CHAPTER 8 M-FILES: SCRIPTS AND FUNCTIONS

M-files

An M-file is a file with the extension ‘.m’. It is recognized by MATLAB as executable. An M-file may be a ‘script’ or function file.

… A ‘script’ file is a list of MATLAB commands that will be executed sequentially.

… A function file may be used to create a new MATLAB function.

Note: Comments may be entered into an M-file by using the percent symbol, %, followed by text.
​​​​​​​​​​​​​​​​​​​​​​​​​​​__

Example of a ‘script’ file:

% HW5 Problem #2

% filename: hw5_no2.m

clear all

% Reset workspace

x=linspace(-2,2,25);

y=linspace(-2,2,25);

[X,Y]=meshgrid(x,y);

Z=X.*exp(-X.^2-Y.^2);grid

% Toggle grid 'on'

subplot(2,1,1),mesh(x,y,Z)

% Surface Plot

xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis')

title('Mesh Plot HW5 #2')

subplot(2,1,2),contour(x,y,Z,10)
% Contour Plot

xlabel('x-axis'),ylabel('y-axis')

title('Contour Plot HW5 #2')
To run the above ‘script’ file you would enter the following at the command window prompt:

>>hw5_no2

Example of a MATLAB built-in function file:

function y = mean(x,dim)

%MEAN Average or mean value.

% For vectors, MEAN(X) is the mean value…

% matrices, MEAN(X) is a row vector…

% each column. For N-D arrays, MEAN(X)…

% elements along the first non-singleton…

% MEAN(X,DIM) takes the mean along the…

%

% Example: If X = [0 1 2

% 3 4 5]

%

% then mean(X,1) is [1.5 2.5 3.5] and…

%

% See also MEDIAN, STD, MIN, MAX, COV.

% Copyright (c) 1984-96 by The MathWorks, Inc.

% $Revision: 5.10 $ $Date: 1996/11/01 17:10:13 $

if prod(size(x))==1, y = x; return, end

if nargin==1,

 dim = min(find(size(x)~=1));

 if isempty(dim), dim = 1; end

end

if ~isempty(x),

 y = sum(x,dim)/size(x,dim);

else

 y = NaN;

end

Characteristics of Functions

1) The first line makes the file a function. Without this line, it would simply be a ‘script’ file.

2) The variables x, y and dim are local to the function and will not appear in the workspace.

3) The program workspace and the function workspace are separate, and variables in one workspace are unaffected by the variables and commands in the other workspace unless passed as an argument.

4) Any defined variables in the program workspace may be used as input variables for the function.

>> z=mean(t) ‘t’ will be passed to ‘x’, etc.

5) The first set of unseparated comment lines will be displayed when the help function is invoked.

» help mean

MEAN Average or mean value.

 For vectors, MEAN(X) is the mean value…

 matrices, MEAN(X) is a row vector…

 each column. For N-D arrays, MEAN(X)…

 elements along the first non-singleton…

 MEAN(X,DIM) takes the mean along the…

 Example: If X = [0 1 2

 3 4 5]

 then mean(X,1) is [1.5 2.5 3.5] and…

 See also MEDIAN, STD, MIN, MAX, COV.

Multiple Argument Functions

· Multiple arguments can be passed to and from a function by including them in the first line of the function.

· Left-side arguments are being defined or created by the function. If more than one argument exists, they must be surrounded by square brackets and separated by commas.

· Right-side arguments are the inputs to the function. They must be surrounded by parenthesis and separated by commas.

>> [Q,R] = DECONV(B,A)

Global Variables

‘GLOBAL X Y Z’ defines X, Y and Z as global in scope. If you wish to create a function that has access to variables in the workspace or another function, the GLOBAL command can be used. The GLOBAL command must be issued in every ‘script’ and function file that is to share the variables. The variables must be separated by spaces not commas.

% This is the script file.

global a b c

a=1;b=2;c=3;

pts=1:10;

y=go(pts);

function y=go(x)

% This is the function file.

global a b c

y= a*x.^2 + b*x + c;

MATLAB’s Order of Execution

1) Is ‘lect8’ a variable?

2) Is ‘lect8’ a built-in function?

3) Is the file ‘lect8.m’ in the current directory?

4) Is the file ‘lect8.m’ in a directory listed in MATLABPATH?

