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1-4 APPROXIMATE INTEGRATION TECHNIQUES AND APPLICATIONS

The salvage engineer may be required to calculate hydrostatic data for a casualty when curves of form or other documents are not available;
for a casualty in an unusual condition, such as a ship floated upside down or on its side; or for portions of a ship that has been cut into sections.
A ship’s form consists of a number of intersecting surfaces, usually of nonmathematical form. Areas and volumes enclosed by these surfaces,
as well as moments of areas and volumes, and second moments of area, must be determined to calculate hull hydrostatic characteristics.

For a curve plotted on anxy coordinate system, the area under the curve and moments, second moments (moments of inertia), and location of
the centroid can be expressed as simple integrals. Since hull forms are seldom definable by mathematical equations, areas, moments, and
volumes are calculated by manual integration methods rather than by direct integration. Manual integration methods are also used to evaluate
any parameter that can be expressed as a curve of a function of some variable. For example, the total force, location of the center of effort,
and force moment of an unevenly distributed force (such as current forces) can be determined from a curve showing the force distribution.
Graphical and numerical manual integration methods are described in the following paragraphs.

1-4.1 Graphical Integration. An obvious way to calculate the area under a curve (or within a shape) is to plot the curve to scale on graph
paper and count the squares under the curve. This method can be extended to calculate the first moment of area,My = ∫xy dx, by multiplying
the height (number of squares,y) in each column by its distance from the origin (x), and summing all such products. In the same way, the
second moment is calculated by multiplying the height of each column byx2. By adopting sign conventions and adjusting the location of the
origin, moments can be calculated about any desired axis. Graphical integration of large, complex areas is very tedious, but can be very accurate
for even the most complex or discontinuous curves.

1-4.2 Numerical Integration. Numerical integration methods, orrules, are based on the same premise as graphical integration; that the area
under a curve can be closely approximated by breaking the area up into smaller shapes whose areas can be calculated or estimated easily, and
summing the areas of these shapes. Most rules depend upon the substitution of a simple mathematical form for the actual curve to be integrated.
The accuracy of the result depends upon the accuracy of the fit between the real and assumed curves.

1-4.3 Trapezoidal Rule. The trapezoidal

Figure 1-5. Curvilinear Figure Approximated by Series of Trapezoids.
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rule substitutes a series of straight lines for
a complex curve to allow integration of the
curve in a simple tabular format.
Conceptually, the trapezoidal rule is the
simplest of the numerical integration rules.

A curvilinear shape can be approximated by
a series ofn trapezoids bounded byn + 1
equally spaced ordinates,y0, y1, y2, y3, ...,
yn, (at stationsx0, x1, x2, x3, ..., xn) as
shown in Figure 1-5. If the station spacing
is h, the area (a0,1) of the first trapezoid is:

The total area of the shape (A) is approximately equal to the sum of the areas of the trapezoids:

a0,1 =
y0 + y1

2
h

This expression is called thetrapezoidal rule, and can be used to calculate areas of any shape bounded by a continuous curve, simply by dividing
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the shape into a number of equal sections and substituting the ordinate values and the station spacing, orcommon interval, into the rule. The
common multiplierfor the trapezoidal rule is the common interval (h). If the common interval and common multiplier (CM) are separated into
two factors, the common multiplier for the trapezoidal rule is 1.

The factors by which each ordinate is multiplied (1⁄2, 1, 1, 1, ...,1⁄2) are theindividual multipliers(m). The products of the individual multipliers
and ordinates are calledfunctions of area, ƒ(A). The area under the curve is thus expressed as:

A = ⌡
⌠y dx = h f (A)
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Because the trapezoidal rule substitutes a series of straight lines for the curve to be integrated, it is best suited for use with smooth, long-radius
curves such as the waterlines of a ship. The rule underestimates the area under convex curves, and overestimates the area under concave curves.
Accuracy increases as station spacing is decreased. If greater accuracy is required in regions of considerable curvature, e.g. at the ends of the
ship, stations are taken at half-divisions. When half-spaced stations are used, the individual multipliers for the half-stations and adjacent stations
must be adjusted. If, for example, a half-station is inserted between ordinates 1 and 2:

The individual multiplier for the half-station is1⁄2, and 3⁄4 for the station on either side of it. A similar analysis will show that if several
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sequential half-stations are inserted (i.e., 21⁄2, 31⁄2, 41⁄2, etc.) the multipliers for all stations and half-stations between the first and last half-stations
is 1⁄2, and the multiplier for the two outlying whole stations is3⁄4. It may be more convenient to use the first form of the rule, to avoid divisors
greater than 2, in which case all the individual multipliers are doubled.

1-4.4 Simpson’s Rules.The replacement

Figure 1-6. Simpson’s Three-Ordinate Rule.

h

Y = ax
2 + bx +c

h
x = 0 x = 1 x = 2

y

y0 y1 y2

X

AREA = h__
3

(y0 + 4y1 + y2)

of a complex or small radius curve by a
series of straight lines limits the accuracy of
calculations, unless a large number of ord-
inates are used. Integration rules that re-
place the actual curve with a mathematical
curve of higher order are more accurate.
Simpson’s rules assume that the actual curve
can be replaced by a second-order curve
(parabola). Figures 1-6 through 1-8 demon-
strate the derivations of Simpson’s rules.

1-4.4.1 Simpson’s First Rule.Figure 1-6
shows a curve of the formy = ax2 + bx + c.
It is expressed by three evenly spaced
ordinatesy0, y1 and y2, at x = 0, 1, and 2
(station spacing = 1). The values of the
ordinates are:

The area under the curve is:

y0 = a(0)2 b(0) c = c for x = 1

y1 = a(1)2 b(1) c = a b c for x = 1

y2 = a(2)2 b(2) c = 4a 2b c for x = 2

Now c = y0 andy1 = y0 + a + b, andy2 = y0 + 4a + 2b. Substituting and solving fora andb:

A = ⌡
⌠2

0
(ax2 bx c)dx = ax3

3
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0 = 8
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2
= 3
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Area (A) is expressed as:

For an ordinate spacing ofh rather than unity:
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Figure 1-7. Simpson’s Multipliers for Long Curve.
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3-ordinate rule, commonly calledSimpson’s
rule. The rule calculates correctly the area
under a second order curve and will
approximate the area under any curve that
passes through the same three points. The
accuracy depends on how closely the actual
curve approaches the parabolic form
assumed by the rule. Simpson’s Rule is the
numerical integration rule used most widely
for ship calculations.

