege(this, "doRun");
org.web3d.vrtp.net.DatagramStreamBuffer: commence doRun ();
Listening for other vehicles........BehaviorStreamBuffer: shutdown ();

Figure 6.11: Antenna DIS-Java-VRML visualization startup sequence after the user has

selected a startup MSE-NPT data file.

Figure 6.12: Antenna Control Panel allowing user to move, rotate, and send PDUs.

 The control panel is the planners’ interface to modify parameters for each

antenna. They can manipulate the position and location of antennas, as well as send

various DIS PDU types. Since this was a proof-of-concept implementation, some of the

 88

functionality of the control panel is future work. When the user selects the check box by

the PDU type, and then presses the send button, a PDU of that type is sent across the DIS

Network. This PDU information is then visible to all of the participants in the

visualization, as seen in Figure 6.13 and 6.14. These figures show a SignalPDU’s state

before and after transmission.

 Each antenna also has a coverage dome associated with it. These domes can be

changed by a field value that is sent into the VRML representation via a Script node.

Figure 6.14 shows a green dome that has been changed by the VRML eventIn from the

Script node to reflect the signal planning range of the antenna.

 89

Figure 6.13: SignalPDU sent across the DIS Network Before and After Visualizations.

 90

Figure 6.14: DIS-Java-VRML Antenna Signal Visualization far viewpoint.

C. VISUALIZATION RESULTS

 The figures below are the result of the visualization, which can be generated with

the DIS-Java-VRML visualization framework. The framework, in combination with

many of the tools and technologies, generates realistic results.

 91

Figure 6.15: DIS-Java-VRML antenna signal visualization close in viewpoint showing
10 KM RAU antenna coverage.

Figure 6.16: DIS-Java-VRML antenna signal visualization with 10 kilometer
overlapping coverage domes.

 92

Figure 6.17: DIS-Java-VRML Antenna Signal Visualization with a viewpoint high above
Fort Irwin California.

Figure 6.18: DIS-Java-VRML antenna signal visualization with a viewpoint high above
the airfield.

 93

Figure 6.19: DIS-Java-VRML antenna signal visualization with a viewpoint 20 Km
above the airfield.

D. PROPOSED USES OF RADIO COMMUNICATIONS VISUALIZATION

Representing a signal plan inside a virtual world can provide the planners with a

number of advantages over current 2D methods. The virtual planning environment

provides the entire battle space to the planner in 3D. By using this 3D space they can

better gauge how the available equipment will best support a mission. By deploying the

appropriate signals equipment (such as UHF, SHF, HF, or VHF radios) for the mission,

the communicators have a better chance of providing reliable coverage, and better

frequency de-confliction. By having a “big-picture view” of the battle space, the

 94

communication planner can better inform the war fighter of the communications support

plan in a geographical context.

E. SCIENTIFIC VISUALIZATION AND INTEROPERABILITY

For many years the Department of Defense (DoD) was a primary driver of

computer-intensive technological developments. Over the past decade a shift from DoD

to commercial development has occurred, and industry is now leading the technological

revolution of the information age. Technologies are appearing daily which present the

tools to solve the visualization and data interoperability problems found in many

organizations. The X3D and VRML specifications are two recent technological

developments that have major potential impact on scientific visualization, data structure,

transmission, storage, and display. Additionally, scaling up becomes possible. "Virtual

worlds can provide meaningful context to the mountains of content which currently exist

in isolation without roads, links or order" (Brutzman, 1996).

F. SUMMARY

With current communications-planning requirements continuing to accelerate,

something must to be done within the area of signals visualization to ease the information

burden on the planner evaluating the operational requirements. Creative and innovative

methodologies can provide the signal planner with an improved tool set, help them plan

their mission more efficiently, and provide their commanders with a clear picture of the

battle space. The signals visualization presented here demonstrates how visualization of

MSE-NPT data can add to the perceptibility of the battle space.

 95

VII. CONCLUSIONS AND RECOMMENDATIONS

A. INTRODUCTION

This chapter gathers the conclusions that have been reached relative to tactical

communications visualization and visualization in general. A work of this nature leads to

many opportunities for future work, which are described in the final section.

B. PRINCIPAL THESIS CONCLUSIONS

Construction of a 3D signals-visualization is feasible. It is possible to develop

such a communications-visualization in a short period of time (in this case nine months),

with software tools that are standards based and openly available. Using widely available

and inexpensive 3D graphic rendering hardware and software makes it easier to

reproduce signals visualizations. These visualizations allow for a greater number of

planners to gain a deeper understanding of the MSE-NPT data, and also provides an

avenue to visualize radio-wave propagation within a virtual battle space. The

transformation of the MSE-NPT data into this visualization by using the DIS-Java-

VRML software toolkit supports this conclusion.

C. SPECIFIC CONCLUSIONS

1. Tactical Communications Visualization

Tactical communications visualization is primarily performed with 2D tools, but

these efforts are slowly transitioning to 3D tools. The DIS-Java-VRML toolkit is just

 96

such a tool that can be used to facilitate this migration of signal planning data into 3D.

The X3D-Edit authoring tool can rapidly generate offline 3D representations of military

assemblages, which are easily integrated into the DIS-Java-VRML visualization. A DIS

networked signal planning environment and virtual battle space enables planners to

collaborate during the planning process. The integration of the DIS radio

communications family PDUs into the DIS-Java-VRML DTD for X3D is a powerful tool

for development of networked tactical environments.

2. Visualization

Visualization of numeric data in 3D can be a powerful medium for a decision

maker to understand the overall picture of what the data really means and how it might

impact them. By using visualization methods to see the interaction of the terrain data with

the propagation data, a user can see significant interactions and instantly identify

problems.

D. RECOMMENDATIONS FOR FURTHER WORK

1. Tactical Communications Visualization

The enhanced tactical communications visualization capabilities of the DIS-Java-

VRML communications visualization framework suggests new development on an XML-

based DTD for MSE-NPT Data files. This DTD, in conjunction with an XSL style sheet,

allows the visualization to be transported across the network to a wider array of

connected devices, such as wireless hand-held computers. Robust integration of

 97

GeoVRML geographic referencing, and more accurate antenna position information, lead

to greater flexibility. For example, data might be read not only from the MSE-NPT file

but also from a large terrain server, thus allowing the use of additional resources in

mission planning and rehearsal.

2. Model Validation

This visualization needs to be validated by units who are currently using the

MSE-NPT for signal planning. This might be done by providing these types of

visualizations to active units before they deploy to a major training facility (e.g. Fort Polk

Louisiana or Fort Irwin California). Comparing statistical validation of the time to plan

missions based on having the visualization (versus not having the visualization) may

provide valuable insight in its usefulness. Also providing this visualization to non-signal

planners might also yield additional feedback on the visualization.

3. Visualization

Another visualization possibility is to develop a 3D antenna placement system.

Such a system takes the processed signal propagation data from the MSE-NPT system

and through combined use of the signals visualization and knowledge of the planning

environment, statistically calculates the optimum position for the antenna emitters.

The biggest, most important and most exciting task recommended for continued

work is the exploration of new and more intuitive 3D representations for signal wave-

propagation data. A detailed study of current signal-wave propagation data needs to be

joined together with high-dimensional visual information concepts that utilize all the

 98

capabilities of current 3D rendering hardware and software. A study of this type may

prove to be of vital interest to the U.S. Army and military in general.

 99

APPENDIX A. MSE-NPT File Reader Code

This is the code for the MSE-NPT file reader. It has three sections the main program, the
Java Frame and the Java about box.

//Title: Network Planning Terminal (NPT) File Reader
//Version:
//Copyright: Copyright (c) 1999
//Author: David W. Laflam
//Company: NPS
//Description:NPT File Reader

package demo.helicopter;

import java.awt.*;
import java.awt.event.*;
import java.text.*; // for class DecimalFormat
import java.util.*; // for class Vector
import mil.navy.nps.dis.*;
import mil.navy.nps.testing.*;
import mil.navy.nps.util.*;
import mil.navy.nps.disEnumerations.*;
import javax.swing.UIManager;
import java.awt.*;
import java.io.* ;
import java.io.FileReader;

public class NetworkPlanningTerminalFileReader {
boolean packFrame = false;

//Construct the application
public NetworkPlanningTerminalFileReader() {

NetworkPlanningTerminalFileReaderFrame frame = new
NetworkPlanningTerminalFileReaderFrame();

//Validate frames that have preset sizes
//Pack frames that have useful preferred size info, e.g. from their layout
if (packFrame)

frame.pack();
else

frame.validate();
//Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
if (frameSize.height > screenSize.height)

frameSize.height = screenSize.height;
if (frameSize.width > screenSize.width)

frameSize.width = screenSize.width;
frame.setLocation((screenSize.width - frameSize.width) / 2,

(screenSize.height - frameSize.height) / 2);
frame.setVisible(true);

}

//Main method
public static void main(String[] args) {

try {
// for your system (Win or Mac)
// UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
// Java metal look and feel

UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName());
}
catch(Exception e) {

 100

}
new NetworkPlanningTerminalFileReader();

}
}

 101

//Title: Network Planning Terminal (NPT) File Reader
//Version:
//Copyright: Copyright (c) 1999
//Author: David W. Laflam
//Company: NPS
//Description: NPT File Reader Frame, this is where the data files are parsed

package demo.helicopter;
import java.awt.*;
import java.awt.event.*;
import java.text.*; // for class DecimalFormat
import java.util.*; // for class Vector
import mil.navy.nps.dis.*;
import mil.navy.nps.testing.*;
import mil.navy.nps.util.*;
import mil.navy.nps.disEnumerations.*;
import javax.swing.*;
import javax.swing.UIManager;
import javax.swing.filechooser.*;
import java.io.* ;
import java.io.FileReader;
import java.io.FileWriter;
import java.util.StringTokenizer;

public class NetworkPlanningTerminalFileReaderFrame extends JFrame {
JMenuBar menuBar1 = new JMenuBar();
JMenu menuFile = new JMenu();
JMenuItem menuFileExit = new JMenuItem();
JMenu menuHelp = new JMenu();
JMenuItem menuHelpAbout = new JMenuItem();
JToolBar toolBar = new JToolBar();
JButton jButton_OpenFile = new JButton();
JButton jButton_WriteFile = new JButton();
JButton jButton_Help = new JButton();
JButton jButton_Exit = new JButton();

ImageIcon image1; // these are the gif files for the buttons
ImageIcon image2;
ImageIcon image3;
ImageIcon image4;

JLabel statusBar = new JLabel();
JPanel jPanel1 = new JPanel();
JLabel jLabel1 = new JLabel();

private File file; // the file that I am reading

///////////// From the StartPanel.java //////////////////////
public AntennaStartPanel asp; // the antenna start panel

private static int exitHash = 0;
private static int redHash = 0;
private static int blueHash = 0;
private static int antennaHash = 0;
private static int timeToLive = 15; // default ttl convention (local campus)
private static int sleepTime = 0;

private static boolean rtpMatch = false;
private static int lastEventCode;

// prevent multiple copies of a live entity by listening first,
// > 5 seconds recommended
// minimum listen time 2 sec needed or else panels will allow repeats...
public static final int multicastListenDelay = 8;
public static final int reportedMulticastListenDelay = multicastListenDelay + 2;

 102

///////////// From the StartPanel.java //////////////////////

//layout for the panel and frame
GridBagLayout gridBagLayout1 = new GridBagLayout();
GridBagLayout gridBagLayout2 = new GridBagLayout();

