CHAPTER 2 MATRIX OPERATIONS

Transpose of a Matrix

>>A=[7,4,2;5,3,9;8,6,1]

A =

 7 4 2

 5 3 9

 8 6 1

>>A_t=A'

A_t =

 7 5 8

 4 3 6

 2 9 1

Transpose of a Complex Matrix

>>C=[7+5i,8-4i;3+6i,2+9i]

C =

 7.0000 + 5.0000i 8.0000 - 4.0000i

 3.0000 + 6.0000i 2.0000 + 9.0000i

>>C_t=C'

C_t =

 7.0000 - 5.0000i 3.0000 - 6.0000i

 8.0000 + 4.0000i 2.0000 - 9.0000i

Note: This is the complex conjugate transpose.

Addition and Subtraction of a Vector

>>a=[1,3,-5]

a =

 1 3 -5

>>b=[7,-6,2]

b =

 7 -6 2

>>c=a+b

c =

 8 -3 -3

>>c=c+[2,2,2]

c =

 10 -1 -1

>>c=c-2

c =

 8 -3 -3

Addition and Subtraction of a Matrix

A=[7,4,2;5,3,9;8,6,1]

A =

 7 4 2

 5 3 9

 8 6 1

B=[1,-6,8;-2,4,-7;9,3,5]

B =

 1 -6 8

 -2 4 -7

 9 3 5

>>C=A+B

C =

 8 -2 10

 3 7 2

 17 9 6

Addition and Subtraction of a Matrix by a Constant Matrix of the Same Size

>>D=C-[3,3,3;3,3,3;3,3,3]

D =

 5 -5 7

 0 4 -1

 14 6 3

>>D=C-3

D =

 5 -5 7

 0 4 -1

 14 6 3

D=3-C

D =

 -5 5 -7

 0 -4 1

 -14 -6 -3

Attempt to Add Different Size Matrices

>>E=[1,2;3,4]+[2,3,6]

??? Error using ==> +

Matrix dimensions must agree.

Multiplication of Matrices

The inner dimensions must match as follows:

Given: A{row_a, column_a} * B{row_b, column_b}

The index number column_a must equal the index number row_b.

column_a = row_b

The result will be a matrix with the outer dimensions:

C(row_a,column_b)

For example, multiplication of a 2x3 by a 3x2 is valid, but multiplication of a 2x3 by a 2x2 is not.

>>x=[1,3,5]

x =

 1 3 5

>>y=[2,4,6]

y =

 2 4 6

>>xy=x*y

??? Error using ==> *

Inner matrix dimensions must agree.

For this example, the dimensions can be made to match correctly by taking the transpose of either variable.

>>xy=x*y' (x is 1x3 and y’ is 3x1)

xy =

 44

>>xy=x'*y (x’ is 3x1 and y is 1x3)

xy =

 2 4 6

 6 12 18

 10 20 30

>>u=[1,2;3,4;5,6] (u is 3x2)

u =

 1 2

 3 4

 5 6

>>v=[3,2,1;5,3,8] (v is 2x3)

v =

 3 2 1

 5 3 8

>>uv=u*v (The result takes on the outer dimensions.)

uv =

 13 8 17

 29 18 35

 45 28 53
Scalar Multiplication of Matrices

>>xy (already in the workspace)

xy =

 2 4 6

 6 12 18

 10 20 30

>>xy1=xy*2

xy1 =

 4 8 12

 12 24 36

 20 40 60

Note: When multiplying a vector or matrix by a scalar, each element in the vector or matrix is individually multiplied by the scalar. MATLAB does not assume that the scalar is a vector or matrix of equal dimension where each element is the scalar value. The following will illustrate the difference.

>>xy2=xy*[2,2,2;2,2,2;2,2,2]

xy2 =

 24 24 24

 72 72 72

 120 120 120

Matrix Inversion

>>help inv

INV Matrix inverse. INV(X) is the inverse of the square matrix X. A warning message is printed if X is badly scaled or nearly singular.

>>A=[7,4,2;5,3,9;8,6,1]

A =

 7 4 2

 5 3 9

 8 6 1

>>B=[1,2,3;3,2,1;-1,-2,-1]

B =

 1 2 3

 3 2 1

 -1 -2 -1

>>x=A\B {equivalent to inv(A)*B}

x =

 0.7403 1.8961 2.2727

 -1.2078 -2.8831 -3.1818

 0.3247 0.1299 -0.0909

>>inv(A)*B

ans =

 0.7403 1.8961 2.2727

 -1.2078 -2.8831 -3.1818

 0.3247 0.1299 -0.0909

>>B_check=A*x {If x=A\B, then B=A*x.}

B_check =

 1.0000 2.0000 3.0000

 3.0000 2.0000 1.0000

 -1.0000 -2.0000 -1.0000

>>x=B/A {equivalent to B*inv(A)}

x =

 -1.3117 0.5195 0.9481

 0.1688 0.0519 0.1948

 1.1558 -0.2597 -0.9740

>>B*inv(A)

ans =

 -1.3117 0.5195 0.9481

 0.1688 0.0519 0.1948

 1.1558 -0.2597 -0.9740

>>B_check=x*A {If x=B/A, then B=x*A.}

B_check =

 1.0000 2.0000 3.0000

 3.0000 2.0000 1.0000

 -1.0000 -2.0000 -1.0000

Scalar Division

>>t=[1,3,5]

t =

 1 3 5

>>t/2

ans =

 0.5000 1.5000 2.5000

>>2/t

??? Error using ==> /

Matrix dimensions must agree.