The rule can be extended to calculate the area under a long nonparabolic curve such as a ship’s waterline. If the length of the curve is divided
into enough equal parts, as shown in Figure 1-7, it can be reasonably approximated by a series of parabolic segments. For a curve divided into
n equal parts, the area between the first (0) and third (2) ordinates would be given by:

where:

A0 2 = h
3

(y0 + 4y1 + y2)

A0-2 = area under the curve between the first and third ordinates
h = distance between ordinates =L/n
L = length of the curve
n = number of sections between ordinates = number of ordinates - 1

Similarly, the area between the third (2) and fifth (4) ordinates would be:

The area between the fifth (4) and seventh (6) ordinates:

A2 4 = h
3

(y2 + 4y3 + y4)

and so on.

A4 6 = h
3

(y4 + 4y5 + y6)

The total area is the sum of all the two section areas:

This is the general form of Simpson’s rule. Since the rule consists of a summation of areas over two sections of a curve divided into a number

A = A0 2 A2 4 A4 6 ... An 2 n

= h
3

y0 4y1 2y2 4y3 2y4 4y5 2y6 ... yn

of equal sections, the curve must be divided into anevennumber of sections (by anodd number of stations) to apply the rule. Thecommon
multiplier (CM) is 1⁄3; the individual multipliers are 1, 4, 2, 4, 2, 4,..., 2, 4, 1. The derivation of the individual multipliers as a tabular summation
of the 3-ordinate rule multipliers for each two adjacent sections is shown in Figure 1-7.
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In regions where the slope of the curve changes rapidly, the accuracy of the rule can be increased by inserting intermediate (half-spaced) stations.
When half-spaced stations are used, the individual multipliers are modified. For example, a half-station could be inserted at 21⁄2 were there a
rapid change in form between the third and fourth stations of the curve in Figure 1-7. The area between the first and second stations is
calculated as before:

With the insertion of the half-station (21⁄2), the 3-ordinate rule can be applied to the area between the third and fourth ordinates (A2-3), with an

A0 2 = h
3

(y0 + 4y1 + y2)

ordinate spacing ofh/2:

The area between the fourth and sixth stations (A3-4) is now:
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and so on. The total area is:
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Note that unless another half-spaced station is inserted, the number of sections (n) will be even, and the rule unworkable. Intermediate stations
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can be inserted at any equal division of the station spacing (third-stations, quarter-stations, etc.) and multipliers deduced in a similar manner.
Intermediate stations can be inserted anywhere along the length of the curve so long as two rules are followed:

• An even number of intermediate stations must be inserted, so that the total number of segments remains even (total number of
ordinates is odd).

• Intermediate stations must be inserted so there are an even number of segments in each group of consecutive whole or partial
segments (each group of whole or partial segments includes an odd number of ordinates).

Intermediate stations are commonly used

Figure 1-8. Simpson’s Multipliers with Half-Spaced Stations.
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near the ends of waterlines where the hull
form changes rapidly with respect to length.
The individual multipliers can be quickly
determined by tabulating and summing the
appropriate 3-ordinate rule multipliers as
shown in Figure 1-8.

1-4.4.2 Simpson’s Second Rule.Rules
can be deduced, in a similar manner, for
areas bounded by different numbers of even-
ly spaced ordinates, or by unevenly spaced
ordinates. For four evenly spaced ordinates:

This is Simpson’s secondor three-eighths Rule. The general form is:

A = 3h
8

(y0 + 3y1 + 3y2 + y3)

Simpson’s second rule can be used with 4 + 3i ordinates, wherei is a positive integer (i.e., 4, 7, 10, 13, etc.).

A = 3h
8

(y0 + 3y1 + 3y2 + 2y3 + 3y4 + 3y5 + 2y6 +...+ yn)

1-4.5 Applications. The derivations of Simpson’s rules and the trapezoidal rule were demonstrated with area computations to aid
conceptualization, but the rules can integrate any function that can be plotted on Cartesian coordinates. If, for example, the ordinates represent
sectional areas along a ship’s length for a given waterline, the products of the multipliers and ordinates are functions of volume, ƒ(V), and their
summation (integral of the curve) is the volume of displacement. Calculation of areas, moments, centroids, and second moments of areas by
the are described in the following paragraphs.
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1-4.5.1 Moments and Centroids. As

Figure 1-9. Variables for Moment and Second-Moment Calculations.
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shown in Figure 1-9, the moment of an
elemental strip of area about some vertical
axis YY is xydx. To determine the moment
of a larger area about the axis, the integral
M = ∫xy dx must be evaluated. Instead of
multiplying the value ofy at each station
by the appropriate multiplier, the valuexy
is multiplied, wherex is the distance from
the station to the reference axis, anddx is
the width of each strip, or the common
intervalh. The valuey dx= hyn is the area
of the stripan; the first moment of this area
about some reference axisYY is:

The total moment is the sum of the

MYY = xnhyn = xnan

moments of all the strips, that is, the
integral of the incremental moments along
the length:

The integral can be evaluated numerically:

MYY = ⌡
⌠ L

0
xnandx

where:

⌡
⌠xnandx = xnCMf(A) = CM xnf (A)

CM = common multiplier for the appropriate integration rule
ƒ(A) = function of area =mnyn

mn = common multiplier for the appropriate rule and station

If the reference axis is chosen to fall on an ordinate station, then the moment arms have the common interval (h) as a common factor, i.e.,xn

= snh, wherexn is the moment arm andsn is the number of stations from the reference axis to stationn. The factorh can be brought outside
the summation:

MYY = CMh ∑ snƒ(A)

The products of the number of stations from the reference axis and the functions of area,snƒ(A), are the functions of moment ƒ(M):

MYY = CMh ∑ ƒ(M)

The distance from the centroid of the shape to the reference axis (x′) is the moment divided by the area:

x =
MYY

A
= CMh f (M)