//Construct the frame
public NetworkPlanningTerminalFileReaderFrame() {

enableEvents(AWTEvent.WINDOW_EVENT_MASK);
try {

jbInit();
}
catch(Exception e) {

e.printStackTrace();
}

}

//Component initialization
private void jbInit() throws Exception {

try {
System.out.println ("initially trying /vrtp/demo/helicopter");
image1 = new ImageIcon("/vrtp/demo/helicopter/readin.gif");
image2 = new ImageIcon("/vrtp/demo/helicopter/process.gif");
image3 = new ImageIcon("/vrtp/demo/helicopter/about.gif");
image4 = new ImageIcon("/vrtp/demo/helicopter/exit.gif");

}
catch (Exception ex1)
{

// this worked on dave's system but not don's ???
System.out.println ("now trying

demo.helicopter.NetworkPlanningTerminalFileReaderFrame.class.getResource(\"fileName.gif\")")
;

try {
image1 = new

ImageIcon(demo.helicopter.NetworkPlanningTerminalFileReaderFrame.class.getResource("readin.g
if"));

image2 = new
ImageIcon(demo.helicopter.NetworkPlanningTerminalFileReaderFrame.class.getResource("process.
gif"));

image3 = new
ImageIcon(demo.helicopter.NetworkPlanningTerminalFileReaderFrame.class.getResource("about.gi
f"));

image4 = new
ImageIcon(demo.helicopter.NetworkPlanningTerminalFileReaderFrame.class.getResource("exit.gif
"));

}
catch (Exception ex2)
{

System.out.println ("error loading button files in
NetworkPlanningTerminalFileReaderFrame");

}
}

this.getContentPane().setLayout(gridBagLayout1);
this.setResizable(false);
this.setSize(new Dimension(500, 115));
this.setTitle("Network Planning Terminal File Reader");
statusBar.setText(" ");
menuFile.setText("File");
menuFileExit.setText("Exit");
menuFileExit.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
fileExit_actionPerformed(e);

}
});

 103

menuHelp.setText("Help");
menuHelpAbout.setText("About");

// for the about box use of inner class
menuHelpAbout.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
helpAbout_actionPerformed(e);

}
});
//===
jButton_OpenFile.setIcon(image1);

jButton_OpenFile.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {
jButton_OpenFile_actionPerformed(e);

}
});

jButton_OpenFile.addMouseListener(new java.awt.event.MouseAdapter() {

public void mousePressed(MouseEvent e) {
jButton_OpenFile_mousePressed(e);

}
});

jButton_OpenFile.setToolTipText("Open File");
//==
jButton_WriteFile.setIcon(image2);
jButton_WriteFile.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {
// jButton_WriteFile_actionPerformed(e);
ReadFile_actionPerformed(e);

}
});

jButton_WriteFile.addMouseListener(new java.awt.event.MouseAdapter() {
public void mousePressed(MouseEvent e) {
// jButton_WriteFile_mousePressed(e);

}
});

jButton_WriteFile.setToolTipText("Process & Close File");
//==
jButton_Help.setIcon(image3);

jButton_Help.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {

jButton_Help_actionPerformed(e);
}

});

jButton_Help.setToolTipText("About");
//===
jButton_Exit.setIcon(image4);
jButton_Exit.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {
System.exit(0);

}
});

jButton_Exit.addMouseListener(new java.awt.event.MouseAdapter() {

public void mousePressed(MouseEvent e) {
System.exit(0);

 104

}
});

jButton_Exit.setToolTipText("Exit File");

//== //

toolBar.add(jButton_OpenFile);
toolBar.add(jButton_WriteFile);
toolBar.add(jButton_Help);
toolBar.add(jButton_Exit);

menuFile.add(menuFileExit);
menuHelp.add(menuHelpAbout);
menuBar1.add(menuFile);
menuBar1.add(menuHelp);

this.setJMenuBar(menuBar1);

this.getContentPane().add(toolBar, new GridBagConstraints(0, 0, 1, 1, 1.0,
0.0,GridBagConstraints.CENTER, GridBagConstraints.HORIZONTAL, new Insets(0, 0, 0, 0), 235,
0));

this.getContentPane().add(statusBar, new GridBagConstraints(0, 2, 1, 1, 0.0,
0.0,GridBagConstraints.WEST, GridBagConstraints.NONE, new Insets(0, 0, 0, 0), 389, 0));

/*
this.getContentPane().add(jPanel1, new GridBagConstraints(0, 1, 1, 1, 1.0,
1.0,GridBagConstraints.CENTER, GridBagConstraints.BOTH, new Insets(0, 0, 0, 0), 52, 74));

jPanel1.add(jLabel1, new GridBagConstraints(0, 1, 1, 1, 0.0, 0.0
,GridBagConstraints.WEST, GridBagConstraints.NONE, new Insets(39, 37, 74, 52), 17, 6));

jPanel1.add(ReadFile, new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0,GridBagConstraints.CENTER,
GridBagConstraints.NONE, new Insets(55, 73, 0, 108), 56, 0));

*/
}
//File | Exit action performed
public void fileExit_actionPerformed(ActionEvent e) {

System.exit(0);
}
//==
//Help | About action performed
public void helpAbout_actionPerformed(ActionEvent e) {

NetworkPlanningTerminalFileReaderFrameAboutBox dlg = new
NetworkPlanningTerminalFileReaderFrameAboutBox(this);

Dimension dlgSize = dlg.getPreferredSize();
Dimension frmSize = getSize();
Point loc = getLocation();
dlg.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x, (frmSize.height -

dlgSize.height) / 2 + loc.y);
dlg.setModal(true);
dlg.show();

}

//==
//Overridden so we can exit on System Close
protected void processWindowEvent(WindowEvent e) {

super.processWindowEvent(e);
if(e.getID() == WindowEvent.WINDOW_CLOSING) {

fileExit_actionPerformed(null);
}

}
//===
public Vector ReadFile_actionPerformed(ActionEvent e)
{

Vector antennaVector = new Vector ();

 105

int lineCounter = 0;

try
{
FileReader fr = new FileReader(file);
BufferedReader br = new BufferedReader(fr);
String s;

StringTokenizer thisLineTokens ;

Antenna ant = null, ant1=null;
while ((s = br.readLine()) != null)
{

lineCounter++;
System.out.println("The line number is: " + lineCounter);

if (lineCounter < 10)
{

// do nothing
}
else
{

thisLineTokens = new StringTokenizer(s);

while (thisLineTokens.hasMoreTokens())
{

String AntSystem1 = new
String(thisLineTokens.nextToken());

System.out.println(AntSystem1);
String AntSystem2 = new String(thisLineTokens.nextToken());

System.out.println(AntSystem2);
String AntSystem3 = new String(thisLineTokens.nextToken());

System.out.println(AntSystem3);
String AntSystem4 = new String(thisLineTokens.nextToken());

System.out.println(AntSystem4);
String AntSystem5 = new String(thisLineTokens.nextToken());

System.out.println(AntSystem5);
String AntSystem6 = new String(thisLineTokens.nextToken());
System.out.println(AntSystem6);
String AntSystem7 = new String(thisLineTokens.nextToken());
System.out.println(AntSystem7);

if(ant != null)
{

System.out.println("old ant=" + ant);
ant1 =ant;

}
else
{

System.out.println("ant is null");
}

ant = new Antenna(AntSystem1, AntSystem2, AntSystem3,
AntSystem4, AntSystem5, AntSystem6, AntSystem7);

System.out.println("new antenna = " + ant + " old ant is " + ant1);

antennaVector.add(ant);

)//end while

//System.out.println();
System.out.println(s);
}// end else
}//end while

 106

// colse the file
fr.close();

}// end try

catch (Exception x)
{
System.err.println(" -- Bad Input, not a % --" + x);
}//end catch

for (int ix = 0; ix < antennaVector.size(); ix++)
{
System.out.println(((Antenna)

antennaVector.elementAt(ix)).toString());
}

// from start Panel
asp = new AntennaStartPanel (800, 650, antennaVector);
// for the Antenna

// asp.addAntennas(antennaVector); // add the antenna objects
this.setVisible(false);
asp.show();
asp.setTimeToLive (timeToLive);
//asp.setRtpHeaderEnabled (rtpMatch);
dispose();

return antennaVector;

} // end method ReadFile_actionPerformed()
//==
void jButton_WriteFile_actionPerformed(ActionEvent e) {

System.out.println(" TEST jButton_WriteFile_actionPerformed ");

try {

// need to put source .wrl VRML File Here
String source = " This will write out the file in the future \n"

+ " also will develop a MRGS to GeoVRML \n"
+ "conversion program. " ;

char buffer[] = new char[source.length()];
source.getChars(0, source.length(), buffer, 0);

FileWriter f1 = new FileWriter("file2.doc");
f1.write(buffer);
f1.close();

FileWriter f2 = new FileWriter("file3.txt");
f2.write(buffer);
f2.close();

}// end try
catch (Exception x) {
System.err.println(" -- Bad Input, not a % --");
}//end catch

System.out.println(" File Written Out to file2.doc and file3.txt ");

}// end jButton_WriteFile_actionPerformed()

//==

 107

void jButton_OpenFile_actionPerformed(ActionEvent e) {

System.out.println(" TEST jButton_OpenFile_actionPerformed ");
try {

UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName());
} // end try

catch (Exception exc) {
System.err.println("Error loading Java Look&Feel: " + exc);

} // end catch

JFileChooser fileChooser = new JFileChooser();
fileChooser.setCurrentDirectory (new File

("/vrtp/demo/helicopter/NetworkPlanningTerminalData"));

fileChooser.setFileSelectionMode(
JFileChooser.FILES_ONLY);

int result = fileChooser.showOpenDialog(this);

// user clicked Cancel button on dialog
if (result == JFileChooser.CANCEL_OPTION)

file = null;
else

file = fileChooser.getSelectedFile();

} // end jButton_OpenFile_actionPerformed()

//==
void jButton_Help_actionPerformed(ActionEvent e) {

//System.out.println(" TEST jButton_Help_actionPerformed ");
NetworkPlanningTerminalFileReaderFrameAboutBox dlg = new

NetworkPlanningTerminalFileReaderFrameAboutBox(this);
Dimension dlgSize = dlg.getPreferredSize();
Dimension frmSize = getSize();
Point loc = getLocation();
dlg.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x,

(frmSize.height - dlgSize.height) / 2 + loc.y);
dlg.setModal(true);
dlg.show();

} // end jButton_Help_actionPerformed()

//===
void jButton_OpenFile_mousePressed(MouseEvent e) {
// need to add code here to open the file menu

}// end jButton_openFile_mousePressed ()
//===
void jButton_WriteFile_mousePressed(MouseEvent e) {
// need to add code here to write the file out

} // end jButton_saveFile_mousePressed()
//==
void ReadFile_mousePressed(MouseEvent e) throws Exception {

} // end ReadFile_mousePressed ()

} // end class NetworkPlanningTerminalFileReaderFrame()

 108

//Title: Network Planning Terminal (NPT) File Reader Application
//Version:
//Copyright: Copyright (c) 1999
//Author: David W. Laflam
//Company: NPS
//Description:NPT File Reader About Box, gives a brief description of the Application

package demo.helicopter;

import java.awt.*;

import java.awt.event.*;
import java.text.*; // for class DecimalFormat
import java.util.*; // for class Vector
import mil.navy.nps.dis.*;
import mil.navy.nps.testing.*;
import mil.navy.nps.util.*;
import mil.navy.nps.disEnumerations.*;
import javax.swing.*;
import javax.swing.border.*;

public class NetworkPlanningTerminalFileReaderFrameAboutBox extends JDialog implements
ActionListener {

