CHAPTER 5 CONTINUED…

Plot Annotation and Legends

GTEXT Place text with mouse.

GTEXT('string') displays the graph window, puts up a cross-hair, and waits for a mouse button or keyboard key to be pressed. The cross-hair can be positioned with the mouse (or with the arrow keys on some computers). Pressing a mouse button or any key writes the text string onto the graph at the selected location.

» t=linspace(0,4*pi,100); plot(sin(t))

» gtext('Place text here.')

[image: image1.png]
After positioning the cross-hairs, click the right mouse button to insert the text.

[image: image2.png]
GTEXT(C) places the multi-line strings defined by each row of the cell array of strings C.

» C=['1st line';'2nd line';'3rd line'];

» plot(sin(t))

» gtext(C)

You must locate the cross-hairs and click the right mouse key for each row in the text matrix. In this example there are three lines of text to place.

[image: image3.png]
» C=['1st line' '2nd line' '3rd line'];

C =

1st line2nd line3rd line

Note: MATLAB assumes that a text row vector (r=1,c=n) is a single line of text.

TEXT Text annotation.

TEXT(X,Y,'string') adds the text in the quotes to location (X,Y) on the current axes, where (X,Y) is in units from the current plot. If X and Y are vectors, TEXT writes the text at all locations given. If 'string' is an array the same number of rows as the length of X and Y, TEXT marks each point with the corresponding row of the 'string' array.

» plot(sin(t))

» text(30,0.2,'Place text')

[image: image4.png]
TEXT(X,Y,Z,'string') adds text to 3-D plots.

Text Command Using Vectors Arguments

» X=[40,35,30];

» Y=[0.6,0.4,0.2];

» C=['1st line';'2nd line';'3rd line'];

» plot(sin(t))

» text(X,Y,C)

[image: image5.png]
Adjusting the Properties of Text

>>text(x, y, ‘text’, ‘PropertyName’, ‘PropertyValue’)

The X,Y pair (X,Y,Z triple for 3-D) can be followed by parameter/value pairs to specify additional properties of the text. The X,Y pair (X,Y,Z triple for 3-D) can be omitted entirely, and all properties specified using parameter/value pairs. Execute GET(H), where H is a text handle, to see a list of text object properties and their current values. Execute SET(H) to see a list of text object properties and legal property values.

Example:
>>set(text) Lists valid properties.

>>get(text) Shows current properties.

» plot(sin(t))

» text(0.5,0.2,'LARGE','Units','normalized', 'FontSize',[20])

[image: image6.png]
Other Valid Properties

Color, EraseMode, Editing, FontAngle, FontName, FontSize, FontUnits, FontWeight, HorizontalAlignment, Position, Rotation, String, Units, Interpreter, VerticalAlignment

3-D Plots

» t=linspace(0,10*pi,200);

» x=exp(-t/10/pi).*sin(t);

» y=exp(-t/10/pi).*cos(t);

» plot3(x,y,t),grid

» xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis')

» title('Decaying Spiral')

» [m,i]=max(t);text(x(i),y(i),t(i),'End Point')

[image: image7.png]
Mesh Plots: 3-D Surface Plots

MESH(Z) and MESH(Z,C) use x = 1:n and y = 1:m. In this case, the height, Z, is a single-valued function, defined over a geometrically rectangular grid.

» Z=eye(7);

» Z(2,4)=3

Z =

 1 0 0 0 0 0 0

 0 1 0 3 0 0 0

 0 0 1 0 0 0 0

 0 0 0 1 0 0 0

 0 0 0 0 1 0 0

 0 0 0 0 0 1 0

 0 0 0 0 0 0 1

» mesh(Z)

» xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis')

[image: image8.png]
MESHGRID X and Y arrays for 3-D plots.

The easiest way to define the function Z(x,y) is to generate X and Y matrices of the appropriate ranges and use matrix operations to create the Z matrix. To define the X and Y matrices we use the meshgrid function for creating mesh domains. These matrices have the dimensions of the resultant Z matrix, and are constant values in one direction, but changing in the other. The X matrix varies in its rows, but is constant within each column, while the Y matrix varies in its columns, but is constant within each row.

[X,Y] = MESHGRID(x,y) transforms the domain specified by vectors x and y into arrays X and Y that can be used for the evaluation of functions of two variables and 3-D surface plots. The rows of the output array X are copies of the vector x and the columns of the output array Y are copies of the vector y.

[X,Y] = MESHGRID(x) is an abbreviation for [X,Y] = MESHGRID(x,x). [X,Y,Z] = MESHGRID(x,y,z) produces 3-D arrays that can be used to evaluate functions of three variables and 3-D volumetric plots.

» [X,Y]=meshgrid(1:4,1:4)

X =

 1 2 3 4

 1 2 3 4

 1 2 3 4

 1 2 3 4

Y =

 1 1 1 1

 2 2 2 2

 3 3 3 3

 4 4 4 4

MESH(X,Y,Z,C) plots the colored parametric mesh defined by four matrix arguments. The view point is specified by VIEW. The axis labels are determined by the range of X, Y and Z, or by the current setting of AXIS. The color scaling is determined by the range of C, or by the current setting of CAXIS. The scaled color values are used as indices into the current COLORMAP.

MESH(X,Y,Z) uses C = Z, so color is proportional to mesh height.

» x=-2:.2:2; y=-2:.2:2;

» [X,Y]=meshgrid(x,y);

» Z=X.*exp(-X.^2-Y.^2);

» mesh(X,Y,Z),grid

» xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis')

[image: image9.png]
MESH(x,y,Z) and MESH(x,y,Z,C), with two vector arguments replacing the first two matrix arguments, must have length(x) = n and length(y) = m where [m,n] = size(Z). In this case, the vertices of the mesh lines are the triples (x(j), y(i), Z(i,j)). Note that x corresponds to the columns of Z and y corresponds to the rows.