CM f (A)
= f (M)

f (A)
h
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The centroid of a symmetrical shape lies on the axis of symmetry, and its location can be defined by summing moments about a single axis
perpendicular to the axis of symmetry. To precisely locate the centroid of an asymmetrical shape, moments must be summed about another,
perpendicular, axis. The calculation can be performed by taking ordinates perpendicular to the first set and integrating with respect toy rather
thanx. Moments about an axisXX can also be determined using y ordinates, but with slightly less accuracy. Referring again to Figure 1-9,
the moment about axisXX of the elemental stripdx is:

wherey is the height of the strip, anda its area. The total moment is the integral of the incremental moments along the length, and the integral

MXX = 
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



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can be evaluated numerically:

The product of they ordinate and the function of area for each segment can be defined as the function of moment aboutx, ƒ(MXX):

MXX = ⌡
⌠ L

0
yn

2
andx =

yn

2
CMf(A)n =

CM yn f (A)n

2

wheremn is the individual multiplier for thenth ordinate. The distance from the centroid of the shape to the axisXX (y’) is the moment divided

f MXX = yf(A) = y 2mn

MXX = CM
2

f MXX

by the area:

y =
MXX

A
=

CM
2

f MXX

CM f (A)
=

f MXX

2 f (A)

Moments can be summed about any axis, although it is simplest to sum them about an axis throughx0 so that the number of stations from the
reference axis is simply the station number. For ship calculations, moments are often summed about the midships section to reduce the size
of the products and sums for manual calculation, and because the centers of flotation, buoyancy, and gravity normally lie near midships. When
moments are summed about a station other than an end station, a sign convention must be adopted so that distances to one side of the reference
axis (and therefore moments and functions of moments) are negative.

1-4.5.2 Second Moments of Area.The second moment of area (moment of inertia,I) of a plane shape about an axisYYparallel to the vertical
ordinates is given by:

IYY= ∫0
L x2y dx

where:

IYY = second moment of area about some axisYY
x = distance from axisYY to elemental vertical strip of heighty and widthdx
L = length of the area whose second moment is desired, measured along an axis perpendicular toYY

An analysis similar to that taken for the calculation of first moments will show that the second moment of the area under a curve is calculated by:

IYY = CMh2 ∑ ƒ(IYY)

where:

CM = common multiplier
h = common interval
ƒ(IYY) = function of second moment about axisYY= sn

2mnyn

sn = number of stations from axisYY to stationn
mn = individual multiplier for stationn
yn = height of the ordinate at stationn
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The second moment of an area (moment of inertia) is always smallest about an axis through its centroid, (theneutral axisin bending stress analysis).
If moment of inertia about some axisYY, parallel to the neutral axis is known, the moment of inertia about the neutral axis(INA) is found by the
parallel axis theorem:

whered is the distance from axisYY to the neutral axis, andA is the total area of the section.

INA = IYY - Ad 2

The second moment of area about an axisXX perpendicular to axisYYcan be calculated by taking ordinates perpendicular to the first set and
integrating twice with respect toy rather thanx. To determine the second moment about a horizontal axis of symmetry, such as the moment
of inertia of a waterplane about its centerline, the integration can also be performed using the original set of ordinates. In Figure 1-9 (Page 1-
20), y is the half-ordinate of an incremental strip of a waterplane measured from the centerline. The second moment of area of the incremental
strip about the centerline is:

where:

ixx = 
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ixx = second moment of area of incremental strip about the centerline
a = area of the incremental strip
i0 = second moment of area of the incremental strip about a horizontal centroidal axis

= (1⁄12)y3dx if strip is assumed to be rectangular
dx = width of the incremental strip

The total second moment of half-waterplane area is:

The second moment of the total area is twice this amount, and this will be the second moment about the centerline, since the waterplane is

IXX, half = ⌡
⌠ L
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symmetrical about the centerline. The integration∫y3dx can be performed numerically:

where:

IXX = 2




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CMh
3

f IXX

CM = common multiplier

Figure 1-10. Determination of Volume by Numerical Integration.
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1-4.5.3 Volumes and Centroids of
Volume. Volumes are calculated by inte-
grating a curve of sectional areas. To cal-
culate the volume of the tank shown in
Figure 1-10, the shape is firstcut at several
stations to form section outlines. The area
of each section is calculated, and the areas
taken as ordinates along the length of the
tank. Integrating the area ordinates by the
trapezoidal rule:

V = ∫a dx = h ∑ƒ(V)

where:

ƒ(V) = function of volume =mnan

mn = individual multiplier for stationn
an = area of section at stationn
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The moment of volume about some axisYY is:

MYY = h2 ∑ ƒ(M)

where:

ƒ(M) = function of moment of volume about axisYY= snmnan

sn = number of stations from axisYY to stationn

The distance of the centroid from axisYY:

d = h 2 f (M)

h f (V)
= f (M)

f (V)
h

These forms are exactly the same as those used to calculate areas and moments and centroids of areas; the only difference is that ordinate values
represent areas rather than linear distances. Integrations can be performed along additional axes to precisely locate the centroid of the shape.

1-4.5.4 General Forms for Area and Moment Calculations. Calculation of areas, moments, centroids, and second moments of area by
Simpson’s first and second rules can be expressed in general forms:

where:

A = (CM)h f (A)

MYY = (CM)h f (M)

MXX = 







CM

2
f MXX

x = (CM)h f (M)

(CM) f (A)
= f (M)

f (A)
h

A = area under a curve between selected stations
MYY = first moment of area about axisYY
MXX = first moment of area about axisXX
x′ = distance from centroid of area to axisYY
y′ = distance from centroid of area to axisXX
IYY = second moment of area about axisYY
IXX = second moment of area about centerline axisXX
CM = common multiplier for the appropriate rule (1, 1/3, 3/8, etc)
h = common interval
ƒ(A) = function of area = mnyn

ƒ(M) = function of moment aboutYY = snmnyn = snƒ(A)
ƒ(MXX) = function of moment aboutXX = mnyn

2 = ynƒ(A)
ƒ(IYY) = function of second moment aboutYY = sn

2mnyn = snƒ(M) = sn
2ƒ(A)