JPanel panel1 = new JPanel();
JPanel panel2 = new JPanel();
JPanel insetsPanel1 = new JPanel();
JPanel insetsPanel2 = new JPanel();
JPanel insetsPanel3 = new JPanel();
JButton button1 = new JButton();
JLabel imageControl1 = new JLabel();
ImageIcon imageIcon;
JLabel label1 = new JLabel();
JLabel label2 = new JLabel();
JLabel label3 = new JLabel();
JLabel label4 = new JLabel();
JLabel label5 = new JLabel();
JLabel label6 = new JLabel();
BorderLayout borderLayout1 = new BorderLayout();
BorderLayout borderLayout2 = new BorderLayout();
FlowLayout flowLayout1 = new FlowLayout();
FlowLayout flowLayout2 = new FlowLayout();
GridLayout gridLayout1 = new GridLayout();
String product = "Network Planning Terminal (NPT) File Reader ";
String author = "Dave Laflam";
String version = "Version 1.0";
String revision = "20 September 2000";
String copyright = "Naval Postgraduate School";
String comments = "http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml";
public NetworkPlanningTerminalFileReaderFrameAboutBox(Frame parent) {

super(parent);
enableEvents(AWTEvent.WINDOW_EVENT_MASK);
try {

jbInit();
}
catch(Exception e) {

e.printStackTrace();
}
//imageControl1.setIcon(imageIcon);
pack();

}

private void jbInit() throws Exception {
//imageIcon = new ImageIcon(getClass().getResource("your image name goes here"));
this.setTitle("About");
setResizable(false);
panel1.setLayout(borderLayout1);

 109

panel2.setLayout(borderLayout2);
insetsPanel1.setLayout(flowLayout1);
insetsPanel2.setLayout(flowLayout1);
insetsPanel2.setBorder(new EmptyBorder(10, 10, 10, 10));
gridLayout1.setRows(4);
gridLayout1.setColumns(1);
label1.setText(product);
label2.setText(author);
label3.setText(version);
label4.setText(revision);
label5.setText(copyright);
label6.setText(comments);
insetsPanel3.setLayout(gridLayout1);
insetsPanel3.setBorder(new EmptyBorder(10, 60, 10, 10));
button1.setText("OK");
button1.addActionListener(this);
panel1.setMinimumSize(new Dimension(500, 125));
panel1.setPreferredSize(new Dimension(500, 125));
insetsPanel2.add(imageControl1, null);
panel2.add(insetsPanel2, BorderLayout.WEST);
this.getContentPane().add(panel1, null);
insetsPanel3.add(label1, null);
insetsPanel3.add(label2, null);
insetsPanel3.add(label3, null);
insetsPanel3.add(label4, null);
insetsPanel3.add(label5, null);
insetsPanel3.add(label6, null);
panel2.add(insetsPanel3, BorderLayout.CENTER);
insetsPanel1.add(button1, null);
panel1.add(insetsPanel1, BorderLayout.SOUTH);
panel1.add(panel2, BorderLayout.NORTH);

}

protected void processWindowEvent(WindowEvent e) {
if(e.getID() == WindowEvent.WINDOW_CLOSING) {

cancel();
}
super.processWindowEvent(e);

}

void cancel() {
dispose();

}

public void actionPerformed(ActionEvent e) {
if(e.getSource() == button1) {

cancel();
}

}
}

 110

THIS PAGE INTENTIONALLY LEFT BLANK

 111

APPENDIX B. DIS PDU CODE

Note: only the SignalPdu.java file is listed, the TransmitterPdu.java and ReceiverPdu.java file can be found
in the DIS-Java-VRML distrobution.

/*
File: SignalPdu.java
CVS Info:$Id: SignalPdu.java,v 1.0 2000/06/07 18:00:00 laflam Exp $
Compiler:jdk 1.3
*/

package mil.navy.nps.dis; // package for Naval Postgraduate School DIS Libaray
import mil.navy.nps.util.*; // General-purpose utilities
import mil.navy.nps.disEnumerations.*; // Enumerations for DIS
import java.lang.*; //
import java.util.*; // utility stuff we need
import java.io.*; // input/output for serialization

/**
* Signal PDU for DIS.
*
*@version 1.0
*@author David W. Laflam (http://wwww.laflam.net/dave)
*

*@author Don Brutzman (http://web.nps.navy.mil/~brutzman)
*
*<dt>Location:
*<dd>Web:
* http://www.web3d.org/WorkingGroups/vrtp/mil/navy/nps/dis/SignalPdu.java
*
*<dd>or locally:
* ~/mil/navy/nps/dis/SignalPdu.java
*
*<dt>Hierarchy Diagram:
*<dd><IMG

SRC="../../../../../../dis-java-vrml/images/PduClassHierarchyButton.jpg" ALIGN=ABSCENTER
WIDTH=150 HEIGHT=21>
*
*<dt>Summary:
*<dd>The actual transmission of voice, audio or other data shall be communicated by issuing a

Signal PDU.
*
*<dt>Explanation:
*<dd>The Signal pdu denotes the reciving of a transmission from a radio.
* It inherits the header information from ProtocolDataUnit,
* an abstract class that contains assorted protocol information.
* It implements the IDs of what's transmitting a signalPDU.
* <P>
*
* As with other PDUs, it knows how to serialize and deserialize itself
* from the wire. It also knows how to clone itself, and knows how to
* calculate its size when sent to the wire.<P>
*
*<dt>History:
*<dd> 15 May 2000
*<dd> 17DAug00 /Dave Laflam /Added toString method
*<dd> 1Sep00 /Don Brutzman /Added extra data elements
*
*<dt>References:
*<dd> DIS Data Dictionary:

 112

* Signal PDU
(local)and
* Signal PDU
*<dd> DIS-Java-VRML Working Group:
* http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/
*<dd> DIS specification : IEEE 1278.1-1995, Section 5.3.8.2
*
*
*@see ProtocolDataUnit
*@see PduElement
*@see SerializationInterface
*@see RadioCommunicationsFamily
*@see ReceiverPdu
*@see TransmitterPdu
*@see RadioCommunicationsPduScriptNode
*
*/

public class SignalPdu extends RadioCommunicationsFamily
{

/**
*
*entity ID: This field shall identify the entity that is the source of the radio

transmission.
*The source entity may either represent the radio itself or represent an entity (such as a

vehicle)
*that contains the radio.
*This field shall be represented by an Entity Identifier record (see 5.2.14).
*
* <dl>
* <dt>Value:
* <dd>If the intended Entity ID is unknown, this field shall contain Entity ID_UNKNOWN.
* <dt>Reference:
* <dd> DIS Data Dictionary:
*
* Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected EntityID entityID; // (Site , Applications , Entity) are all 16 Bit Unsigned
Int

// ID of entity that's doing the Transmission of the Signal

/**
* radioID. This field shall identify a particular radio within a given entity.
* This field shall be represented by a 16-bit unsigned integer. The Entity ID,
* Radio ID pair associates each Signal PDU with the preceding Transmitter PDU
* that contains the same Entity ID, Radio ID pair. The combination of Entity ID
* and Radio ID uniquely identiÞes a particular radio within a simulation exercise.
* Pg 115 (5.3.8.2)
*<dl>
*<dt>Reference:
*<dd> DIS Data Dictionary:
* Event

Identifier Record (local) and
* Event Identifier Record
*</dl>
*/

protected UnsignedShort radioID; //16-bit unsigned integer

/**

 113

* encodingScheme: This field shall specify the encoding used in the Data Þeld of this PDU.
* The encoding scheme shall be composed of a 2-bit Þeld specifying the encoding class and
* a 14-bit field specifying either the encoding type, or the number of TDL messages contained
* in this Signal PDU(see table 57 pg 115).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedShort encodingScheme; //16 Bit Enumeration

/**
* tdlType: This field shall specify the TDL Type as a 16-bit enumeration Þeld when the

encoding
* class is the raw binary, audio, application-speciÞc, or database index representation of a

TDL
* message. When the Data Þeld is not representing a TDL Message, this Þeld shall be set to

zero (see
* Section 9 of EBV-DOC for enumeration of the TDL Type field).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedShort tdlType ; // 16 bit enumeration

/**
* sampleRate: This field shall specify either the sample rate in samples per second if the

encoding
* class is encoded audio or, the data rate in bits per second for data transmissions. If the

encoding class
* is database index, this Þeld shall be zero. This Þeld shall be represented by a 32-bit

unsigned integer.
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedInt sampleRate; // 32 bit integer //look in UnsignedInt.java

/**
* dataLength: This field shall specify the number of bits of digital voice audio or digital

data being
* sent in this Signal PDU, and shall be represented by a 16-bit unsigned integer. If the

encoding class
* is database index, the Data Length field shall contain the value 96.
*
* Currently hardwired to support 11 data elements.
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record

 114

* </dl>
*/

protected UnsignedShort dataLength; // 16 bit integer // look in UnsignedShort.java

/**
* samples: This field shall specify the number of samples in this PDU, and shall be

represented by a
* 16-bit unsigned integer. If the encoding class is not encoded audio, this Þeld shall be

zero.
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedShort samples; // 16 bit integer // look in UnsignedShort.java

/**
* data00: This field shall specify the audio or digital data conveyed by the radio

transmission. The
* interpretation of each Data field depends on the value of the encoding scheme [see 5.3.8.2

item d)]
* and TDL Type [see 5.3.8.2 item e)] fields (page 116).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedByte data00; // 8 bit unsigned integer // look in UnsignedByte.java

/**
* data01: This field shall specify the audio or digital data conveyed by the radio

transmission. The
* interpretation of each Data field depends on the value of the encoding scheme [see 5.3.8.2

item d)]
* and TDL Type [see 5.3.8.2 item e)] fields (page 116).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedByte data01; // 8 bit unsigned integer // look in UnsignedByte.java

/**
* data02: This field shall specify the audio or digital data conveyed by the radio

transmission. The
* interpretation of each Data field depends on the value of the encoding scheme [see 5.3.8.2

item d)]
* and TDL Type [see 5.3.8.2 item e)] fields (page 116).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedByte data02; // 8 bit unsigned integer // look in UnsignedByte.java

 115

/**
* data03: This field shall specify the audio or digital data conveyed by the radio

transmission. The
* interpretation of each Data field depends on the value of the encoding scheme [see 5.3.8.2

item d)]
* and TDL Type [see 5.3.8.2 item e)] fields (page 116).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedByte data03; // 8 bit unsigned integer // look in UnsignedByte.java

/**
* data04: This field shall specify the audio or digital data conveyed by the radio

transmission. The
* interpretation of each Data field depends on the value of the encoding scheme [see 5.3.8.2

item d)]
* and TDL Type [see 5.3.8.2 item e)] fields (page 116).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedByte data04; // 8 bit unsigned integer // look in UnsignedByte.java

/**
* data05: This field shall specify the audio or digital data conveyed by the radio

transmission. The
* interpretation of each Data field depends on the value of the encoding scheme [see 5.3.8.2

item d)]
* and TDL Type [see 5.3.8.2 item e)] fields (page 116).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedByte data05; // 8 bit unsigned integer // look in UnsignedByte.java

/**
* data06: This field shall specify the audio or digital data conveyed by the radio

transmission. The
* interpretation of each Data field depends on the value of the encoding scheme [see 5.3.8.2

item d)]
* and TDL Type [see 5.3.8.2 item e)] fields (page 116).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedByte data06; // 8 bit unsigned integer // look in UnsignedByte.java

 116

/**
* data07: This field shall specify the audio or digital data conveyed by the radio

transmission. The
* interpretation of each Data field depends on the value of the encoding scheme [see 5.3.8.2

item d)]
* and TDL Type [see 5.3.8.2 item e)] fields (page 116).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier
Record (local) and