% LECT8.M is an example script file with a

% naming convention problem. It takes the

% SUM of the elements in vector 'y'.

lect8=sum(y)

» clear all

» y=1:5;

» lect8

 lect8 =

 15

» y=1:10;

» lect8

 lect8 =

 15

» clear all

» y=1:10;

» lect8

 lect8 =

 55

» help lect8

 LECT8.M is an example script file with a

 naming convention problem. It takes the

 SUM of the elements in vector 'y.

ECHO Echo commands in M-files.

‘ECHO ON’ turns on echoing of commands inside script-files.

‘ECHO OFF’ turns off echoing.

‘ECHO function_name ON’ turns on echoing for the named function when it is used.

‘ECHO function_name OFF’ turns echoing off.

‘ECHO function_name’ toggles echoing.

‘ECHO ON ALL’ turns on the echoing of commands inside any function files that are currently in memory (i.e., the functions returned by INMEM).

‘ECHO OFF ALL’ turns them all off.

PAUSE Wait for user response.

‘PAUSE(n)’ pauses for n seconds before continuing.

‘PAUSE’ causes a procedure to stop and wait for the user to strike any key before continuing.

‘PAUSE OFF’ indicates that any subsequent PAUSE or PAUSE(n) commands should not actually pause. This allows normally interactive scripts to run unattended.

‘PAUSE ON’ indicates that subsequent PAUSE commands should pause.

KEYBOARD Invoke keyboard from M-file.

KEYBOARD, when placed in an M-file, stops execution of the file and gives control to the user's keyboard. The special status is indicated by a K appearing before the prompt. Variables may be examined or changed - all MATLAB commands are valid. The keyboard mode is terminated by executing the command RETURN (i.e. typing the six letters R-E-T-U-R-N and pressing the return key). Control returns to the invoking M-file. The keyboard mode is useful for debugging your M-files.

RETURN Return to invoking function.

RETURN causes a return to the invoking function or to the keyboard. It also terminates the KEYBOARD mode. Normally functions return when the end of the function is reached. A RETURN statement can be used to force an early return.

 Example

 function d = det(A)

 if isempty(A)

 d = 1;

 return

 else

 ...

 end

INPUT Prompt for user input.

R = INPUT('How many apples') gives the user the prompt in the text string and then waits for input from the keyboard. The input can be any MATLAB expression, which is evaluated, using the variables in the current workspace, and the result returned in R. If the user presses the return key without entering anything, INPUT returns an empty matrix.

R = INPUT('What is your name','s') gives the prompt in the text string and waits for character string input. The typed input is not evaluated; the characters are simply returned as a MATLAB string.

The text string for the prompt may contain one or more '\n'. The '\n' means skip to the beginning of the next line. This allows the prompt string to span several lines. To output just a '\' use '\\'.

The Print Command.

The command window retains a history of all commands and numerical results displayed, and this can be printed in its entirety or sections may be selected and printed. To print the entire command window, make the command window active, use the File menu and select the Print option. To print only a section, highlight the section to be printed, use the File menu and select Print Selection

Note:
The following commands have already been discussed in other lectures:

1) save

2) load

3) diary

4) File > New > M-file (creating an m-file)

SOLVE Symbolic solution of algebraic equations.

SOLVE('eqn1','eqn2',...,'eqnN')

 SOLVE('eqn1','eqn2',...,'eqnN','var1,var2,...,varN')

 SOLVE('eqn1','eqn2',...,'eqnN','var1','var2',...'varN')

 The eqns are symbolic expressions or strings specifying equations. The vars are symbolic variables or strings specifying the unknown variables. SOLVE seeks zeros of the expressions or solutions of the equations. If not specified, the unknowns in the system are determined by FINDSYM. If no analytical solution is found and the number of equations equals the number of dependent variables, a numeric solution is attempted.

 Three different types of output are possible. For one equation and one output, the resulting solution is returned, with multiple solutions to a nonlinear equation in a symbolic vector. For several equations and an equal number of outputs, the results are sorted in lexicographic order and assigned to the outputs. For several equations and a single output, a structure containing the solutions is returned.

