CHAPTER 9 STRINGS, STRING MACROS AND FORMATTED OUTPUT

Strings

Strings are entered in MATLAB by surrounding text with single quotes.

» s1='Hello'

s1 =

Hello

The text string is stored in an array

» size(s1)

ans =

1 5

» s2=' students!'

(note that a space is necessary)

s2 =

 students!

» s12=[s1, s2]

(concatenate the two strings)

s12 =

Hello students!

MATLAB treats each character as a separate column (including spaces). Therefore, if more rows are added to the string matrix, they must all be the same length.

» s=[s12;'Lecture 10 begins.']

??? All rows in the bracketed expression must have the same number of columns.

» s12=[s12, ' '];
(add three spaces to s12)

» s=[s12;'Lecture 10 begins.']

s =

Hello students!

Lecture 10 begins.

DISP Display array.

DISP(X) displays the array, without printing the array name. In all other ways it's the same as leaving the semicolon off an expression. If X is a string, the text is displayed.

» disp(s12)

Hello students!

In order to display numerical data with string commands, it is necessary to convert from numerical to string format. MATLAB supplies several functions for conversion: num2str, int2str, sprintf and fprintf.

NUM2STR Convert number to string.

T = NUM2STR(X) converts the matrix X into a string representation T with about 4 digits and an exponent if required. This is useful for labeling plots with the TITLE, XLABEL, YLABEL, and TEXT commands.

T = NUM2STR(X,N) converts the matrix X into a string representation with a maximum N digits of precision. The default number of digits is based on the magnitude of the elements of X.

T = NUM2STR(X,FORMAT) uses the format string FORMAT (see SPRINTF for details).

INT2STR Convert integer to string.

S = INT2STR(X) rounds the elements of the matrix X to integers and converts the result into a string matrix.

EXAMPLES

» n1=0.123456789;

» sn1=num2str(n1)

sn1 = 0.12346

» sn1i=int2str(n1)

sn1i = 0

» n2=12345.6789012345;

» sn2=num2str(n2)

sn2 = 12345.6789

» sn23=num2str(n2,3)

sn23 = 1.23e+004

» sn2i=int2str(n2)

sn2i = 12346

» n3=1234567890.123456789;

» sn3=num2str(n3)

sn3 = 1234567890.1235

» sn3i=int2str(n3)

sn3i = 1234567890

» num2str(randn(2,2),3)

ans =

-1.15 1.19

 1.19 -0.0376

[image: image1.png]
[image: image2.png]
STR2NUM Convert string to number.

X = STR2NUM(S) converts the string S, which should be an ASCII character representation of a numeric value, to MATLAB's numeric representation. The string may contain digits, a decimal point, a leading + or - sign, an 'e' preceeding a power of 10 scale factor, and an 'i' for a complex unit.

STR2NUM converts a character array representation of a matrix of numbers to a numeric matrix. For example,

 A = ['1 2' str2num(A) => [1 2;3 4]

 '3 4']

If the string S does not represent a valid number or matrix, STR2NUM(S) returns the empty matrix.

SPRINTF Write formatted data to string.

[S,ERRMSG] = SPRINTF(FORMAT,A,...) formats the data in the real part of matrix A (and in any additional matrix arguments), under control of the specified FORMAT string, and returns it in the MATLAB string variable S. ERRMSG is an optional output argument that returns an error message string if an error occurred or an empty matrix if an error did not occur. SPRINTF is the same as FPRINTF except that it returns the data in a MATLAB string variable rather than writing it to a file.

FORMAT is a string containing C language conversion specifications. Conversion specifications involve the character %, optional flags, optional width and precision fields, optional subtype specifier, and conversion characters d, i, o, u, x, X, f, e, E, g, G, c, and s. See the Language Reference Guide or a C manual for complete details.

The special formats \n,\r,\t,\b,\f can be used to produce linefeed, carriage return, tab, backspace, and formfeed characters respectively. Use \\ to produce a backslash character and %% to produce the percent character.

SPRINTF behaves like ANSI C with certain exceptions and extensions. These include:

1.
The following non-standard subtype specifiers are supported for conversion characters o, u, x, and X.

t
- The underlying C datatype is a float rather than an unsigned integer.

B
- The underlying C datatype is a double rather than an unsigned integer.

For example, to print out in hex a double value use a format like '%bx'.

2.
SPRINTF is "vectorized" for the case when A is nonscalar. The format string is recycled through the elements of A (columnwise) until all the elements are used up. It is then recycled in a similar manner through any additional matrix arguments.

Examples: sprintf(‘format’, arguments)

sprintf('%0.5g',(1+sqrt(5))/2)

sprintf('%0.5g',1/eps)

sprintf('%15.5f',1/eps)

sprintf('%d',round(pi))

sprintf('%s','hello')

sprintf('The array is %dx%d.',2,3)
1.618

4.5036e+15

4503599627370496.00000

3

hello

The array is 2x3.

sprintf('\n') is the line termination character on all platforms.

sprintf('%12.3f',12345.12345)

sprintf('%10.3f',12345.12345)

sprintf('%8.3f',12345.12345)

sprintf('%0.3f',12345.12345)

sprintf('%-12.3f',12345.12345)
 12345.123

 12345.123

12345.123

12345.123

12345.123

In this table, the format specifier e signifies exponential notation, f signifies fixed-point notation, and g signifies the use of e or f, whichever is shorter. Note that for the e and f formats, the number to the right of the decimal point says how many digits to the right of the decimal point to display. On the other hand, in the g format, the number to the right of the decimal specifies the total number of digits to display. In addition, note that in the last five entries, a width of eight characters is specified for the result, and the result is right justified. In the very last case, the 8 is ignored because more than eight digits were specified.