* Event Identifier Record
* </dl>
*/

protected UnsignedByte data07; // 8 bit unsigned integer // look in UnsignedByte.java

/**
* data08: This field shall specify the audio or digital data conveyed by the radio

transmission. The
* interpretation of each Data field depends on the value of the encoding scheme [see 5.3.8.2

item d)]
* and TDL Type [see 5.3.8.2 item e)] fields (page 116).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedByte data08; // 8 bit unsigned integer // look in UnsignedByte.java

/**
* data09: This field shall specify the audio or digital data conveyed by the radio

transmission. The
* interpretation of each Data field depends on the value of the encoding scheme [see 5.3.8.2

item d)]
* and TDL Type [see 5.3.8.2 item e)] fields (page 116).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedByte data09; // 8 bit unsigned integer // look in UnsignedByte.java

/**
* data10: This field shall specify the audio or digital data conveyed by the radio

transmission. The
* interpretation of each Data field depends on the value of the encoding scheme [see 5.3.8.2

item d)]
* and TDL Type [see 5.3.8.2 item e)] fields (page 116).
* <dl>
* <dt>Reference:
* <dd> DIS Data Dictionary:
*

Event Identifier Record (local) and
* Event Identifier Record
* </dl>
*/

protected UnsignedByte data10; // 8 bit unsigned integer // look in UnsignedByte.java

/**

 117

*Constant value--size of Fire PDU with header. Here:
*<code>sizeOf = 256 bytes</code>
*
* Total Signal Size = 256 + Data Length + 0 to 31, padding bits to increase the total
* Signal Size to a multiple of 32 Bits.
* Current Size 264 bits
*/

public final static int sizeOf = 264 + 9*8; // is this the PDU Size Total or is this
number in the header

// size of object as written to wire

/**
*Default constructor
* - creates eventID, radioID, encodingScheme,
* tdlType, sampleRate, dataLength, samples, data00
*
* - fills with zeros for all values of the following parameters:
*
*/

public SignalPdu()
{

super.setPduType(PDUTypeField.SIGNAL); // inherited from the super class
entityID = new EntityID(); // 3 field (site,app,enity) 16-bit

unsigned integer
radioID = new UnsignedShort(0); // 16-bit unsigned integer
encodingScheme = new UnsignedShort(0); // 16-bit enumeration
tdlType = new UnsignedShort(0); // 16-bit enumeration
sampleRate = new UnsignedInt(0); // 32-bit integer
dataLength = new UnsignedShort(11); // 16-bit integer
samples = new UnsignedShort(0); // 16-bit integer
data00 = new UnsignedByte(0); // 8-bit unsigned integer
data01 = new UnsignedByte(0); // 8-bit unsigned integer
data02 = new UnsignedByte(0); // 8-bit unsigned integer
data03 = new UnsignedByte(0); // 8-bit unsigned integer
data04 = new UnsignedByte(0); // 8-bit unsigned integer
data05 = new UnsignedByte(0); // 8-bit unsigned integer
data06 = new UnsignedByte(0); // 8-bit unsigned integer
data07 = new UnsignedByte(0); // 8-bit unsigned integer
data08 = new UnsignedByte(0); // 8-bit unsigned integer
data09 = new UnsignedByte(0); // 8-bit unsigned integer
data10 = new UnsignedByte(0); // 8-bit unsigned integer

return;
} // end public SignalPdu()

/**
* Make a copy of the object. This requires a deep copy, so we don't have two
* objects sharing pointers to the same data.
* @return a new Signal PDU entity
*/

public Object clone()
{

SignalPdu newSignalPdu = (SignalPdu)super.clone(); // this will inherit from the super
class

newSignalPdu.setEntityID(this.getEntityID());
newSignalPdu.setRadioID(this.getRadioID());
newSignalPdu.setEncodingScheme(this.getEncodingScheme());
newSignalPdu.setTDLType(this.getTDLType());
newSignalPdu.setSampleRate(this.getSampleRate());
newSignalPdu.setDataLength(this.getDataLength());
newSignalPdu.setSamples(this.getSamples());

 118

newSignalPdu.setData00(this.getData00());
newSignalPdu.setData01(this.getData01());
newSignalPdu.setData02(this.getData02());
newSignalPdu.setData03(this.getData03());
newSignalPdu.setData04(this.getData04());
newSignalPdu.setData05(this.getData05());
newSignalPdu.setData06(this.getData06());
newSignalPdu.setData07(this.getData07());
newSignalPdu.setData08(this.getData08());
newSignalPdu.setData09(this.getData09());
newSignalPdu.setData10(this.getData10());

return newSignalPdu;
} // end public Object clone()

/**
* Serialize and write out the output stream, order is important here since
* it needs to conform to the DIS standard
* @exception RuntimeException when IO error occurs.
*/

public void serialize(DataOutputStream outputStream)
{

super.serialize(outputStream); // write out header info

//Note: you do not need a try and catch in this method, these are in the entityId.java
//which has it in site.java go back up the tree

// try
// {

entityID.serialize(outputStream);
radioID.serialize(outputStream);
encodingScheme.serialize(outputStream);
tdlType.serialize(outputStream);
sampleRate.serialize(outputStream);

dataLength.serialize(outputStream);
samples.serialize(outputStream);
data00.serialize(outputStream);
data01.serialize(outputStream);
data02.serialize(outputStream);
data03.serialize(outputStream);
data04.serialize(outputStream);
data05.serialize(outputStream);
data06.serialize(outputStream);
data07.serialize(outputStream);
data08.serialize(outputStream);
data09.serialize(outputStream);
data10.serialize(outputStream);

// padding.serialize(outputStream);
// outputStream.writeFloat(receiverPower); // since this is a primitive value

// }
// catch (IOException ioError)
// {
// throw new
// RuntimeException("Exception in SignalPdu.serialize, error writing to wire.");
// }

return;
}// end public void serialize()

 119

/**
* Deserialize the input stream, and order is important here, since we need to
* read in the same order as specified by the DIS standard
* @exception RuntimeException when IO error occurs.
*/

public void deSerialize(DataInputStream inputStream)
{

super.deSerialize(inputStream); // read in all the header info

// try
// {

entityID.deSerialize(inputStream);
radioID.deSerialize(inputStream);
encodingScheme.deSerialize(inputStream);
tdlType.deSerialize(inputStream);
sampleRate.deSerialize(inputStream);

dataLength.deSerialize(inputStream);
samples.deSerialize(inputStream);
data00.deSerialize(inputStream);
data01.deSerialize(inputStream);
data02.deSerialize(inputStream);
data03.deSerialize(inputStream);
data04.deSerialize(inputStream);
data05.deSerialize(inputStream);
data06.deSerialize(inputStream);
data07.deSerialize(inputStream);
data08.deSerialize(inputStream);
data09.deSerialize(inputStream);
data10.deSerialize(inputStream);

// receiverPower = inputStream.readFloat(); // since this is a primitive value
// tranmitterEntityID.deSerialize(inputStream);

// }
// catch (IOException ioError)
// {
// throw new
// RuntimeException("Exception in SignalPdu.deSerialize, error reading from wire.");
// }
}// end public void deSerialize()

/**
* Returns the length of the entity
* @return an integer length of the entity
*/

public int length()
{

return sizeOf; // EntityTypes are this long, always. This is the 288
}// end public int length()

/**
* Returns the PDU name - Signal PDU
* @return a string "Signal PDU"
*/

public String pduName()
{

return new String("Signal PDU");
} // end public String pduName()

 120

/**
* Print the values of the following object out, with correct level of
* indentation on the page.
* EntityID, RadioID, Encoding Scheme, TDL Type, Sample Rate, Data Length, Samples, data00
*
*/

public void printValues(int indentLevel, PrintStream printStream)
{

StringBuffer indent = ProtocolDataUnit.getPaddingOfLength(indentLevel);
int idx, superclassIndent = indentLevel;

printStream.println();
printStream.println("Signal PDU-");

// ugly wart: get the superclass over to the left a couple pixels, if we have any to spare,
// so the header info will be indented a bit less.

if(superclassIndent > 0)
superclassIndent -= 1;

super.printValues(superclassIndent, printStream);
entityID.printValues(indentLevel, printStream);
printStream.println(indent + "radioID: " + radioID); // print the primitive type
printStream.println(indent + "encodingScheme: " + encodingScheme); // print the

primitive type
printStream.println(indent + "tdlType: " + tdlType);
printStream.println(indent + "sampleRate: " + sampleRate);
printStream.println(indent + "dataLength: " + dataLength);
printStream.println(indent + "samples: " + samples);
printStream.println(indent + "data00: " + data00);

// tranmitterEntityID.printValues(indentLevel, printStream);
// printStream.println(indent + "transmitterRadioID: " + transmitterRadioID); // print the

primitive type

return;
} // end public void printValues()

//Accessor methods (the Set and Get Methods)

/**
* Gets entity ID.
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @return a clone of the firing entity ID
*/

public EntityID getEntityID()
{

return (EntityID)entityID.clone();
}

/**
* Sets entity ID
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @param pFiringEntityID the firing entity ID
*/

public void setEntityID(EntityID pEntityID)
{

entityID = pEntityID;
}

 121

/**
*Sets setEntityID(short pSiteID, short pApplicationID, short pEntityID),accessor method.
*will create an new EntityID = entityID
*This field shall identify the entity issuing the PDU,
* and shall be represented by the PDU Header Record (see 5.2.24)
*/

public void setEntityID(short pSiteID, short pApplicationID, short pEntityID)
{ entityID = new EntityID(pSiteID, pApplicationID, pEntityID);
}

/**
* Gets getRadio ID.
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @return a clone of the target entity ID
*/

public UnsignedShort getRadioID()
{

return (UnsignedShort)radioID.clone();
}

/**
* Sets setRadio ID.
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @param pRadioID target entity ID value
*/

public void setRadioID(UnsignedShort pRadioID)
{

radioID = pRadioID;
}

/**
* Gets the EncodingScheme.
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @return a clone of a EncodingScheme
*/

public UnsignedShort getEncodingScheme()
{

return (UnsignedShort)encodingScheme.clone();
}

/**
* Sets the EncodingScheme
* @param pEncodingScheme a EncodingScheme
*/

public void setEncodingScheme(UnsignedShort pEncodingScheme)
{

encodingScheme = pEncodingScheme;
}

// no need for a get and set for the padding //DWL

 122

/**
* Sets TDLType.
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @param pTDLType target entity ID value
*/

public void setTDLType (UnsignedShort pTDLType)
{

tdlType = pTDLType;
}

/**
* Gets the TDLType.
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @return a clone of a TDLType
*/

public UnsignedShort getTDLType()
{

return (UnsignedShort)tdlType.clone();
}

/**
* Sets SampleRate
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @param pSampleRate target entity ID value
*/

public void setSampleRate(UnsignedInt pSampleRate)
{

sampleRate = pSampleRate;
}

/**
* Gets the SampleRate.
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @return a clone of a SampleRate
*/

public UnsignedInt getSampleRate()
{

return (UnsignedInt)sampleRate.clone();
}

/**
* Sets DataLength
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @param pDataLength target entity ID value
*/

public void setDataLength(UnsignedShort pDataLength)
{

dataLength = pDataLength;
}

 123

/**
* Gets the DataLength.
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @return a clone of a DataLength
*/

public UnsignedShort getDataLength()
{

return (UnsignedShort)dataLength.clone();
}

/**
* Sets Samples
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @param pSamples target entity ID value
*/

public void setSamples(UnsignedShort pSamples)
{

samples = pSamples;
}

/**
* Gets the Samples.
* Each Entity in a given exercise executing on a DIS application shall be assigned an Entity