ƒ(IXX) = function of second moment aboutXX = mny
3
n

s = number of stations from axisYY (or integration start point) to stationn
m = individual multiplier for stationn for the appropriate rule
yn = height of the ordinate at stationn (half-ordinate forIXX)

Examples 1-1 and 1-2 demonstrate the use of the trapezoidal rule and Simpson’s rule to calculate waterplane functions for an FFG-7 Class ship.
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EXAMPLE 1-1

CALCULATION OF WATERPLANE PROPERTIES BY TRAPEZOIDAL RULE

Using 11- and 21-ordinate trapezoidal rules, calculate the waterplane area (AWP), location of the center of flotation (LCF), moment of inertia of the waterplane
about the centerline (ICL) and a transverse axis through the LCF (ICF), tons per inch immersion in saltwater (TPI), and waterplane coefficient (CWP) for the 16-foot
waterline of an FFG-7 Class ship. Compare these values with actual data.

Actual Properties:

L = 408 ft
Bmax = 45.6 ft
AWP = 13,860 ft2

LCF = 24.1 ft aft of midships = 228.1 ft from forward perpendicular

ICF = 135,888,480 ft4

ICL = 1,664,145 ft4

TPI = 33 tons/in
CWP = 0.745

Since the waterplane is symmetrical about its centerline, areas and moments can be found by integrating one side of the waterplane along the centerline with
half-ordinates (halfbreadths) measured from the centerline, and doubling the results. Halfbreadths for the 16-foot waterline, in feet, inches, and eighths, are
taken from Figure FO-1. The integrations are best performed in a tabular format. To integrate on 11 ordinates, halfbreadths for stations 0, 2, 4, 6, 8, 10, 12,
14, 16, 18, and 20 are used.

Integration on 11 ordinates: Integration on 21 ordinates:

Station Ordinate, Multiplier ƒ(A) Lever ƒ(M) ƒ(IYY) ƒ(IXX)
y m m × y s s × ƒ(A) s × ƒ(M) m × y3

ft-in-1/8 ft ft2 ft ft3 ft4 ft4

0 0 - 4 - 5 0.39 1⁄ 2 0.19 0 0.0 0.0 0.03

2 6 -10 - 5 6.89 1 6.89 1 6.89 6.89 327.1

4 12-11 - 0 12.92 1 12.92 2 25.84 51.68 2156.7

6 17- 9 - 2 17.77 1 17.77 3 53.31 159.93 5611.3

8 20-11 - 5 20.97 1 20.97 4 83.88 335.52 9221.4

10 22- 7 - 1 22.59 1 22.59 5 112.95 564.75 11527.9

12 22- 8 - 3 22.70 1 22.70 6 136.20 817.20 11697.1

14 21- 8 - 4 21.71 1 21.71 7 151.97 1063.37 10232.4

16 19- 7 - 1 19.59 1 19.59 8 156.72 1253.76 7518.0

18 16- 8 - 6 16.73 1 16.73 9 150.57 1355.13 4682.6

20 12- 7 - 0 12.58 1⁄ 2 6.29 10 62.90 629.00 995.4

168.34 941.23 6237.65 63969.9

h = 408/10 = 40.8 ft
AWP = 2h ∑ƒ(A) = 2(40.8)(168.34) = 13,736.5 ft2

MFP = 2h2 ∑ ƒ(M) = 2(40.8)2(941.23) = 3,133,618 ft3

∑ ƒ(M) 941.23
x′ = ———— h = ———— (40.8) = 228.1 ft from FP = LCF

∑ ƒ(A) 168.34

IFP = 2h3 ∑ ƒ(IYY) = 2(40.8)3(6237.65) = 847,288,842 ft4

ICF = IFP - Ad 2 = 847,288,842-13,736.5(228.1)2 = 132,516,043 ft4

ICL = 2(h /3) ∑ ƒ(IXX) = 2(40.8/3)(63,969.9) = 1,739,981 ft4

TPI = AWP /420 = 13,736.5/420 = 32.7 tons
CWP = AWP / (LB) = 13,736.5/(408 × 45.6) = 0.738

Station Ordinate, Multiplier ƒ(A) Lever ƒ(M) ƒ(IYY) ƒ(IXX)
y m s

ft-in-1/8 ft ft2 ft ft3 ft4 ft4

0 0 - 4 - 5 0.39 1/2 0.19 0 0.0 0.0 0.03
1 3 - 7 - 6 3.65 1 3.65 1 3.65 3.65 48.6
2 6 -10 - 5 6.89 1 6.89 2 13.78 27.56 327.1
3 10- 0 - 2 10.02 1 10.02 3 30.06 90.18 1006.0
4 12-11 - 0 12.92 1 12.92 4 51.68 206.72 2156.7
5 15- 6 - 1 15.51 1 15.51 5 77.55 387.75 3731.1
6 17- 9 - 2 17.77 1 17.77 6 106.62 639.72 5611.3
7 19- 6 - 7 19.57 1 19.57 7 136.99 958.93 7495.0
8 20-11 - 5 20.97 1 20.97 8 167.76 1342.08 9221.4
9 21-11 - 5 21.97 1 21.97 9 197.73 1779.57 10604.5
10 22- 7 - 1 22.59 1 22.59 10 225.90 2259.00 11527.9
11 22- 9 - 4 22.79 1 22.79 11 250.69 2757.59 11836.8
12 22- 8 - 3 22.70 1 22.70 12 272.40 3268.80 11697.1
13 22- 3 - 7 22.32 1 22.32 13 290.16 3772.08 11119.4
14 21- 8 - 4 21.71 1 21.71 14 303.94 4255.16 10232.4
15 20- 9 - 5 20.80 1 20.80 15 312.00 4680.00 8998.9
16 19- 7 - 1 19.59 1 19.59 16 313.44 5015.04 7518.0
17 18- 2 - 1 18.18 1 18.18 17 309.06 5254.02 6008.7
18 16- 8 - 6 16.73 1 16.73 18 301.14 5420.52 4682.6
19 15- 1 - 0 15.01 1 15.01 19 285.19 5418.61 3381.8
20 12- 7 - 0 12.58 1/2 6.29 20 125.80 2516.00 995.4