Examples:

[image: image10.wmf]r

x

p

=

)

sin(

Solve for x in the following equation:

» solve('p*sin(x)=r')

ans =

asin(r/p)

[image: image11.wmf]0

3

4

3

2

2

=

+

-

=

+

+

x

x

y

xy

x

Solve for x and y in the following simultaneous equations:

» [x,y] = solve('x^2 + x*y + y =3','x^2 - 4*x + 3 =0')

x =
[1]

[3]
y =
[1]

[-3/2]

The above solution returned in a structure:

» S = solve('x^2 + x*y + y =3','x^2 - 4*x + 3 =0')

 S =
x: [2x1 sym]

y: [2x1 sym]

Recovering information from a structure:

» S.x(1)

ans =
1
» S.x(2)

ans =
3
» S.x(:)

ans =
[1]

[3]

Other options:

[u,v] = solve('a*u^2 + v^2 = 0','u - v = 1') regards 'a' as a parameter and solves the two equations for u and v.

S = solve('a*u^2 + v^2','u - v = 1','a,u') regards 'v' as a parameter, solves the two equations, and returns S.a and S.u.

[a,u,v] = solve('a*u^2 + v^2','u - v = 1','a^2 - 5*a + 6') solves the three equations for a, u and v.

[x,y] = solve('sin(x+y)-exp(x)*y = 0','x^2-y = 2') cannot find an analytic solution, so returns a numeric solution.

DSOLVE Symbolic solution of ordinary differential equations.

DSOLVE('eqn1','eqn2', ...) accepts symbolic equations representing ordinary differential equations and initial conditions. Several equations or initial conditions may be grouped together, separated by commas, in a single input argument.

By default, the independent variable is 't'. The independent variable may be changed from 't' to some other symbolic variable by including that variable as the last input argument.

The letter 'D' denotes differentiation with respect to the independent variable, i.e. usually d/dt. A "D" followed by a digit denotes repeated differentiation; e.g., D2 is d^2/dt^2. Any characters immediately following these differentiation operators are taken to be the dependent variables; e.g., D3y denotes the third derivative of y(t). Note that the names of symbolic variables should not contain the letter "D".

Initial conditions are specified by equations like 'y(a)=b' or 'Dy(a) = b' where y is one of the dependent variables and a and b are constants. If the number of initial conditions given is less than the number of dependent variables, the resulting solutions will obtain arbitrary constants, C1, C2, etc.

Three different types of output are possible. For one equation and one output, the resulting solution is returned, with multiple solutions to a nonlinear equation in a symbolic vector. For several equations and an equal number of outputs, the results are sorted in lexicographic order and assigned to the outputs. For several equations and a single output, a structure containing the solutions is returned.

If no closed-form solution is found, a warning is given.

Examples:

Equation:
[image: image1.wmf]ax

dt

dx

-

=

Solution:
[image: image2.wmf]at

ce

x

-

=

» dsolve('Dx = -a*x')

ans =
exp(-a*t)*C1

Change the independent variable to ‘s’ and add an initial condition.

» x = dsolve('Dx = -a*x','x(0) = 1','s')

x = exp(-a*s) …change independent variable to ‘s’

» y = dsolve('(Dy)^2 + y^2 = 1','y(0) = 0')

 y =
[sin(t)]

[-sin(t)]

» S=dsolve('Df=f+g','Dg=-f+g','f(0)=1','g(0)=2')

S =
f: [1x1 sym]

g: [1x1 sym]

» S.f

ans =
exp(t)*cos(t)+2*exp(t)*sin(t)

» S.g

ans =
-exp(t)*sin(t)+2*exp(t)*cos(t)

Other examples:

>> dsolve('Df = f + sin(t)', 'f(pi/2) = 0')

ans = -1/2*cos(t)-1/2*sin(t)+1/2*exp(t)/exp(1/2*pi)

>> dsolve('D2y = -a^2*y', 'y(0) = 1, Dy(pi/a) = 0')

ans = cos(a*t)

>> S=dsolve('Dx = y', 'Dy = -x', 'x(0)=0', 'y(0)=1')

S =
x: [1x1 sym]

y: [1x1 sym]

where S.x = sin(t) and S.y = cos(t)

>> S=dsolve('Du=v, Dv=w, Dw=-u','u(0)=0,v(0)=0,w(0)=1')

S =
u: [1x1 sym]

v: [1x1 sym]

w: [1x1 sym]

>> w = dsolve('D3w = -w','w(0)=1, Dw(0)=0, D2w(0)=0')

w=(1/3+2/3*exp(1/2*t)*cos(1/2*t*3^(1/2))*exp(t))/exp(t)

SIMPLIFY Symbolic simplification.