Identifier Record
* Unique to the exercise.
* @return a clone of a Samples
*/

public UnsignedShort getSamples()
{

return (UnsignedShort)samples.clone();
}

/**
* accessor method
* @param raw 8-bit data
*/

public void setData00(UnsignedByte pdata00)
{

data00 = pdata00;
}

/**
* accessor method
* @param raw 8-bit data
*/

public void setData01(UnsignedByte pdata01)
{

data01 = pdata01;
}

 124

/**
* accessor method
* @param raw 8-bit data
*/

public void setData02(UnsignedByte pdata02)
{

data02 = pdata02;
}

/**
* accessor method
* @param raw 8-bit data
*/

public void setData03(UnsignedByte pdata03)
{

data03 = pdata03;
}

/**
* accessor method
* @param raw 8-bit data
*/

public void setData04(UnsignedByte pdata04)
{

data04 = pdata04;
}

/**
* accessor method
* @param raw 8-bit data
*/

public void setData05(UnsignedByte pdata05)
{

data05 = pdata05;
}

/**
* accessor method
* @param raw 8-bit data
*/

public void setData06(UnsignedByte pdata06)
{

data06 = pdata06;
}

/**
* accessor method
* @param raw 8-bit data
*/

public void setData07(UnsignedByte pdata07)
{

data07 = pdata07;
}

/**
* accessor method
* @param raw 8-bit data
*/

public void setData08(UnsignedByte pdata08)

 125

{
data08 = pdata08;

}

/**
* accessor method
* @param raw 8-bit data
*/

public void setData09(UnsignedByte pdata09)
{

data09 = pdata09;
}

/**
* accessor method
* @param raw 8-bit data
*/

public void setData10(UnsignedByte pdata10)
{

data10 = pdata10;
}

/**
* accessor method
* @return a clone of a data00
*/

public UnsignedByte getData00()
{

return (UnsignedByte)data00.clone();
}

/**
* accessor method
* @return a clone of a data01
*/

public UnsignedByte getData01()
{

return (UnsignedByte)data01.clone();
}

/**
* accessor method
* @return a clone of a data02
*/

public UnsignedByte getData02()
{

return (UnsignedByte)data02.clone();
}

/**
* accessor method
* @return a clone of a data03
*/

public UnsignedByte getData03()
{

return (UnsignedByte)data03.clone();
}

/**
* accessor method
* @return a clone of a data04
*/

public UnsignedByte getData04()
{

return (UnsignedByte)data04.clone();

 126

}

/**
* accessor method
* @return a clone of a data05
*/

public UnsignedByte getData05()
{

return (UnsignedByte)data05.clone();
}

/**
* accessor method
* @return a clone of a data06
*/

public UnsignedByte getData06()
{

return (UnsignedByte)data06.clone();
}

/**
* accessor method
* @return a clone of a data07
*/

public UnsignedByte getData07()
{

return (UnsignedByte)data07.clone();
}

/**
* accessor method
* @return a clone of a data08
*/

public UnsignedByte getData08()
{

return (UnsignedByte)data08.clone();
}

/**
* accessor method
* @return a clone of a data09
*/

public UnsignedByte getData09()
{

return (UnsignedByte)data09.clone();
}

/**
* accessor method
* @return a clone of a data10
*/

public UnsignedByte getData10()
{

return (UnsignedByte)data10.clone();
}

/**
* String toString
* Used for debuging
* System.out.println("Signal Object. = " + signal);
* This print out all values for the fields for the NEW Signal object
*/

public String toString ()
{

 127

String result;
result = "\nEntityID = " + entityID + " \nRadioID = " + radioID

+ "\nEncodingScheme = " + encodingScheme
+ "\nTdlType = " + tdlType + "\nSampleRate = " + sampleRate
+ "\nDataLength = " + dataLength
+ "\nSamples = " + samples
+ "\ndata = " + data00 + " " + data01 + " " + data02 + " " +

data03 + " " + data04 + " " + data05 + " " +
data06 + " " + data07 + " " + data08 + " " +
data09 + " " + data10;

return result ;
}

} // end of class signalPdu.java

 128

THIS PAGE INTENTIONALLY LEFT BLANK

 129

APPENDIX C. DIS-Java-VRML DTD

<!--

DIS-Java-VRML 1.2 Document Type Definition (DTD)

Status: Supports the following Protocol Data Units (PDUs):
- EspduTransform (Entity State, Collision, Detonation, Fire)
- ReceiverPdu, SignalPdu, Transmitter
Testing results satisfactory. Compact form also needed.

Authors: Don Brutzman and Dave Laflam

Address: http://www.web3D.org/TaskGroups/x3d/translation/DisJavaVrml.dtd

References: http://www.web3D.org/WorkingGroups/vrtp/dis-java-vrml
http://www.web3D.org/TaskGroups/x3d/translation/x3d-compromise.dtd

Summary: Define the DIS-Java-VRML tag and attribute profile for X3D.

Elements in this tagset are enabled by setting the
DIS-Java-VRMLProfile entity to "INCLUDE" at the top of an
X3D scene file, as shown in several examples. This flag then
triggers inclusion of the DIS-Java-VRML tags in the
x3d-compromise.dtd tagset.

Created: 30 July 2000

Revised: 25 September 2000
-->

<!-- Other node and attribute types (%SFBool; etc.) are defined in x3d-
compromise.dtd -->

<!ENTITY % RadioPduTypes "(ReceiverPdu|SignalPdu|TransmitterPdu)"> <!--
Boolean -->

<!-- No new or additional wrapper tag definitions needed. Compact version of
this

DisJavaVrml.dtd will be more concise and flexible by not using wrapper tags
-->

<!ELEMENT EspduTransform (children)? >
<!ATTLIST EspduTransform

marking %SFString; #IMPLIED

readInterval %SFTime; "0.1"
writeInterval %SFTime; "0"
siteID %SFInt32; #IMPLIED
applicationID %SFInt32; #IMPLIED
entityID %SFInt32; #IMPLIED

translation %SFVec3f; "0 0 0"
rotation %SFRotation; "0 0 1 0"
scale %SFVec3f; "1 1 1"
scaleOrientation %SFRotation; "0 0 1 0"
bboxCenter %SFVec3f; "0 0 0"
bboxSize %SFVec3f; "-1 -1 -1"
center %SFVec3f; "0 0 0"

address %SFString; #IMPLIED

 130

port %SFInt32; #IMPLIED
multicastRelayHost %SFString; #IMPLIED
multicastRelayPort %SFInt32; #IMPLIED
rtpHeaderExpected %SFBool; "false"

active %SFBool; "false"
timestamp %SFTime; #IMPLIED
rtpHeaderHeard %SFBool; #IMPLIED

collided %SFBool; "false"
collideTime %SFTime; #IMPLIED
detonated %SFBool; "false"
detonateTime %SFTime; #IMPLIED
fired1 %SFBool; "false"
fired2 %SFBool; "false"
firedTime %SFTime; #IMPLIED
munitionStartPoint %SFVec3f; #IMPLIED
munitionEndPoint %SFVec3f; #IMPLIED

articulationParameterCount %SFInt32; #IMPLIED
articulationParameterValue0 %SFFloat; #IMPLIED
articulationParameterValue1 %SFFloat; #IMPLIED
articulationParameterValue2 %SFFloat; #IMPLIED
articulationParameterValue3 %SFFloat; #IMPLIED
articulationParameterValue4 %SFFloat; #IMPLIED
articulationParameterValue5 %SFFloat; #IMPLIED
articulationParameterValue6 %SFFloat; #IMPLIED
articulationParameterValue7 %SFFloat; #IMPLIED
articulationParameterValue8 %SFFloat; #IMPLIED
articulationParameterValue9 %SFFloat; #IMPLIED
articulationParameterValue10 %SFFloat; #IMPLIED
articulationParameterValue11 %SFFloat; #IMPLIED
articulationParameterValue12 %SFFloat; #IMPLIED
articulationParameterValue13 %SFFloat; #IMPLIED
articulationParameterValue14 %SFFloat; #IMPLIED

traceColor %SFColor; #IMPLIED
traceOffset %SFVec3f; #IMPLIED
traceSize %SFVec3f; #IMPLIED
traceJava %SFBool; "false"

nodeTypeHint NMTOKEN #FIXED "Transform"
DEF ID #IMPLIED
USE IDREF #IMPLIED >

<!-- also included in EspduTransform: CollisionPdu DetonatePdu FirePdu -->

<!ELEMENT ReceiverPdu EMPTY >
<!ATTLIST ReceiverPdu

whichGeometry %SFInt32; #IMPLIED
radioPduType %RadioPduTypes; #IMPLIED

readInterval %SFTime; "1"
writeInterval %SFTime; "0"
siteID %SFInt32; #IMPLIED
applicationID %SFInt32; #IMPLIED
entityID %SFInt32; #IMPLIED

address %SFString; #IMPLIED
port %SFInt32; #IMPLIED
multicastRelayHost %SFString; #IMPLIED
multicastRelayPort %SFInt32; #IMPLIED
rtpHeaderExpected %SFBool; "false"

active %SFBool; "false"
timestamp %SFTime; #IMPLIED
rtpHeaderHeard %SFBool; #IMPLIED

 131

radioID %SFInt32; #IMPLIED
receiverPower %SFFloat; #IMPLIED
receiverState %SFInt32; #IMPLIED
transmitterSiteID %SFInt32; #IMPLIED
transmitterApplicationID %SFInt32; #IMPLIED
transmitterEntityID %SFInt32; #IMPLIED
transmitterRadioID %SFInt32; #IMPLIED

traceJava %SFBool; "false"
nodeTypeHint NMTOKEN #FIXED "Switch"
DEF ID #IMPLIED
USE IDREF #IMPLIED >

<!ELEMENT SignalPdu EMPTY >
<!ATTLIST SignalPdu

whichGeometry %SFInt32; #IMPLIED
radioPduType %RadioPduTypes; #IMPLIED

readInterval %SFTime; "1"
writeInterval %SFTime; "0"
siteID %SFInt32; #IMPLIED
applicationID %SFInt32; #IMPLIED
entityID %SFInt32; #IMPLIED

address %SFString; #IMPLIED
port %SFInt32; #IMPLIED
multicastRelayHost %SFString; #IMPLIED
multicastRelayPort %SFInt32; #IMPLIED
rtpHeaderExpected %SFBool; "false"

active %SFBool; "false"
timestamp %SFTime; #IMPLIED
rtpHeaderHeard %SFBool; #IMPLIED

radioID %SFInt32; #IMPLIED
encodingScheme %SFInt32; #IMPLIED
tdlType %SFInt32; #IMPLIED
sampleRate %SFInt32; #IMPLIED
samples %SFInt32; #IMPLIED
dataLength %SFInt32; #IMPLIED
data00 %SFInt32; #IMPLIED
data01 %SFInt32; #IMPLIED
data02 %SFInt32; #IMPLIED
data03 %SFInt32; #IMPLIED
data04 %SFInt32; #IMPLIED
data05 %SFInt32; #IMPLIED
data06 %SFInt32; #IMPLIED
data07 %SFInt32; #IMPLIED
data08 %SFInt32; #IMPLIED
data09 %SFInt32; #IMPLIED
data10 %SFInt32; #IMPLIED

traceJava %SFBool; "false"
nodeTypeHint NMTOKEN #FIXED "Switch"
DEF ID #IMPLIED
USE IDREF #IMPLIED >

<!ELEMENT TransmitterPdu EMPTY >
<!ATTLIST TransmitterPdu

whichGeometry %SFInt32; #IMPLIED
radioPduType %RadioPduTypes; #IMPLIED

readInterval %SFTime; "1"