338.18 3775.54 50052.98 128200.7

h = 408/20 = 20.4 ft
AWP = 2h ∑ƒ(A) = 2(20.4)(338.18) = 13,797.5 ft2

MFP = 2h2 ∑ ƒ(M) = 2(20.4)2(3775.54) = 3,142,457 ft3

∑ ƒ(M) 3775.54
x′ = ———— h = ———— (20.4) = 227.8 ft from FP = LCF

∑ ƒ(A) 338.18

IFP = 2h3 ∑ ƒ(IYY) = 2(20.4)3(50,052.98) = 849,865,964 ft4

ICF = IFP - Ad 2 = 849,865,964 - 13,797.6(227.8)2 = 134,155,856 ft4

ICL = 2(h /3) ∑ ƒ(IXX) = 2(20.4 /3)(128,200.7) = 1,743,529 ft4

TPI = AWP /420 = 13,797.6 /420 = 32.9 tons
CWP = AWP / (LB) = 13,797.6 / (408 × 45.6) = 0.742

Comparison:

Actual 11 Ordinate 21 Ordinate
Value Error, % Value Error, %

AWP, ft2 13,860.0 13,737.8 0.88 13,797.500 0.45
LCF, ft fm FP 228.1 228.1 0.00 227.800 0.13
ICF, ft4 135,888,480 132,502,924 2.49 134,155,856.000 1.28
ICL, ft4 1,664,145 1,739,981 4.56 1,743,529.000 4.77
TPI, tons/in 33 32.7 0.91 32.900 0.30
CWP 0.745 0.738 0.94 0.742 0.40
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EXAMPLE 1-2

CALCULATION OF WATERPLANE PROPERTIES BY SIMPSON’S RULE

Use Simpson’s first rule with 11 ordinates to calculate the waterplane properties that were calculated in Example 1-1. Compare the results with actual data
and the results by trapezoidal rule.

Ship dimensions and actual waterplane properties are the same as for Example 1-1. Halfbreadths for stations 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 from
Figure FO-1 are used to integrate on 11 stations. Integration:

Station Ordinate, Multiplier ƒ(A7) Lever ƒ(M) ƒ(IYY) ƒ(IXX)

y m m × y s s × ƒ(A) s × ƒ(M) m × y3

ft-in-1/8 ft ft2 ft ft ft4 ft4

0 0 - 4 - 5 0.39 1 0.39 0 0.0 0.0 0.06

2 6 -10 - 5 6.89 4 27.56 1 27.56 27.56 1308.3

4 12-11 - 0 12.92 2 25.84 2 51.68 103.36 4313.4

6 17- 9 - 2 17.77 4 71.08 3 213.24 639.72 22445.1

8 20-11 - 5 20.97 2 41.94 4 167.76 671.04 18442.7

10 22- 7 - 1 22.59 4 90.36 5 451.80 2259.00 46111.4

12 22- 8 - 3 22.70 2 45.40 6 272.40 1634.40 23394.2

14 21- 8 - 4 21.71 4 86.84 7 607.88 4255.16 40929.8

16 19- 7 - 1 19.59 2 39.18 8 313.44 2507.52 15036.0

18 16- 8 - 6 16.73 4 66.92 9 602.28 5420.52 18730.4

20 12- 7 - 0 12.58 1 12.58 10 125.80 1258.00 1990.9

508.09 2,833.84 18,776.28 192,702.4

h = 408/10 = 40.8 ft
AWP = 2⁄ 3 h ∑ƒ(A) = 2⁄ 3 (40.8)(508.09) = 13,820.1 ft2

MFP = 2⁄ 3 h2 ∑ƒ(M) = 2⁄ 3 (40.8)2(2833.84) = 3,144,882 ft3

∑ ƒ(M) 2833.84
x′ = ———— h = ———— (40.8) = 227.6 ft from FP = LCF

∑ ƒ(A) 508.09

IFP = 2⁄ 3 h 3 ƒ(IYY) = 2⁄ 3 (40.8)3(18,776.28) = 850,156,311 ft4

ICF = IFP - Ad2 = 850,156,311 - 13,820.1(227.6)2 = 134,508,685 ft4

ICL = 2⁄ 3 (h/3) ∑ ƒ(IXX) = 2⁄ 3 (40.8/3)(192,702.4) = 1,747,168 ft4

TPI = AWP/420 = 13,820.1/420 = 32.9 tons
CWP = AWP/(LB) = 13,820.1/(408 × 45.6) = 0.743

Comparison:

Actual Value 11 Ordinate Simpson’s Rule Trapezoidal Rule Error, %

Value Error, % 11 Ordinate 21 Ordinate

AWP, ft2 13,860 13,820.1 0.29 0.88 0.45

LCF, ft fm FP 228.1 227.6 0.22 0.00 0.13

ICF, ft4 135,888,480 134,508,685 1.02 2.49 1.28

ICL, ft4 1,664,145 1,747,168 4.99 4.56 4.77

TPI, tons/in 33 32.9 0.30 0.91 0.30

CWP 0.745 0.743 0.27 0.92 0.40

The accuracy of an 11-ordinate Simpson’s rule compares favorably with that of a 21-ordinate trapezoidal rule. Simpson’s rule with 21 ordinates
is only marginally more accurate than with 11 ordinates for this waterplane shape. Note that Simpson’s rule calculates the moment of inertia
about the centerline with slightly less accuracy than the trapezoidal rule. The derivation of the form:ICL = (CM)(h/3) ∑ ƒ(IXX) assumes a constant
ordinate over the entire section (see Paragraph 1-4.3.3). The Simpson’s multipliers do not correct for this assumption. The constant-ordinate
assumption is essentially correct for very full ships and barges with extensive parallel midbody, and will yield very accurate values forICL.
Accuracy of ICL calculations for fine-lined ships can be increased only by using very close station spacing or integrating along an axis
perpendicular to the centerline. The ± 5 percent accuracy shown here should be sufficiently accurate for most salvage work.
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1-4.6 Other Simpson’s Rule Forms.Simpson’s rules can be derived for numbers of ordinates for which the first two rules do not apply, and
to determine areas of "left over" segments at the ends of curves.