SIMPLIFY(S) simplifies each element of the symbolic matrix S.

» simplify(sin(x)^2 + cos(x)^2)

ans =
1.

Example:

Solve the following simultaneous equations where
[image: image3.wmf]2

1

a

a

<

 and
[image: image4.wmf]°

<

90

2

a

.

[image: image5.wmf]0

)

3

cos(

)

3

cos(

1

2

1

=

+

-

a

a

[image: image6.wmf]0

)

5

cos(

)

5

cos(

1

2

1

=

+

-

a

a

» [a1,a2]=solve('1-cos(3*a1)+cos(3*a2)=0','1-cos(5*a1)+cos(5*a2)=0')

a1 =

[1/2*pi]

[0]

[acos(-.85483842105331265396888283320020)]

[acos(-.78837571466438290216093889501827)]

[acos(-.73219741035789026013712303329371-.16333815541824717877605777044668*i)]

[acos(-.73219741035789026013712303329371+.16333815541824717877605777044668*i)]

[acos(-.60137372475296263574382162578175)]

[acos(-.41399200129276653688017777374768e-1-.17515797409551020818215660850438*i)]

[acos(-.41399200129276653688017777374768e-1+.17515797409551020818215660850438*i)]

[acos(.80495092165015930410730042747448)]

[acos(.95195982575696904564112700169134)]

[acos(1.0348703340378636697754975461714)]

a2 =

[pi]

[1/2*pi]

[pi-acos(-.6013737247529626357438216258)]

[pi-acos(.95195982575696904564112700167)]

[pi-acos(-.41399200129276653688017777370e-1-.17515797409551020818215660853*i)]

[pi-acos(-.41399200129276653688017777370e-1+.17515797409551020818215660853*i)]

[pi-acos(-.854838421053312653968882833190)]

[pi-acos(-.73219741035789026013712303329300-.1633381554182471787760577704466*i)]

[pi-acos(-.73219741035789026013712303329300+.1633381554182471787760577704466*i)]

[pi-acos(1.03487033403786366977549754618)]

[pi-acos(-.7883757146643829021609388951)]

[pi-acos(.8049509216501593041073004276)]

» a1=a1*180/pi, a2=a2*180/pi

a1 =

[90]

[0]

[467.28642520334989991071476663372/pi]

[446.21290043078826540053284220234/pi]

[(425.64685057619381871500915925489+41.567085107409556981841485459246*i)/pi]

[(425.64685057619381871500915925489-41.567085107409556981841485459246*i)/pi]

[398.88282591652396848059887168655/pi]

[(290.08530076935720809085731652278+31.395255728728489268341403047111*i)/pi]

[(290.08530076935720809085731652278-31.395255728728489268341403047111*i)/pi]

[114.33664411566679858846869604340/pi]

[56.020107842849271984223138090270/pi]

[47.398167182931515343379912268218*i/pi]

a2 =

[180]

[90]

[(180*pi-398.88282591652396848059887169067)/pi]

[(180*pi-56.020107842849271984223138102814)/pi]

[(180*pi-290.08530076935720809085731652190-31.395255728728489268341403051651*i)/pi]

[(180*pi-290.08530076935720809085731652190+31.395255728728489268341403051651*i)/pi]

[(180*pi-467.28642520334989991071476663017)/pi]

[(180*pi-425.64685057619381871500915925473-41.567085107409556981841485459189*i)/pi]

[(180*pi-425.64685057619381871500915925473+41.567085107409556981841485459189*i)/pi]

[(180*pi-47.398167182931515343379912274028*i)/pi]

[(180*pi-446.21290043078826540053284222624)/pi]

[(180*pi-114.33664411566679858846869600532)/pi]

» a1=simplify(a1), a2=simplify(a2)

a1 =

[90]

[0]

[148.74188882170871934729748226120]

[142.03397754986333226877092556396]

[135.48760056139720925441368464023+13.231214129531476323958805408320*i]

[135.48760056139720925441368464023-13.231214129531476323958805408320*i]

[126.96834691815753236340738096710]

[92.337019071484777432314502318163+9.9934202777225674774409274572168*i]