 132

writeInterval %SFTime; "0"
siteID %SFInt32; #IMPLIED
applicationID %SFInt32; #IMPLIED
entityID %SFInt32; #IMPLIED

address %SFString; #IMPLIED
port %SFInt32; #IMPLIED
multicastRelayHost %SFString; #IMPLIED
multicastRelayPort %SFInt32; #IMPLIED
rtpHeaderExpected %SFBool; "false"

active %SFBool; "false"
timestamp %SFTime; #IMPLIED
rtpHeaderHeard %SFBool; #IMPLIED

radioID %SFInt32; #IMPLIED
antennaLocation %SFVec3f; #IMPLIED
antennaPatternLength %SFInt32; #IMPLIED
antennaPatternType %SFInt32; #IMPLIED
cryptoKeyId %SFInt32; #IMPLIED
cryptoSytem %SFInt32; #IMPLIED
frequency %SFInt32; #IMPLIED
inputSource %SFInt32; #IMPLIED
lengthOfModulationParameters %SFInt32; #IMPLIED
modulationTypeDetail %SFInt32; #IMPLIED
modulationTypeMajor %SFInt32; #IMPLIED
modulationTypeSpreadSpectrum %SFInt32; #IMPLIED
modulationTypeSystem %SFInt32; #IMPLIED
power %SFInt32; #IMPLIED
radioEntityTypeCategory %SFInt32; #IMPLIED
radioEntityTypeCountry %SFInt32; #IMPLIED
radioEntityTypeDomain %SFInt32; #IMPLIED
radioEntityTypeKind %SFInt32; #IMPLIED
radioEntityTypeNomenclature %SFInt32; #IMPLIED
radioEntityTypeNomenclatureVersion %SFInt32; #IMPLIED
relativeAntennaLocation %SFVec3f; #IMPLIED
transmitFrequencyBandwidth %SFInt32; #IMPLIED
transmitState %SFInt32; #IMPLIED

traceJava %SFBool; "false"
nodeTypeHint NMTOKEN #FIXED "Switch"
DEF ID #IMPLIED
USE IDREF #IMPLIED >

 133

APPENDIX D. X3D PROTOS

Note: only the SHFAntennaPROTO.XML file is listed, the UHFAntennaPROTO.XML
and RAUAntennaPROTO.XML file can be found in the DIS-Java-VRML distribution.

<X3D>
<Header>

<meta
name='AntennaWorld'
content='AntennaWorld.xml'/>

<meta
name='author'
content='Dave Laflam'/>

<meta
name='revised'
content='15 July 2000'/>

<meta
name='description'
content='SHFAntennaPROTO.XML'/>

<meta
name='url'
content='enter url address here'/>

<meta
name='generator'
content='X3D-Edit, http://www.web3D.org/

TaskGroups/x3d/translation/
README.X3D-Edit.html'/>

</Header>
<Scene>

<!-- ExternProtoDeclare definitions must be included
verbatim -->

<ProtoDeclare
name='SHFAntenna'>

<field
IS='ESPDU_TRANSFORM.translation'
name='initialLocation'
type='Vector3'
value='0 0 0'/>

<field
IS='ESPDU_TRANSFORM.rotation'
name='initialAzimuth'
type='Rotation'
value='0 0 1 0'/>

<field
IS='SHFAntennaPole.scale'
name='antennaPoleScale'
type='Vector3'
value='1 1 1'/>

<field
IS='ESPDU_TRANSFORM.marking'
name='marking'
type='String'
value='SHF antenna'
vrml97Hint='field'/>

<!-- -->
<field

IS='ESPDU_TRANSFORM.address'
name='address'
type='String'
value='224.2.181.145'
vrml97Hint='field'/>

<field
IS='ESPDU_TRANSFORM.port'

 134

name='port'
type='Integer'
value='62040'
vrml97Hint='field'/>

<field
IS='ESPDU_TRANSFORM.siteID'
name='siteID'
type='Integer'
value='0'
vrml97Hint='field'/>

<field
IS='ESPDU_TRANSFORM.applicationID'
name='applicationID'
type='Integer'
value='1'
vrml97Hint='field'/>

<!-- -->
<field

IS='ESPDU_TRANSFORM.entityID'
name='entityID'
type='Integer'
value='0'
vrml97Hint='field'/>

<LOD
range='40000'>

<level>
<!-- First child is rendered in range of 4000 -->
<EspduTransform
DEF='ESPDU_TRANSFORM'
readInterval='.25'
traceColor='0 0.51 0.06'
traceOffset='0 24 0 '
traceSize='10 10 10'>
<children>

<Transform>
<children>

<Inline
url='"SHFAntennaPole.wrl"'/>

<Anchor
description='UHF Antenna Site image'
parameter='target=_blank'
url='UHFAntennaSite.png'>

<children>
<Inline

url='"SHFAntennaDish.wrl"'/>
</children>

</Anchor>
</children>

</Transform>
<Transform

DEF='DomeGreen4'
scale='100 100 40'
translation='60 0 0'>

<children>
<Inline

DEF='Dome'
url='"DomeGreen.wrl"'/>

</children>
</Transform>
<Viewpoint

description='SHF antenna side view'
orientation='0 1 0 1.5708 '
position='40 10 0'/>

</children>
</EspduTransform>
<WorldInfo/>

</level>
</LOD>

 135

<Text
string='SHF Text'/>

<!-- Script nodes will go here for
ReceiverPdu, SignalPdu, TransmitterPdu. Data values will get
ROUTEd into (and out of) the antenna and signal visualization

geometry. -->
</ProtoDeclare>
<!-- The following Instance allows the
Proto to be viewed when viewed as a standalone
file. -->
<!-- This is like paramaterization of the UHF Antenna
-->

<ProtoInstance
name='SHFAntenna'>
<fieldValue

name='initialLocation'
value='200 0 200'/>

<fieldValue
name='entityID'
value='70'/>

</ProtoInstance>
<WorldInfo

info='"Authors: David Laflam"
"Revised: 12 July 00"
"Purpose: Brings SHF, UHF and Rau Antennas into project world"
"Script: none"
"Browser: CosmoPlayer"'

title='AntennaWorld'/>
<Background

groundAngle='1.57079'
groundColor='1 0.8 0.6, 0.6 0.4 0.2'
skyAngle='0.2'
skyColor='1 1 1, 0.2 0.2 1'/>

<NavigationInfo
speed='20'
type='"EXAMINE" "ANY"'/>

<Viewpoint
DEF='High_Above_Airfields'
description='High_Above_Airfields '
fieldOfView='.7853'
orientation='-.9996220469474792, -0.020204812288284302,

-0.01863904483616352, .35458293557167053'
position='-2500, 1500, 6000'/>

</Scene>
</X3D>

<!-- Tag color codes:
<field> <NodeName attribute='value'/> </field> -->

 136

THIS PAGE INTENTIONALLY LEFT BLANK

 137

APPENDIX E. CD-ROM

Theses Appendix Published
as Part of the
Distributed Interactive Simulation
DIS-Java-VRML Working Group

X3D and DIS-Java-VRML Theses

MAJ David W. Laflam
US Army

Title:3D Visualization of Theater-Level Radio Communications Using a Networked Virtual
Environment
ABSTRACT

The military is heavily reliant on the transfer of information among
various networks in day-to-day operations. Radio-based communications
networks that support this volume of information are complex, difficult to
manage, and change frequently. Communications network planners need a
way to clearly visualize and communicate mobile operational network
capabilities, particularly to network users.

By using the DIS-Java-VRML simulation and modeling toolkit,
visualizations of radio-frequency energy and radio path-profiling data can
be quickly generated as 3D models. These animated 3D visualizations can
be loaded into a networked virtual environment, so that communications
planners can detect a variety of problems such as radio frequency
interference and gaps in coverage. Planners can also brief senior staff, plan
within their own staff, and collaborate with communications staff planners
in distant locations using such virtual environments.

DIS-Java-VRML visualization tools can provide a clear picture of the
battle space with respect to the deployed communications architecture.
The prototypes presented in this thesis demonstrate the ability to generate
a shared visualization that can show a radio communications network in
3D. Such dynamic visualizations increase communications planning
information bandwidth and yield more intuitive ways of presenting
information to users. Higher information density in a more intuitive format

 138

enables better understanding with quicker reaction times. This thesis and
the visualization tool discussed provide the foundation for fundamental
improvements in visualizing radio communications environments.

Thesis Link
Software Reference Link

MAJ Thomas E. Miller

US Army
Integrating Realistic Human Group Behaviors Into A Networked 3d Virtual Environment

ABSTRACT

Virtual humans operating inside large-scale virtual environments (VE) are
typically controlled as single entities. Coordination of group activity and
movement is usually the responsibility of their "real world" human
controllers. Georeferencing coordinate systems, single-precision versus
double-precision number representation and network delay requirements
make group operations difficult. Mounting multiple humans inside shared
or single vehicles, (i.e. air-assault operations, mechanized infantry
operations, or small boat/riverine operations) with high fidelity is often
impossible.

The approach taken in this thesis is to reengineer the DIS-Java-VRML
Capture the Flag game geolocated at Fort Irwin, California to allow the
inclusion of human entities. Human operators are given the capability of
aggregating or mounting nonhuman entities for coordinated actions.
Additionally, rapid content creation of human entities is addressed through
the development of a native tag set for the Humanoid Animation (H-
Anim) 1.1 Specification in Extensible 3D (X3D). Conventions are
demonstrated for integrating the DIS-Java-VRML and H-Anim draft
standards using either VRML97 or X3D encodings.

The result of this work is an interface to aggregate and control articulated
humans using an existing model with a standardized motion library in a
networked virtual environment. Virtual human avatars can be mounted
and unmounted from aggregation entities. Simple demonstration examples
show coordinated tactical maneuver among multiple humans with and
without vehicles. Live 3D visualization of animated humanoids on
realistic terrain is then portrayed inside freely available web browsers.

Thesis Link
Software Reference Link

 139

MAJ Mark Murray
MAJ Jason Quigley

US Air Force
Automatically Generating A Distributed 3d Battlespace Using Usmtf And Xml-Mtf Air Tasking

Order, Extensible Markup Language (Xml) And
Virtual Reality Modeling Language (Vrml)

ABSTRACT

For the past three decades, the Department of Defense (DoD) has used the
U.S. Message Text Format (USMTF) as the primary means to exchange
information and to achieve interoperability between joint and coalition
forces. To more effectively exchange and share data, the Defense
Information Systems Agency (DISA), the lead agency for the USMTF, is
actively engaged in extending the USMTF standard with a new data
sharing technology called Extensible Markup Language (XML). This
work translates and synthesizes Air Tasking Order (ATO) data messages
written in XML into a three-dimensional (3D) air attack plan within a
virtual environment through the use of the Virtual Reality Modeling
Language (VRML).

Thesis Link
Software Reference Link

X3D and DIS-Java-VRML Software Tools
A. X3DEdit I. Xeena 1.2
B. X3DEdit Examples J. Vorlon(VRML Syntax Checker)
C.JDK.1.2.2 K. Cygwin (Windows Unix Tools)
D. Netscape 4.73 L. DIS-Java-VRML
E. COSMO Player(VRML Plug-in) M. Xj3D
F. KELP Forest N. GeoVRML
G. VRTP Distribution
H. RRA(Recursive Ray Acoustic)

A. X3DEdit

X3D-Edit is a graphics file editor for Extensible 3D (X3D) that enables simple error-free
editing, authoring and validation of X3D or VRML scene-graph files.