Changing the Azimuth and Elevation

VIEW 3-D graph viewpoint specification.

VIEW(AZ,EL) and VIEW([AZ,EL]) set the angle of the view from which an observer sees the current 3-D plot. AZ is the azimuth or horizontal rotation and EL is the vertical elevation (both in degrees). Azimuth revolves about the z-axis, with positive values indicating counter-clockwise rotation of the viewpoint. Positive values of elevation correspond to moving above the object; negative values move below.

VIEW([X Y Z]) sets the view angle in cartesian coordinates. The magnitude of vector X,Y,Z is ignored.

Here are some examples:

AZ = -37.5, EL = 30 is the default 3-D view.

AZ = 0, EL = 90 is directly overhead and the default 2-D view.

AZ = EL = 0 looks directly up the first column of the matrix.

AZ = 180 is behind the matrix.

VIEW(2) sets the default 2-D view, AZ = 0, EL = 90.

VIEW(3) sets the default 3-D view, AZ = -37.5, EL = 30.

[AZ,EL]=VIEW returns the current azimuth and elevation.

» view([0,20])

[image: image10.png]
» view([20,20])

[image: image11.png]
CONTOUR(Z) is a contour plot of matrix Z treating the values in Z as heights above a plane. A contour plot are the level curves of Z for some values V. The values V are chosen automatically.

CONTOUR(X,Y,Z) X and Y specify the (x,y) coordinates of the surface as for SURF.

CONTOUR(Z,N) and CONTOUR(X,Y,Z,N) draw N contour lines, overriding the automatic value.

CONTOUR(Z,V) and CONTOUR(X,Y,Z,V) draw LENGTH(V) contour lines at the values specified in vector V. Use CONTOUR(Z,[v v]) or CONTOUR(X,Y,Z,[v v]) to compute a single contour at the level v.

» contour(x,y,Z,20);

» xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis')

» title('20 Level Contour Plot')

[image: image12.png]
Adding Elevation Numbers to Contour Plots

[C,H] = CONTOUR(...) returns contour matrix C as described in CONTOURC and a column vector H of handles to LINE or PATCH objects, one handle per line. Both of these can be used as input to CLABEL. The UserData property of each object contains the height value for each contour.

» c=contour(x,y,Z,20);

» clabel(c)

» xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis')

» title('20 Level Contour Plot')

[image: image13.png]
SUBPLOT Creates Axes in Tiled Positions

SUBPLOT(m,n,p), or SUBPLOT(mnp), breaks the figure window into an m-by-n matrix of small axes, selects the p-th axes for the current plot, and returns the axis handle. The axes are counted along the top row of the Figure window, then the second row, etc.

» x=linspace(0,2*pi,100);

» subplot(2,1,1),plot(x.^1.5)

» subplot(2,1,2),plot(x.^-0.5)

[image: image14.png]
A Plot Consisting of 2x2 Subplots

» subplot(2,2,1),plot(x.^1.5), title('Plot 1')

» subplot(2,2,2),plot(x.^-0.5), title('Plot 2')

» subplot(2,2,3),plot(cos(3*x)), title('Plot 3')

» subplot(2,2,4),plot(exp(-x/2/pi).*sin(5*x))

» title('Plot 4')

[image: image15.png]
AXIS Control axis scaling and appearance.

AXIS([XMIN XMAX YMIN YMAX]) sets scaling for the x- and y-axes on the current plot.

AXIS([XMIN XMAX YMIN YMAX ZMIN ZMAX]) sets the scaling for the x-, y- and z-axes on the current 3-D plot.

V = AXIS returns a row vector containing the scaling for the current plot. If the current view is 2-D, V has four components; if it is 3-D, V has six components.

AXIS AUTO returns the axis scaling to its default, automatic mode where, for each dimension, 'nice' limits are chosen based on the extents of all line, surface, patch, and image children.

AXIS MANUAL freezes the scaling at the current limits, so that if HOLD is turned on, subsequent plots will use the same limits.

AXIS TIGHT sets the axis limits to the range of the data.

AXIS IJ puts MATLAB into its "matrix" axes mode. The coordinate system origin is at the upper left corner. The i axis is vertical and is numbered from top to bottom. The j axis is horizontal and is numbered from left to right.

AXIS XY puts MATLAB into its default "Cartesian" axes mode. The coordinate system origin is at the lower left corner. The x axis is horizontal and is numbered from left to right. The y axis is vertical and is numbered from bottom to top.

AXIS EQUAL sets the aspect ratio so that equal tick mark increments on the x-,y- and z-axis are equal in size. This makes SPHERE(25) look like a sphere, instead of an ellipsoid.

AXIS IMAGE is the same as AXIS EQUAL except that the plot box fits tightly around the data.

AXIS SQUARE makes the current axis box square in size.

AXIS NORMAL restores the current axis box to full size and removes any restrictions on the scaling of the units. This undoes the effects of AXIS SQUARE and AXIS EQUAL.

AXIS OFF turns off all axis labeling, tick marks and background.

AXIS ON turns axis labeling, tick marks and background back on.

Example: Control the Axes

>> x=linspace(0,4*pi,100);

>> theta=x.*180./pi;

>> c1=sin(x)';

>> c2=cos(2*x)';

>> plot(theta,c1,'r-',theta,c2,'b--')

>> xlabel('DEGREES')

>> ylabel('MAGNITUDE')

>> title('HOMEWORK 4 (Problem 2)')

>> grid

[image: image16.png]
» axis([0,720,-1.2,1.2])

[image: image17.png]