Note: MATLAB is not sure what to do. Normally this would be a matrix inverse operation. This can be resolved by using the ‘array’ operator which will be discussed later.

>>2./t

ans =

 2.0000 0.6667 0.4000

Matrix Powers

>>A (already in the workspace)

A =

 7 4 2

 5 3 9

 8 6 1

>>B=A^2

B =

 85 52 52

 122 83 46

 94 56 71

>>c (already in the workspace)

c =

 8 -3 -3

>>c^2

??? Error using ==> ^

Matrix must be square.

Note: The matrix must be square. This is actually equivalent to the multiplication of a matrix by itself.

CHAPTER 3 ARRAY OPERATIONS

Many times it is necessary to operate on a matrix in an element-by-element basis just as in addition and subtraction. Therefore, to distinguish this element-by-element operation from regular matrix operations, the matrices will be referred to as arrays when performing element-by-element operations. Since addition and subtraction are already element-by-element, only the operators in the table below need to be modified with a ‘.’ to designate array operations.

Operation
Matrix
Array

Multiplication
*
.*

Right Division
/
./

Left Division
\
.\

Power
^
.^

Array Multiplication

>>x=[1,2,1]

x =

 1 2 1

>>y=[3,-2,5]

y =

 3 -2 5

>>z=x.*y

z =

 3 -4 5

An attempt is made to multiply different size arrays.

>>x

x =

 1 2 1

>>w=[1,-1]

w =

 1 -1

>>z=w.*x

??? Error using ==> .*

Matrix dimensions must agree.

__

An attempt is made multiply a 3-element vertical array with a 3-element horizontal array.

>>y

y =

 3 -2 5

>>z=x.*y'

??? Error using ==> .*

Matrix dimensions must agree.

Array Division

>>x=[1,2,1];

>>y=[3,-2,5];

>>z=x./y

z =

 0.3333 -1.0000 0.2000

>>z=x.\y

z =

 3 -1 5

>>z=2./y

z =

 0.6667 -1.0000 0.4000

>>u=[1,2;3,1]

u =

 1 2

 3 1

>>v=1./u (the reciprocal of each element)

v =

 1.0000 0.5000

 0.3333 1.0000

Do NOT confuse array division with matrix inversion. They are two very different operations.

>>u_i=inv(u)

u_i =

 -0.2000 0.4000

 0.6000 -0.2000

>>id=u*u_i

id =

 1 0

 0 1

Array Exponents and Bases

>>y (already in the workspace)

y =

 3 -2 5

>>z=y.^3 (the cube of each element)

z =

 27 -8 125

>>z=2.^y (base 2 to the power of y)

z =

 8.0000 0.2500 32.0000

>>u

u =

 1 2

 3 1

>>z=3.^u (base 3 to the power of u)

z =

 3 9

 27 3

>>x (already in the workspace)

x =

 1 2 1

>>y (already in the workspace

y =

 3 -2 5

>>z=x.^y (base x to the power of y)

z =

 1.0000 0.2500 1.0000

>>v=x+2

v =

 3 4 3

>>z=v.^y (base v to the power of y)

z =

 27.0000 0.0625 243.0000

Relational Operators

Relational operators allow one to perform comparisons between pairs of corresponding elements of two matrices of equal dimensions, or compare an entire matrix against a single condition. The result of a relational operation is a matrix of ones and zeros where one represents TRUE and zero represents FALSE.

< less than
>= greater than or equal

<= less than or equal
== equal

> greater than
~= not equal

>>A=[9,4,6;1,3,5;8,2,7]

A =

 9 4 6

 1 3 5

 8 2 7

>>T=A>=5

T =

 1 0 1

 0 0 1

 1 0 1

>>T=5<=A

T =

 1 0 1

 0 0 1

 1 0 1

Comparing Two Matrices
>>A=[9,4,6;1,3,5;8,2,7];

>>B=[7,2,8;5,3,1;6,4,9]

B =

 7 2 8

 5 3 1

 6 4 9

>>T=A<B

T =

 0 0 1

 1 0 0

 0 1 1

>>T=A==B

T =

 0 0 0

 0 1 0

 0 0 0

Logical Operators

While relational operators compare one value to another value, logical operators compare only the TRUE or FALSE condition of the value.

AND
&

OR
|

NOT
~

>>A=[1,0;1 0]

A =

 1 0

 1 0

>>B=[0,1;1,0]

B =

 0 1

 1 0

>>C=A&B

C =

 0 0

 1 0

>>C=A|B

C =

 1 1

 1 0

>>D=~C

D =

 0 0

 0 1

MATLAB treats any non-zero number as TRUE, and only zero as FALSE

>>A=[1,-2;0.4,0]

A =

 1.0000 -2.0000

 0.4000 0

>>B=[0,1.5;3,0]

B =

 0 1.5000

 3.0000 0

>>C=A&B

C =

 0 1

 1 0

Logical A =
1
1

1 0

Logical B =
0
1

1
0

Elementary Math Functions

Most of the elementary math functions operate on an element-by-element basis when applied to matrices.

>>A (already in the workspace)

A =

 1.0000 -2.0000

 0.4000 0

>>sqrt(A)

ans =

 1.0000 0 + 1.4142i

 0.6325 0

>>B (already in the workspace)

B =

 0 1.5000

 3.0000 0

>>sin(pi*B)

ans =

 0 -1.0000

 0.0000 0

>>cos(pi*B)

ans =

 1.0000 0.0000

 -1.0000 1.0000