Local URL: www.web3D.org/TaskGroups/x3d/translation/README.X3D-Edit.html

Local Fie Download:X3D-Edit.zip

URL: http://www.web3d.org/x3d.html

www.web3D.org/TaskGroups/x3d/translation/README.X3D-Edit.html
http://www.web3d.org/x3d.html

 140

B. X3DEdit Examples

Local Fie Download:X3D-Examples.zip

These are the examples for X3D-Edit based on VRML 2.0 Sourcebook by David Nadue

C. JDK.1.2.2

The essential Java 2 SDK, tools, runtimes, and APIs for developers writing, deploying,
and running applets and applications in the Java programming language. Also includes
earlier Java Development Kit versions JDKTM 1.1 and JRE 1.1

Local Fie Download: j2sdk1_3_0-win.exe

URL: http://java.sun.com/products/index.html

D. Netscape 4.73

Communicator 4.7 is the latest release of the Internet software suite from Netscape. In
addition to the Netscape Navigator browser, Communicator includes a complete set of
tools for effective everyday communication.

Local Fie Download: netscape-cc32d475.exe

URL: http://home.netscape.com/computing/download/index.html

E. COSMO Player (VRML Plug-in)

Cosmo Player is a high-performance, cross-platform VRML 2.0 client designed for fast
and efficient viewing of virtual worlds. Navigate and manipulate 3D scenes and bring
your Web experience to a new level.

Use VRML to fly through anatomy class, experience 3D data visualizations, or show off
a CAD model. Cosmo Player is the premiere viewing client for VRML, with support for
the latest standards.

Whether on the Internet or in an enterprise, Cosmo Player allows web content creators
and applications developers to add visual and multimedia elements to their work.

Local Fie Download: cosmo_win95nt_eng.exe

URL: http://www.cai.com/cosmo/html/win95nt.htm

http://java.sun.com/products/index.html
http://home.netscape.com/computing/download/index.html
http://www.cai.com/cosmo/html/win95nt.htm

 141

F. KELP Forest
Two classes of graduate students learning 3D graphics and analytic simulation at the
Naval Postgraduate School modeled the three-dimensional (3D) shape, structure, imagery
and motion behaviors of plants and animals in the Kelp Forest Exhibit at the Monterey
Bay Aquarium. Our intended audience includes educators and students of all ages,
scientific users interested in composing models in a 3D Web environment, and the
general public. By focusing on thoroughly modeling a controlled environment, we
produced an exemplar 3D graphics site for modeling larger and more sophisticated
underwater domains. The Virtual Reality Modeling Language (VRML) proved to be an
excellent medium for capturing diverse models, composing multiple student efforts, and
publishing dynamic results publicly on the Web. This project was successfully
demonstrated to 1000 people during the National Ocean Fair in Monterey June 12 1998.

Local URL: kelp/index.html

Local Fie Download: kelp.zip

URL: http://web.nps.navy.mil/~brutzman/kelp

G. VRTP Distribution

The capabilities of the Virtual Reality Modeling Language (VRML) permit building
large-scale virtual environments using the Internet and the World Wide Web. However
the underlying network support provided by the hypertext transfer protocol (http) is
insufficient for large-scale virtual environments. Additional capabilities for many-to-
many peer-to-peer communications plus network monitoring need to be combined with
the client-server capabilities of http. To accomplish this task, we present a detailed design
rationale for the virtual reality transfer protocol (vrtp). vrtp is designed to support
interlinked VRML worlds in the same manner as http was designed to support interlinked
HTML pages. vrtp will be optimized in two ways: on individual desktops and across the
Internet. vrtp appears to be a necessary next step in the deployment of all-encompassing
interactive internetworked 3D worlds.

Local URL: vrtp/vrtp/index.html

Local Fie Download: vrtp.zip

URL: http://www.web3d.org/WorkingGroups/vrtp/

http://web.nps.navy.mil/~brutzman/kelp
http://www.web3d.org/WorkingGroups/vrtp/

 142

H. RRA (Recursive Ray Acoustic)

This project calculates and renders physically realistic sonar beams in real time. Java
programs are used for sonar ray-tracing computation and the Virtual Reality Modeling
Language (VRML 97) is used for 3D graphics.

The primary motivation for this project is to produce underwater sonar beams for analytic
and visualization use in virtual worlds. Virtual world simulations are realistic when
individual components are simulated in a manner that reflects reality. For an underwater
virtual world that includes simulated acoustic detection, a physically based sonar
propagation model is required if ranges in excess of tens of meters are expected. The
Recursive Ray Acoustics (RRA) Algorithm by Dr. Lawrence Ziomek of NPS provides a
general & rapid ray-tracing algorithm which can accurately & quickly predict sonar
propagation through seawater, under a wide variety of surface, water-column and ocean-
bottom environmental conditions.

This project creates an application programming interface (API) for real-time 3D
computation and visualization of acoustic energy propagation. The API provides features
for generating complex physically based sonar information at interaction rates, and then
visualizing that acoustic information. The simulation is programmed in Java, and runs
either as a stand-alone program or as a script in a web browser. This program generates
Virtual Reality Modeling Language (VRML 97) compliant code that can be viewed from
any VRML-capable Web browser. This approach allows the characteristics of the energy
propagation to be calculated with high precision and observed in three dimensions (3D)
and in real time.

As sonar-system information bandwidth becomes larger, more intuitive ways of
presenting information to users are required. Interactive 3D graphics with environmental
and entity rendering can free users from from mentally integrating complex data
piecemeal. This approach can enable significantly greater understanding and quicker
reaction times. We are optimistic that this API might someday provide the foundation for
fundamental advances in sonar modeling and visualization.

Local URL: rra/vrtp/rra/rra.html

Local Fie Download: rra.zip

URL: http://web.nps.navy.mil/~brutzman/vrtp/rra/rra.html

I. Xeena 1.2

Xeena is a generic Java application from the IBM Haifa Research Laboratory for editing
valid XML documents derived from any valid DTD. The editor takes as input a given
DTD, and automatically builds a palette containing the elements defined in the DTD.
Users can thus create/edit/expand any document derived from that DTD, by using a

http://web.nps.navy.mil/~brutzman/vrtp/rra/rra.html

 143

visual tree-directed paradigm. The visual paradigm requires a minimum learning curve as
only valid constructs/elements are presented to the user in a context-sensitive palette. A
Key feature of Xeena is its syntax directed editing ability. Xeena is aware of the DTD
grammar, and by making only authorized elements icons sensitive, automatically ensures
that all documents generated are valid according to the given DTD.

Local Fie Download: Xeena-1.2EA.exe

URL: http://www.alphaworks.ibm.com/tech/xeena

J. Vorlon(VRML Syntax Checker)

The industry standard command line VRML Validator
Trapezium developed Vorlon as a service to the VRML community to allow authors to
spend less time chasing bugs and more time creating high quality content.
Validates conformance to VRML97 specification
Displays line, line number and descriptive message
for each error or warning
Vorlon is Freeware.

Local Fie Download: vorlon.exe

URL: http://www.trapezium.com/VorlonPage.htm

K. Cygwin (Windows Unix Tools)

Cygwin brings a standard UNIX/Linux shell environment, including many of its most
useful commands, to the Windows platform so IT managers can effectively deploy
trained staff, and leverage existing investments in UNIX/Linux source code and shell
scripts.

URL: http://www.cygnus.com/cygwin/

L. DIS-Java-VRML

The area of interest of this working group is the nexus of DIS, Java and VRML. The
IEEE Distributed Interactive Simulation (DIS) Protocol is used to communicate state
information (such as position, orientation, velocities and accelerations) among multiple
entities participating in a shared network environment. Java is a portable networked
programming language that can interoperate on any computer which includes a Web
browser. The Virtual Reality Modeling Language (VRML) enables platform-independent
interactive three-dimensional (3D) graphics across the Internet, and can be used to
compose sophisticated 3D virtual environments.

http://www.alphaworks.ibm.com/tech/xeena
http://www.trapezium.com/VorlonPage.htm
http://www.cygnus.com/cygwin/

 144

The DIS-Java-VRML Working Group is developing a free software library, written in
Java and interoperable with both DIS and VRML. There are a number of people
contributing to the public-domain code archive. This software is protected under the
terms of the GNU General Public License.

Local URL: vrtp/dis-java-vrml/index.html

Local Fie Download:dis-java-vrml.zip

URL: http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/

M. Xj3D

Xj3D is an example implementation for the X3D specification. Specifically, Xj3D is a
Java3D-based open-source loader, browser and exporter for Extensible 3D (X3D)
graphics.

URL: http://web3d.metrolink.com/cgi-bin/cvsweb.cgi/x3d/HowToInstall.html

N. GeoVRML

GeoVRML is an official Working Group of the Web3D Consortium. It was formed on 27
Feb 1998 with the goal of developing tools and recommended practice for the
representation of geographical data using the Virtual Reality Modeling Language
(VRML). The desire is to enable geo-referenced data, such as maps and 3-D terrain
models, to be viewed over the web by a user with a standard VRML plugin for their web
browser.

Local URL: GeoVRML/1.0/doc/index.html

Local Fie Download: geovrml1_0.exe

URL: http://www.ai.sri.com/geovrml/

September 24 2000 (official NPS disclaimer)
URL: www.web3D.org/WorkingGroups/vrtp/dis-java-vrml/SoftwareReference.html
feedback: feedback@nps.navy.mil

http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/
http://web3d.metrolink.com/cgi-bin/cvsweb.cgi/x3d/HowToInstall.html
http://www.ai.sri.com/geovrml/
http://www.nps.navy.mil/disclaimer/
http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/SoftwareReference.html
mailto:brutzman@nps.navy.mil

 145

 146

THIS PAGE INTENTIONALLY LEFT BLANK

 147

LIST OF REFERENCES

Abernathy, M. and Shaw, S., (1998) "Integrating Geographic Information in VRML Worlds,"
Proceedings VRML 98: Third Symposium of the Virtual Reality Modeling Language, Monterey,
California, February 16-19, pp. 107-114. Available
at:http://ece.uwaterloo.ca/vrml98/cdrom/papers/abernath/abernath.pdf

Ames, A. L., Nadeau, D. R., Moreland, J. L., (1997) VRML 2.0 Sourcebook 2nd Edition , Littleton,
Massachusetts, USA, John Wiley & Sons, Available at:
http://www.wiley.com/compbooks/vrml2sbk/cover/cover.htm

Brutzman, D. P., (1994), A Virtual World for an Autonomous Underwater Vehicle, PhD Thesis, Naval
Postgraduate School, Monterey, California, USA. Available at:
http://web.nps.navy.mil/~brutzman/dissertation

Brutzman, Don, (1998) "The Virtual Reality Modeling Language and Java," Communications of the
ACM, vol. 41 no. 6, June, pp. 57-64. Available at:
http://web.nps.navy.mil/~brutzman/vrml/vrmljava.pdf

Canterbury, M. (1995), An Automated Approach to Distributed Interactive Simulation (DIS) Protocol
Development, Master's Thesis, Naval Postgraduate School, Monterey, California, USA. Available at:
http://www.npsnet.org/~zyda/Theses/Michael.Canterbury.pdf

Carr J. J., (1998), Practical Antenna Handbook,3rd Edition, New York, NY, McGraw-Hill Publishing.

COMNET III/STK – (2000) Available at: http://www.stk.com and http://www.caci.com

Defanti, Thomas, (1987)“Insight Through Images,” A Unix Review, Vol. 7, No. 3.

Deitel H. M., Deitel P. J. (1999), Java™ How to Program, Upper Saddle River, New Jersey, Prentice
Hall, INC. Available at: http://www.deitel.com

Eick, Stephen G.,”Visual Discovery and Analysis”, (2000) IEEE Transactions on Visualization and
Computer Graphics, January-March, Volume 6 Number 1 Pg. 44.