1-4.6.1 5, 8, Minus One and 3, 10, Minus One Rules.An additional Simpson’s rule, known as the5, 8, minus one rule, is used to determine
the area between two ordinates when three consecutive ordinates are known. For ordinatesy0, y1, andy2, the area between the first and second
ordinates is given by:

The area between the second and third ordinates can be found by applying the rule backwards:

A0-1 = 1

12
h(5y0 + 8y1 - y2)

The validity of the 5, 8, minus one rule can be verified by observing that the sum of the expressions for the two sectional areas is the 3-ordinate

A1-2 = 1

12
h(-y0 + 8y1 + 5y2)

rule:

The 5, 8, minus one rule cannot be used for moments. The first moment of the area between the first and second ordinates (A1-2) about the first

A = A0 1 A1 2 = 1

12
h 5y0 8y1 y2 y0 8y1 5y2

= 1

3
h y0 4y1 y2

ordinate is given by the3, 10, minus one rule:

These two Simpson’s rules are at times convenient, but are less accurate than the first and second rules.

M1 = 1

24
h 2(3y0 + 10y1 - y2)

1-4.6.2 Simpson’s Rules for Any Number of Ordinates.Simpson’s rules can be combined one with another to derive rules for numbers of
ordinates for which the first two rules do not apply. For example, the first rule can be used for 3, 5, 7, 9, ... ordinates, and the second rule for
4, 7, 10, .... ordinates. A rule can be deduced for six ordinates as shown below:

This is not the only rule suitable for six ordinates. By skillful use of the 5, 8, minus one rule, a rule with less awkward multipliers can be

A0 3 = 3

8
h y0 3y1 3y2 y3

A3 5 = 1

3
h y3 4y4 y5

A = A0 3 A3 5 = h







3

8
y0

9

8
y1

9

8
y2

3

8
y3

1

3
y3

4

3
y4

1

3
y5

= 1

24
h 9y0 27y1 27y2 17y3 32y4 8y5

deduced:

Substituting the same values for ordinatesy0 throughy5 in each rule will verify that they are equivalent. Rules deduced in this manner can be

A0 3 = 1

12
h 5y0 8y1 y2

A1 4 = 3

8
h y1 3y2 3y3 y4

A4 5 = 1

12
h y3 8y4 5y5

A = A0 1 A1 4 A4 5

= h







5

12
y0

25

24
y1

25

24
y2

25

24
y3

25

24
y4

5

15
y5

= 25

24
h 0.4y0 y1 y2 y3 y4 0.4y5

used in the general forms described in Paragraph 1-4.4.4.

1-4.7 Other Integration Rules. Simpson’s rules and the trapezoidal rule are satisfactory for most manual calculations. TheNewton-Cotes’,
Tchebycheff’s, andGauss’rules are more accurate, but require more tedious manual calculations. These rules are described in most general naval
architecture texts, such asBasic Ship Theoryby K.J. Rawson and E.C. Tupper, orMuckle’s Naval Architectureby W. Muckle and D.A. Taylor.
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1-4.8 General Notes For Numerical Integration.The numerical integration rules presented have relative advantages and disadvantages. When
time and/or access to high-speed computers permits, the salvage engineer may select the optimum integration rule for a well-defined curve.
For curves where ordinates are tabulated for only certain stations, a rule appropriate to that number and spacing of stations must be adopted.
Some generalizations about the applicability of integration rules are listed below:

• The trapezoidal rule uses constant ordinate spacing and simpler multipliers than the other rules. Any number of ordinates can be
used. The rule can accommodate half-stations at any point, and the multipliers for half-stations are easily derived. For a single
integration (area calculation) of a gentle curve, the trapezoidal rule is nearly as accurate as the Simpson’s rules, but progressively
greater errors are introduced on successive integrations (for moments and moments of inertia).

• Simpson’s rules and the trapezoidal rule include the common interval as part of the common multiplier and can therefore calculate
areas or volumes, moments, centroids, and second moments of area (single, double, and triple integrations) directly.

• Simpson’s rules are the most commonly used integration rules because they are more accurate than the trapezoidal rule, but simpler
to use than the more accurate Newton-Cotes’, Tchebycheff’s, and Gauss’ rules.

• Simpson’s rules exactly integrate first-, second-, and third-order curves. Successive integrations produce progressively higher order
curves: the curve of area under a second-order curve is a third order curve, and the curve of the moment of areas is then a fourth-
order curve. Simpson’s rules will therefore exactly calculate the first moment of a second-order curve, or the second moment of
a first-order curve. Calculating the second moment of a second-order or higher curve involves integrating a fourth-order equation,
so some error is introduced even for a parabolic curve. Additional error may arise for an arbitrary curve. Experience has shown
that Simpson’s rule calculates moments and second moments of relatively smooth, continuous curves—such as those describing
ship forms—accurately if a sufficiently close station spacing is used.

• An even-ordinate Simpson rule is only marginally more accurate than the next lower odd-ordinate rule; odd-ordinate Simpson rules
are therefore preferred, and almost universally used in salvage.

1-4.9 Integration of Discontinuous Curves. The integration rules discussed are applicable to continuous curves. The area under a
discontinuous curve can be obtained by applying appropriate rules to the portions of the curve between discontinuities and summing the areas.
For curves with large numbers of closely spaced discontinuities, it is simpler to divide the curve into segments at the discontinuities, approximate
each segment by a rectangle, triangle, or trapezoid, calculate the area of each segment, and sum the areas to find the total area. The centroid
of each segment can be calculated or estimated. Moments, second moments, and the centroid of the entire area can be calculated by summing
the products of each area and the lever arm from its centroid to a selected axis in a tabular format. Replacing a segment of the curve between
discontinuities (stations) with a horizontal line at a value equal to the average ordinate creates a rectangle with area equal to the area under the
curve between the two stations. If the curve between stations can be reasonably approximated by a straight line, a horizontal line intersecting
the curve midway between stations has ay value equal to the average ordinate. Repeating this process along the length of the curve creates
a stepped curve. If the discontinuities, and subsequent stations, are evenly spaced, the curve can be integrated by a modification of the
trapezoidal rule:

A = ⌡
⌠ydx = h n

1yn

MYY = ⌡
⌠xy dz = h 2 n

1 sn 1/2 yn

IYY = ⌡
⌠x 2y dx = h 3 n

1 sn 1/2 2yn

where:

A = area under a curve between stations 0 andn
MYY = first moment of area about axisYY
IYY = second moment of area about axisYY
h = common interval
sn = number of stations from axisYY (or integration start point) to stationn
yn = height of the mid-ordinate between stationsn andn-1

Weight distribution curves for ships are usually drawn assuming a constant weight distribution between stations as stepped curves. The addition
of the continuous buoyancy curve and stepped weight curve creates a discontinuous load curve. The load curve is usuallysteppedas described
above to facilitate integration along its length to define the shear curve. Alternatively, the buoyancy curve can be stepped before summing with
the weight curve. A stepped 10-segment (11-ordinate) buoyancy curve can be constructed from standard Navy 21-station Bonjean’s Curves by
taking unit buoyancy calculated from section areas for odd station as the average unit buoyancy for segments bounded by even stations—unit
buoyancy for segment 0–2 is based on section area for station 1, that for segment 2–4 on the area for station 3, etc. Example 1-4 includes an
integration of this type.
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1-4.10 Calculation of Hull Properties. Various integrations of a ship’s hull form are used to determine properties such as displacement,
locations of centers, tons per inch immersion, etc., known collectively asfunctions of form, hydrostatic functions, or hydrostatic data. Waterlines,
buttocks, and stations of lines drawings are spaced to support numerical integration, usually by Simpson’s or the trapezoidal rules. Halfbreadths
(offsets) taken along the length of a waterline provide ordinate values to define the waterplane shape; halfbreadths taken at different waterlines
at the same station provide ordinate values to define the station shape. Because ships are symmetrical about the centerline, integrations are
customarily performed for one side of the section or waterplane only, anddoubled to give the total area or moment.

When working from offsets, sectional areas are usually calculated by vertical integration on horizontal ordinates from the centerline. An
integration up to a waterline gives section area corresponding to that waterline. Integrating the curve of areas along the ship’s length gives
volume of displacement; the centroid of the volume is the center of buoyancy.

Waterlines are integrated along the ship’s length to determine area of the waterplane, location of the centroid of the waterplane (center of
flotation), and moment of inertia of the waterplane about the centerline and about a transverse axis through the center of flotation. From these
properties, tons per inch immersion, location of the metacenter, etc., can be calculated. Displacement volume can be calculated by taking
waterplane areas as ordinates and integrating vertically.

Longitudinal position of the center of buoyancy (LCB) is obtained by longitudinal integration of the sectional areas. Height of the center of
buoyancy (KB) can be obtained by vertical integration of waterplane areas, or by calculating a vertical moment of area for each section. The sum
of all the vertical area moments divided by the sum of the sectional areas givesKB. Integrations of this form are included in Example 1-4 and
Appendix F.

1-4.10.1 Functions of Form. Functions of hull form are
Table 1-3. Appendage Allowances.

Ship Type Appendage allowance:
∆APP/∆FL

Single-screw, small combatant with keel sonar dome1 . . . . . . . . . 0.0167
Twin-screw, small combatant with keel sonar dome1 . . . . . . . . . . 0.0200
Single-screw, small combatant with bow sonar dome1 . . . . . . . . . 0.0049
Twin-screw, small combatant with bow sonar dome1 . . . . . . . . . . 0.0060
Twin-screw amphibious warfare ships with well decks1 . . . . . . . . . 0.0106

shell plating only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0057
all other appendages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0049

Twin-screw LST1

without bow thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0024
with tunnel bow thruster (negative appendage) . . . . . . . . . . 0.0014

Single-screw merchant ships and auxiliaries of ordinary form,
less than 5,000 tons full load displacement . . . . . . . . . . . . . . . . . 0.0075

shell plating only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0060
all other appendages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0015

Single-screw merchant ships and auxiliaries of ordinary form,
5,000 to 15,000 tons full load displacement . . . . . . . . . . . . . . . . 0.0050

shell plating only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0040
all other appendages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0010

Single-screw merchant ships and auxiliaries of ordinary form,
greater than 15,000 tons full load displacement . . . . . . . . . . . . . . 0.0025
Twin-screw merchant ships and auxiliaries of ordinary form . . . . . 0.0081

shell plating only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0035
all other appendages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0046

VLCC, ULCC, very large bulk carriers . . . . . . . . . . . . . . . . . . . . . 0.0015

Source: 1Jamestown Marine Services, 1990, unpublished; based on data from 22
hull types entered into ship data files for the NAVSEA POSSE Program

usually calculated for each waterline so they can be plotted
as a function of draft as the ship’sCurves of Form, also
called Hydrostatic Curves, or Displacement and Other
Curves(D & O Curves). Figure FO-2 is a reproduction of
the curves of form for an FFG-7 Class ship. Hydrostatic data
is also recorded in the Functions of Form Diagram (Figure
B-1) for Navy ships and Hydrostatic Tables (Figure B-2) for
commercial vessels. The salvage engineer may be required
to calculate hydrostatic data when curves of form or other
documents are not available or for a casualty in an unusual
condition. Whether functions of form are calculated for a
complete range of drafts or for only a few selected drafts de-
pends on the form of the ship and the nature of information
required by salvors. Manual calculations are best performed
on organized tabular forms called displacement sheets.

1-4.10.2 Appendage Displacement.Volumes and dis-
placements (buoyancies) based on section areas taken from
Bonjean’s Curves do not include appendage volume/ dis-
placement, although sectional areas from some Bonjean’s
Curves include shell plating. If known, appendage dis-
placements can be added to the integrated displacement; ef-
fect onLCB can be determined by moment balance. When
appendage buoyancy is unknown, appendage displacement
can be estimated as a fraction of full load displacement,
called anappendage allowance. Appendage allowances
vary with ship size, type, and configuration. Warships
generally have more and larger appendages than auxiliaries
or commercial vessels. Vessels with high power-to-size
ratios have larger screws and rudders than lower powered
vessels; appendage allowance increases with the number of
screws. Large bow sonar domes on combatants are faired
into the hull, and are included in Bonjean’s Curves and offsets; keel-mounted domes are appendages. For a given ship type and configuration,
appendage allowance generally increases as size decreases. Approximate appendage allowances for different ship types are given in Table 1-3.