sprintf('%.0e\n',pi)

sprintf('%7.0e\n',pi)
sprintf('%.1e\n',pi)
sprintf('%.3e\n',pi)
sprintf('%.5e\n',pi)
sprintf('%.10e\n',pi)

sprintf('%.0f\n',pi)
sprintf('%.1f\n',pi)
sprintf('%.3f\n',pi)
sprintf('%.5f\n',pi)
sprintf('%.10f\n',pi)
sprintf('%.0g\n',pi)
sprintf('%.1g\n',pi)
sprintf('%.3g\n',pi)
sprintf('%.5g\n',pi)
sprintf('%.10g\n',pi)

sprintf('%8.0g\n',pi)
sprintf('%8.1g\n',pi)
sprintf('%8.3g\n',pi)
sprintf('%8.5g\n',pi)
sprintf('%8.10g\n',pi)
3e+000

 3e+000

3.1e+000

3.142e+000

3.14159e+000

3.1415926536e+000

3

3.1

3.142

3.14159

3.1415926536

3

3

3.14

3.1416

3.141592654

 3

 3

 3.14

 3.1416

3.141592654

FPRINTF Write formatted data to file.

FPRINTF formatting is most useful when displaying information to the screen or output file. The formatting is the same as for SPRINTF, however, SPRINTF can only define string vectors.

COUNT = FPRINTF(FID,FORMAT,A,...) formats the data in the real part of matrix A (and in any additional matrix arguments), under control of the specified FORMAT string, and writes it to the file associated with file identifier FID. COUNT is the number of bytes successfully written. FID is an integer file identifier obtained from FOPEN. It can also be 1 for standard output (the screen) or 2 for standard error.

For example, the statements

x=0:0.1:1; y=[x;exp(x)];

fid=fopen('exp.txt','wt');

fprintf(fid,'%6.2f %12.8f\n',y);

fclose(fid);

create a text file containing a short table of the exponential function:

 0.00 1.00000000

 0.10 1.10517092

 ...

 1.00 2.71828183

The file ‘exp.txt’ may be loaded into the workspace as follows:

» load exp.txt

» exp

exp = 0 1.0000

 0.1000 1.1052

 ...

 1.0000 2.7183

FOPEN Open file.

FID = FOPEN(FILENAME,PERMISSION) opens the specified file with the specified PERMISSION. If the file is opened for reading and it is not found in the current working directory, FOPEN searches down MATLAB's search path. Permission is one of the strings:

 'r' read

 'w' write (create if necessary)

 'a' append (create if necessary)

 'r+' read and write (do not create)

 'w+' truncate or create for read and write

 'a+' read and append (create if necessary)

 'W' write without automatic flushing

 'A' append without automatic flushing

By default, files are opened in binary mode. To open a text file, add 't' to the permission string, for example 'rt' and 'wt+'. (On Unix and Macintosh systems, text and binary files are the same so this has no effect. But on PC and VMS systems this is critical.)

If the open is successful, FID gets a scalar MATLAB integer, the file identifier, to be used as the first argument to other FileIO routines. If the open was not successful, -1 is returned for FID.

Three file identifiers are automatically available and need not be opened. They are FID=0 (standard input), FID=1 (standard output), and FID=2 (standard error).

[FID, MESSAGE] = FOPEN(FILENAME,PERMISSION) returns a system dependent error message if the open is not successful.

FCLOSE Close file.

ST = FCLOSE(FID) closes the file with file identifier FID, which is an integer obtained from an earlier FOPEN. FCLOSE returns 0 if successful and -1 if not.

ST = FCLOSE('all') closes all open files, except 0, 1 and 2.

MENU Generate a menu of choices for user input.

K =MENU('Choose a color','Red','Blue','Green') displays on the screen:

 Choose a color

 1) Red

 2) Blue

 3) Green

Select a menu number: The number entered by the user in response to the prompt is returned. On machines that support it, the local menu system is used. The maximum number of menu items is 32.

» sel=menu('Choose a number','one','two','three','four')

sel = 2

[image: image3.png]
Additional MATLAB Notes:

» realmax ---largest usable positive real number

ans = 1.7977e+308

» realmin ---smallest usable positive real number

ans = 2.2251e-308

‘eps’ is the smallest number such that when added to one, creates a number greater than one on the computer.

» eps

ans = 2.2204e-016

‘nargin’ is the number of function input arguments.

POLYFIT Fit polynomial to data.

POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) of degree N that fits the data, P(X(I))~=Y(I), in a least-squares sense.

[P,S] = POLYFIT(X,Y,N) returns the polynomial coefficients P and a structure S for use with POLYVAL to obtain error estimates on predictions. If the errors in the data, Y, are independent normal with constant variance, POLYVAL will produce error bounds which contain at least 50% of the predictions.

POLYDER Differentiate polynomial.

POLYDER(P) returns the derivative of the polynomial whose coefficients are the elements of vector P.

POLYDER(A,B) returns the derivative of polynomial A*B.

[Q,D] = POLYDER(B,A) returns the derivative of the polynomial ratio B/A, represented as Q/D.

» lect10_hw6_3

The_roots_of_g_are = 4.0000 2.0000 -1.0000

The_roots_of_Dg_are = 3.1196 0.2137

Polyfit_output_is = 1.0000 -5.0000 2.0000 8.0000

[image: image4.png]
Using FPRINTF for screen output:

» fprintf('No. 1 = %-5.3f\nNo. 2 = %6.4e\n',15,20)

No. 1 = 15.000

No. 2 = 2.0000e+001

1