Fairborn, David, and Parsley, Scott, (1997) "The Use of VRML for Cartographic Presentation,"
Computers and Geosciences, vol. 23, no. 4, May, pp 475-481.

FGDC - Federal Geographic Data Committee, (1994) "FGDC Content Standard for Digital Metadata,"
June 8, Available at: http://fgdc.er.usgs.gov

Hess, G. C., (1998), Handbook of Land Mobile Radio System Coverage. Norwood, Massachusetts,
USA, Artech House, INC. Available at: http://www.techbooks.co.uk/artech/book26.htm

Iverson, Lee, "GeoVRML Working Group Home Page," July 23, 1999. Available at
http://www.ai.sri.com/~leei/geovrml

Jian R., (1991), The Art of Systems Performance Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling, Littleton, Massachusetts, USA, John Wiley & Sons, INC.

http://ece.uwaterloo.ca/vrml98/cdrom/papers/abernath/abernath.pdf
http://www.wiley.com/compbooks/vrml2sbk/cover/cover.htm
http://web.nps.navy.mil/~brutzman/vrml/vrmljava.pdf
http://www.npsnet.org/~zyda/Theses/Michael.Canterbury.pdf
http://www.stk.com/
http://www.caci.com/
http://www.deitel.com/
http://fgdc.er.usgs.gov/
http://www.techbooks.co.uk/artech/book26.htm
http://www.ai.sri.com/~leei/geovrml

 148

Karahalios, Margarida, Underwater Source Localization Using Scientific Data Visualization, Masters
Thesis,Department of Computer Science and Engineering, University of South Florida, July 1991.

Keller, Peter r., Keller, M. M., (1993), Visual Cues Practical Data Visualization, Los Alamitos, CA
IEEE Computer Society Press.

Ladd, S. R.,(1988) Java Algorithms, New York, NY, McGraw-Hill Publishing.

Lea R., Matsuda K., Miyashita K.,(1996) Java™ for 3D and VRML Worlds, Indianapolis, Indian, New
Riders Publishing.

Moscardini , A. O., Robson, E. H., (1988). Mathematical Modeling for Information Technology:
Telecommunications Reception Transmission, and Security. Chichester, West Sussex, England, Ellis
Horwood Limited.

McCullagh, Michael J., (1997) “Quality, Visualization, and Use of Terrain Models in Physical System”
Available at: http://ncgia.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM

Mobile Subscriber Equipment Network Planning Terminal (MSE-NPT) v2.03, (1997) TB-11-5895-
1544-10-2, Headquarter, Department of the Army.

OPNET - 2000 Available at: http://www.opnet.com/opnet/about.html and
http://web.singnet.com.sg/~meridian/products

Powell, Colin L., (1995), Joint Pub 6-0, Doctrine for Command, Control, Communications, and
Computers (C4) Systems Support to Joint Operation.

Roehl, B., Couch, J., Reed-Ballriech, C., Rohaly, T., Brown, G.,(1997), Late Night VRML 2.0 with
Java™ , Emeryville, California, Macmillan Computer Publishing. Available at:
http://ece.uwaterloo.ca/~broehl/vrml/lnvj

RIS - Rapid Imaging Software Home Page, 3D Terrain Modeling Tool, May 24, 1998. Available at
http://www.landform.com/vrml.htm

Sandeep, S., and Zyda, M.,(1999.) Networked Virtual Environments Design and Implementation ,
ACM Press, New York, NY. Available at: http://www.npsnet.org/~zyda/Books.html

Silicon Graphics, Cosmo Player Version 2.1 VRML Browser, 1998. Available at:
http://www.cai.com/cosmo

Sowizral, Henry A. and Deering, Michael F., “The Java3D API and Virtual Reality”, IEEE Computer
Graphics and Applications (May/June 1999).

Sowizral, H., Nadaeu, D., Anderson, D., Bailey, M., Deering, M. "Introduction to Programming with
Java3D," ACM SIGGRAPH 98, Course #37 Course Notes, July 1998, in form of a printed book and on
the course CD-ROM.

Weiss, Mark. A., (1999) Data Structures and Problem Solving Using Java™, Menlo Park, California,
Addison Wesley Logman, INC.

VRML -Virtual Reality Modeling Language, International Standard ISO/IEC 14772-1:1997. Available
at: http://www.web3d.org/technicalinfo/specifications/vrml97/index.htm

http://ncgia.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM
http://www.opnet.com/opnet/about.html
http://web.singnet.com.sg/~meridian/products
http://ece.uwaterloo.ca/~broehl/vrml/lnvj
http://www.landform.com/vrml.htm
http://www.npsnet.org/~zyda/Books.html
http://www.cai.com/cosmo
http://www.web3d.org/technicalinfo/specifications/vrml97/index.htm

 149

XML - Extensible Markup Language, REC-xml-19980210 W3C Recommendation, 10-February-1998.
Available at: http://www.w3.org/TR/REC-xml.html Weiss, Mark. A., (1999) Data Structures and
Problem Solving Using Java™, Menlo Park, California, Addison Wesley Logman, INC.

http://www.w3.org/TR/REC-xml.html

 150

THIS PAGE INTENTIONALLY LEFT BLANK

 151

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

8725 John J. Kingman Road, Ste 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library 2

Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Robert J. Barton III 1

Fraunhofer Center for Research in Computer Graphics (CRCG)
321 South Main St
Providence, RI 02903

4. Dr. Michael P. Bailey 1

Technical Director, Marine Corps Training and Education Command
Commanding General
Marine Corps Combat Development Command, Code 46T
3300 Russell Road
Quantico, VA 22134

5. Dr. Philip S. Barry 1

Chief, S&T Initiatives Division
Defense Modeling and Simulation Office
1901 N. Beauregard Street, Suite 500
Alexandria VA 22311

6. Curtis Blais 1

Institute for Joint Warfare Analysis
Naval Postgraduate School

7. Don Brutzman, Code UW/Br 1

Naval Postgraduate School
Monterey, CA 93940-5000

8. Rex Buddenberg Code IS/Bu 1

Naval Postgraduate School
Monterey, CA 93940-5000

 152

9. Research Assistant Professor Michael Capps, CodeCS/Cm 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940-5000

10. Capt. Steve Chapman, USN 1

N6M
2000 Navy Pentagon
Room 4C445
Washington, DC 20350-2000

11. Erik Chaum 1

NAVSEA Undersea Warfare Center
Division Newport
Code 2231, Building 1171-3
1176 Howell Street
Newport, RI 02841-1708

12. COL K. Steven Collier USA 1

Army Model and Simulation Office
1111 Jefferson Davis Highway, Suite 503E
Arlington, VA 22202

13. Dr. James Eagle 1

Code UW
Chair, Undersea Warfare Academic Group
NPS

14. Dr. Paul Fishwick 1

Computer & Information Science and Engineering Department
University of Florida
Post Office Box 116120
322 Building CSE
Gainesville, FL 32611-6120

15. Connell Gallagher 1

President
Parallel Graphics
36 Upper Fitzwilliam Street
Dublin 2, Ireland

 153

16. CDR Arthur Galpin, USN 1
US Specail Operation Command (SORR-SCS)
7701 Tampa Point Boulevard
MacDill Air Force Base, FL 33621-5323

17. MR. Jerry Ham 1
National Simulation Center (NSC)
ATTN:ATZL-NSC
410 Kearney Avenue --- Building 45
Fort Leavenworth, KS 66027-1306

18. Dr. Tony Healey 1

Code ME/Hy
NPS

19. David Holland 1

Computer Science/C3I Center MS4A5
George Mason University
Fairfax, VA 22032

20. Pamela Krause 1

Advanced Systems & Technology
National Reconnaissance Office
14675 Lee Road
Chantilly Virginia 20151-1714

21. John Lademan 1
Electronic Sensors and Systems Sector
Northrop Grumman Corporation
PO Box 1488 - MS 9030
Annapolis MD 21404

22. CPT(P) David W. Laflam 1

173 Brook Rd.
Sanbornton NH 03269

23. Jaron Lanier 1

Advanced Network & Services, Inc.
200 Business Park Drive
Armonk NY 10504 USA

 154

24. Dr. R. Bowen Loftin 1

Director of Simulation Programs
Virginia Modeling Analysis & Simulation Center
Old Dominion University
7000 College Drive
Suffolk VA 23435

25. CAPT Arnold O. Lotring USN 1

Commanding Officer
Naval Submarine School
Code 00, Naval Submarine School
PO Box 700
Groton, CT 06349-5700

26. Mike Macedonia 1

Chief Scientist and Technical Director
US Army STRICOM
12350 Research Parkway
Orlando, FL 32826-3276

27. Michael McCann 1

Monterey Bay Aquarium Research Institute (MBARI)
Post Office Box 628
Moss Landing, CA 95039-0628

28. CDR John C, Mickey, USN 1

PEO for Submarines (PMS401)
2531 Jefferson Davis Highway
NC3, Room 3W30
Arlington, VA 22242-5161
ATTN: CDR John Mickey

29. CAPT Bill Molloy USN 1

Chief Modeling & Simulation
Joint Warfighting Center
US Joint Forces Command
116 Lake View Parkway
Suffolk VA 23435-2697

30. Colonel (P) Dennis C. Moran 1

USCENTCOM/CC6
7115 South Boundary Blvd.
MacDill AFB, FL 33621-5101

 155

31. CAPT Mark Murray USAF 1

Joint Battlespace Infosphere (JBI)
AFRL/IFSE
Building 3, Room E-1078
525 Brooks Road
Rome, NY 13441-4505

32. Michael Myjak 1

Vice President and CTO
The Virtual Workshop
P.O. Box 98
Titusville FL 32781

33. George Phillips 1

CNO, N6M1
2000 Navy Pentagon
Room 4C445
Washington, DC 20350-2000

34. Dr. Mark Pullen 1

Department of Computer Science/C3I Center MS4A5
George Mason University
FairFax, VA 22030

35. CAPT Jason Quigley USAF 1

Joint Battlespace Infosphere (JBI)
AFRL/IFSE
Building 3, Room E-1078
525 Brooks Road
Rome, NY 13441-4505

36. Dr. Martin Reddy 1

SRI International, EK219
333 Ravenswood Avenue
Menlo Park, CA 94025

37. Bernie Roehol 1

68 Margaret Avenue North
Waterloo, Ontario
N2J3P7
Canada

 156

38. Dr. R. Jay Roland, President 1

Rolands and Associates
500 Sloat Avenue
Monterey CA 93940

39. MAJ Glenn Roussos, USA 1

US Special Operation Command (SORR-SCS)
7701 Tampa Point Boulevard
MacDill Air Force Base, FL 33621-5323

40. Dr. Sandeep Singhal

ReefEdge, Inc. 1
96 Linwood Plaza, PMB 505
Fort Lee, NJ 07024-3701

41. Keith Victor 1
Virtok Technologies, Inc
551 Belle Meade Farm Drive
Loveland, OH 45140

42. CAPT Robert Voigt 1
Chair, Electrical Engineering Department
U.S. Naval Academy
Annapolis MD 21402

43. Walter H. Zimmers 1

Defense Threat Reduction Agency
CPOC
6801 Telegraph Road
Alexandria VA 22310-3398

44. Dr. Michael Zyda, CodeCS/Zk 1

Chair, Modeling Virtual Environments and Simulation Academic Group
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940-5000

	Visual Nodes
	b. Grouping Nodes
	c. Viewing Nodes
	Interpolators and Route Nodes
	e. Sensor Nodes
	f.	Script Node
	PROTO and EXTERNPROTO Definitions