Appendage displacement is essentially constant with draft, as most appendages (except shell plating) are low on the hull and will be emerged
only by extremely low drafts. Once determined, appendage displacement can be added to the integrated displacement for any draft that covers
the appendages to determine total displacement. Shell plating displacement can be adjusted for drafts less than full load by assuming that one-
half of the shell plating volume is concentrated in the bottom third of the draft range, and the remaining volume is evenly distributed over the
upper two-thirds of the draft range. It is usually safe to assume thatLCB for the displacement with appendages is virtually the same as that
for the integrated (without appendages) displacement.

1-4.10.3 Station Spacing.In full-bodied ships (low-speed general cargo, large tankers, bulk carriers, etc.) the lengths of the waterlines between
stations in the midbody are nearly straight lines. In many modern full-bodied ships, the waterlines over the midbody are, in fact, straight lines,
forming a parallel midbody. Integration on 10 equal divisions of length (11 stations, 0-10) is sufficiently accurate for most purposes. If the
curvature of the waterlines increases sharply near the ends of the ship, half-spaced stations can be inserted to increase accuracy, for example,
at stations1⁄2, 11⁄2, 81⁄2 and 91⁄2.
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Accuracy can be increased by reducing the station spacing throughout the length of the curve. This increases the number of calculations to be
performed, but avoids determining additional multipliers and may be simpler to program for computer calculation. For ship calculations, offsets
are usually tabulated for either 11 or 21 basic stations (10 or 20 equal divisions), with half-stations as necessary. Offsets for Navy ships are
normally tabulated for 21 basic stations, although additional tables may be prepared for very close station spacing. Offset tables for 2-foot station
spacing are available for the FFG-7, for example. Even when 21-station offset tables or Bonjean’s Curves are available, integration on 11
stations is sufficiently accurate for most hull volume calculations on any smooth hull form, including fine-lined warships.

1-4.10.4 Full Sections. In full, relatively

Figure 1-11. Calculating Sectional Area Below the Lowest Waterline.
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K

flat-bottomed sections, special care must be
taken in calculating the area from the base
to the lowest waterline to avoid error.
Figure 1-11 shows a section near midships
where the turn of the bilge fairs into a
straight line (the rise of floor line) at point
A. If the entire area belowCD is
calculated using horizontal ordinates from
the centerline, very close ordinate spacing
must be used to avoid error because of the
rapid change of form in the shell line. The
area belowCD can be calculated accurately
using vertical ordinates fromCD, with half-
spaced ordinates inserted near the outboard
end, or by dividing the area into two
segments, as shown. The areaKABC is a
trapezoid whose area can be calculated
accurately when the position ofA and rise
of floor can be determined. The areaADB
can be obtained by using Simpson’s rule,
either with horizontal ordinates measured
from AB, or with vertical ordinates
measured fromBD.

1-4.10.5 Lowest Waterlines.When displacement volume is calculated by vertical integration of waterplane areas, the volume under the lowest
one or two waterlines is calculated separately. Since the form of the ship changes so rapidly near the keel, the volume under the lowest one
or two waterlines is calculated by integrating sectional areas along the ship’s length. This volume is added to the volume determined by
integrating waterplane areas from the lower waterlines upward to obtain the total volume of displacement.

1-4.10.6 Ends of Full Hull Forms. On

Figure 1-12. Inherent Integration Error in Full Waterlines.
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very full hulls, such as spoon-bowed
barges, large tankers (VLCC, ULCC), and
bulk carriers, the parallel midbody extends
nearly to the ends of the ship, where it
joins to a short forebody or afterbody with
steep or sharply curving lines. The aft ends
of the lower waterlines of many fine-lined
ships also curve sharply. If the ordinate
adjacent to the end ordinate is some
distance away from the end of the parallel
midbody, the curve from this ordinate to
the end ordinate (which is 0 or very small)
assumed by Simpson’s rules or the
trapezoidal rule will fall well inside the
actual waterline as shown in Figure 1-12.
This will cause a serious underestimation of
area for the end sections that will lead to even greater errors in calculations of moments and second moments about axes near midships because
of the long lever arms. Intermediate stations should be inserted so that there are ordinates near the ends of the parallel midbody and at least
one or two ordinates in the forebody and afterbody. Alternatively, waterplane areas for the midbody, forebody, and afterbody can be calculated
separately and summed. The midbody area can be treated as a rectangle or integrated by a 3-ordinate Simpson or trapezoidal rule; the midbody
and forebody areas can be calculated by any convenient rule with appropriate ordinates.

1-4.10.7 Tank and Compartment Volumes.A compartment’s molded volume is greater than its floodable volume (the volume of liquid that
can be contained), because of the volume occupied by fittings and structure. Floodable volumes of filled holds, machinery spaces, living spaces,
etc., are estimated from molded volumes by use of permeability factors, as explained in Paragraph 1-9.1.1. Framing, sounding tubes, sea chests
and similar structures in ordinaryskin tanks typically occupy about 21⁄4 to 21⁄2 percent of the molded volume in double-bottom tanks, about 1
percent in cargo tanks (i.e., permeability ofempty tanks is 971⁄2 to 973⁄4 percent, and 99 percent, respectively). Heating coils, if fitted, usually
occupy an additional1⁄4 percent of the molded volume. Flush tanks lie entirely within the ship’s framing and are externally stiffened, so flood-
able volume, or capacity, is essentially equal to molded volume. To calculate volumes and centroids of flush tanks, offsets are taken to the inner
surface of the tank, rather than the hull molded surface. Bale capacity of holds is calculated from offsets taken from sections showing the line
of cargo battens, line of the bottoms of deck beams, and the top of the hold ceiling (above the inner bottom) including any gratings, with deduc-
tions for stanchions and other obstructions. Grain capacity is the molded volume, less the volume of structure, hold ceiling, and shifting boards.
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