[92.337019071484777432314502318163-9.9934202777225674774409274572168*i]

[36.394484175094478076073568399549]

[17.831754151461030920536485976557] *******

[15.087305201319212770968868819006*i]

a2 =

[180]

[90]

[53.031653081842467636592619031585]

[162.16824584853896907946351401945]

[87.662980928515222567685497682118-9.9934202777225674774409274586619*i]

[87.662980928515222567685497682118+9.9934202777225674774409274586619*i]

[31.258111178291280652702517739929]

[44.512399438602790745586315359817-13.231214129531476323958805408302*i]

[44.512399438602790745586315359817+13.231214129531476323958805408302*i]

[180.00000000000000000000000000001-15.087305201319212770968868820855*i]

[37.966022450136667731229074428426] *******

[143.60551582490552192392643161258]

Solution: a1=17.83(and a2=37.97(
[image: image7.png]igure No. 1 =[ofx]
Fie Edt Window Help

My First Pie Chart

7%

<Student Edition> MATLAB Command Window =1ofx]

Fie Edt Window Help

NERREEEEEE]

EDU» help pie

PIE Pie chart.
PIE(X) draus a pie plot of the data in the vector X. The values in
X are normalized via X/SUH(X) to determine the area of each slice of
pie. If SUM(X) <= 1.0, the values in X directly specify the area of
the pie slices. Only a partial pie will be drawn if SUH(X) < 1.

H = PIE(X,EXPLODE) is used to specify slices that should be pulled
out fron the pie. The vector EXPLODE must be the same size as X. |
The slices where EXPLODE is non-zero will be pulled out.

PIE(...) returns a vector containing patch and text handles.

0.5,1,1.6,1.2,0.8,2.1];
EDU» pie(a,a--max(a)); %chart
EDU» title('My First Pie Chart')

and pull out biggest slice

[image: image8.png]igure No. 1 =1ofx]
Fie Edt Window Help

7 97%
6 53%
5 69%
4 56%
3 12%
2 268%
1 14%

Betsy. Bart Beth Bob Ben Bill

<Student Edition> MATLAB Command Window =[ofx]

Fie Edt Window Help

NERREREEEE]

PARETO Pareto chart.
PARETO(Y,NAHES) produces a Pareto chart where the values in the
vector ¥ are drawn as bars in descending order. Each bar will
be labeled with the associated name in the string matrix or
cell array NAMES.

PARETO(Y,X) labels each element of ¥ with the values from X.
PARETO(Y) labels each element of ¥ with its index.

[H,AX] - PARETO(...) returns a combination of patch and line object
handles in H and the handles to the two axes created in AX.

See also HIST, BAR.

EDU»
EDU»

[0.5,1,1.6,1.2,0.8,2.11;
har(Bill’, Bob’,‘Bart’, Beth’,'Ben’, 'Betsy’);

EDU» pareto(a,b)
i | 2w

[image: image9.png]igure No. 1 =1ofx]
Fie Edt Window Help

Histograrm of Gaussian Data

450

400

350

300

250

200

150

100

50

<Student Edition> MATLAB Command Window 8 [=] 3
File Edt Window Help
D] & [m(@| | ®[ig B 2]
N = HIST(Y) bins the elements of ¥ into 10 equally spaced containers =]
and returns the number of elements in each container. If ¥ is a
matrix, HIST works down the columns.

N

HIST(Y,H), where M is a scalar, uses M bins.

N = HIST(Y,X), where X is a vector, returns the distribution of ¥
among bins with centers specified by X.

[N,X] = HIST(...) also returns the position of the bin centers in X.

HIST(...) without output arguments produces a histogram bar plot of
the results.

||

2.9:0.2:2.9; % Assign Bins to Use
EDUs y-randn(5000,1); % Generate 5000 Random Data Points
EDU» hist(y,x)

EDU» title(‘Histogram of Gaussian Data')

� EMBED Equation.3 ���

� EMBED Equation.3 ���

[image: image12.wmf]r

x

p

=

)

sin(

[image: image13.wmf]0

3

4

3

2

2

=

+

-

=

+

+

x

x

y

xy

x

_997375757.unknown

_997377256.unknown

_997377351.unknown

_997377367.unknown

_997377208.unknown

_997373907.unknown

_997375730.unknown

_997373620.unknown

