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1-4 APPROXIMATE INTEGRATION TECHNIQUES AND APPLICATIONS

The salvage engineer may be required to calculate hydrostatic data for a casualty when curves of form or other documents are not available;
for a casualty in an unusual condition, such as a ship floated upside down or on its side; or for portions of a ship that has been cut into sections.
A ship’s form consists of a number of intersecting surfaces, usually of nonmathematical form. Areas and volumes enclosed by these surfaces,
as well as moments of areas and volumes, and second moments of area, must be determined to calculate hull hydrostatic characteristics.

For a curve plotted on axy coordinate system, the area under the curve and moments, second moments (moments of inertia), and location of
the centroid can be expressed as simple integrals. Since hull forms are seldom definable by mathematical equations, areas, moments, and
volumes are calculated by manual integration methods rather than by direct integration. Manual integration methods are also used to evaluate
any parameter that can be expressed as a curve of a function of some variable. For example, the total force, location of the center of effort,
and force moment of an unevenly distributed force (such as current forces) can be determined from a curve showing the force distribution.
Graphical and numerical manual integration methods are described in the following paragraphs.

1-4.1 Graphical Integration. An obvious way to calculate the area under a curve (or within a shape) is to plot the curve to scale on graph
paper and count the squares under the curve. This method can be extended to calculate the first momeM,of acgalx by multiplying

the height (number of squarep, in each column by its distance from the origx),(and summing all such products. In the same way, the
second moment is calculated by multiplying the height of each colunmxt.byBy adopting sign conventions and adjusting the location of the

origin, moments can be calculated about any desired axis. Graphical integration of large, complex areas is very tedious, but can be very accurate
for even the most complex or discontinuous curves.

1-4.2 Numerical Integration. Numerical integration methods, aules, are based on the same premise as graphical integration; that the area
under a curve can be closely approximated by breaking the area up into smaller shapes whose areas can be calculated or estimated easily, anc
summing the areas of these shapes. Most rules depend upon the substitution of a simple mathematical form for the actual curve to be integrated.
The accuracy of the result depends upon the accuracy of the fit between the real and assumed curves.

1-4.3 Trapezoidal Rule. The trapezoidal
rule substitutes a series of straight lines fo 1
a complex curve to allow integration of the y
curve in a simple tabular format. N
Conceptually, the trapezoidal rule is the el Nezea— | I~
simplest of the numerical integration rules. y v y Vo1 |vn
1 TR B -
A curvilinear shape can be approximated by Yo X
a series ofn trapezoids bounded by + 1 - —h—
equally spaced ordinateg,, Vi, Y Yar - NN B pay /\
Yo (@t stationsx,, X;, X, X .. %) @S Da— RN
shown in Figure 1-5. If the station spacing XQ X1 XD XZen Xp1  Xp
is h, the aread, ) of the first trapezoid is:
Yot
&, = 0 5 ' h Figure 1-5. Curvilinear Figure Approximated by Series of Trapezoids.

The total area of the shapg)(is approximately equal to the sum of the areas of the trapezoids:
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This expression is called theapezoidal rule and can be used to calculate areas of any shape bounded by a continuous curve, simply by dividing
the shape into a number of equal sections and substituting the ordinate values and the station spamimgoarintervalinto the rule. The
common multiplierffor the trapezoidal rule is the common intervh).( If the common interval and common multipli€€§) are separated into

two factors, the common multiplier for the trapezoidal rule is 1.

The factors by which each ordinate is multipliéd, (1, 1, 1, ...¥2) are theindividual multipliers(m). The products of the individual multipliers
and ordinates are callddnctions of areaf(A). The area under the curve is thus expressed as:

A= Jy dx = hXf(A)
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Because the trapezoidal rule substitutes a series of straight lines for the curve to be integrated, it is best suited for use with smooth, long-ra
curves such as the waterlines of a ship. The rule underestimates the area under convex curves, and overestimates the area under concave
Accuracy increases as station spacing is decreased. If greater accuracy is required in regions of considerable curvature, e.g. at the ends «
ship, stations are taken at half-divisions. When half-spaced stations are used, the individual multipliers for the half-stations and adjacent stati
must be adjusted. If, for example, a half-station is inserted between ordinates 1 and 2:

_ % Vip L YiVish Vit h % Vs Vauy

A — — "h
2 2 2 2 2 2 2

h
= §(y0+1.5y1+y1_5+1.5y2+2y3+...+yn)

_pnar o 3.1 3 1
=h %’Eyo +Zy1 +7y1.5+zy2 Yyt +73/n

o

The individual multiplier for the half-station i%2, and ¥4 for the station on either side of it. A similar analysis will show that if several
sequential half-stations are inserted (i.&2, 32, 472, etc.) the multipliers for all stations and half-stations between the first and last half-stations
is ¥2, and the multiplier for the two outlying whole stations¥is It may be more convenient to use the first form of the rule, to avoid divisors
greater than 2, in which case all the individual multipliers are doubled.

1-4.4 Simpson’s Rules.The replacement
of a complex or small radius curve by a t
series of straight lines limits the accuracy of y
calculations, unless a large number of ord
inates are used. Integration rules that re
place the actual curve with a mathematica
curve of higher order are more accurate
Simpson’s rules assume that the actual cury
can be replaced by a second-order cury
(parabola). Figures 1-6 through 1-8 demon
strate the derivations of Simpson’s rules.

D o

X —

1-4.4.1 Simpson’s First Rule. Figure 1-6
shows a curve of the form= axX’ + bx + c. AREA =% (Vo +4y1+Yo)
It is expressed by three evenly space
ordinatesy,, y; andy,, atx = 0, 1, and 2 Figure 1-6. Simpson’s Three-Ordinate Rule.
(station spacing = 1). The values of the
ordinates are:

y, = a0y +b(0) +c = ¢ for x =1
y, = a(ly +b(1)+c = a+b~+c for x =1
y, = a2f +b(2 +c = 4a+2b+c forx=2
The area under the curve is:
3 2
A = r(ax2+bx+c)dx = a_x+b_x+cx|§=Ea+2b+Zc
o 3 2 3
Now c =y, andy, =y, + a+ b, andy, =y, + 4a + 2b. Substituting and solving foa andb:
Y, -2y, = Yy, +2b+4a -2y, -2b-2a = -y, +2a
0 a = (Y, =2y, +Y)
2
v, -2y, +Y, 3 Y.
b=y -y -a= yl—yo—zflo) = —§y0—72+2y1
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Area (A) is expressed as:

8 8%/ -2y, Yy E E 3 Y. E
A= Za+2b+2c = 22t g+ 2Fp1y, - 2 - 2y,0+ 2y,
3 30 2 0 02 2 0
4 8 4 1 4 1
= 2y0 - 3y0 - yz + 4y1 + §y2 - §y1 * §y0 = §y0 * §y1 * §y2

(Yo = 4Y; + Y

w|

For an ordinate spacing d&f rather than unity:

h
A = §(yo + 4y1 * yz)

This relationship isSimpson’s first rulgor —

3-ordinate rule commonly calledsimpson’s

rule. The rule calculates correctly the areg

under a second order curve and will 6 5 4 3 2 1 0 STATION
approximate the area under any curve that

passes through the same three points. The ! 4 1 4 ! 4 1 3 ORDINIES
accuracy depends on how closely the actual 1 4 2 4 2 4 1 SIMPSON'S
curve approaches the parabolic form MULTIPLIERS
assumed by the rule. Simpson’s Rule is th¢

numerical integration rule used most widely| Figure 1-7. Simpson’s Multipliers for Long Curve.

for ship calculations.

The rule can be extended to calculate the area under a long nonparabolic curve such as a ship’s waterline. If the length of the curve is divided
into enough equal parts, as shown in Figure 1-7, it can be reasonably approximated by a series of parabolic segments. For a curve divided into
n equal parts, the area between the first (0) and third (2) ordinates would be given by:

h
%4?§%+%+m

where:
A,, = area under the curve between the first and third ordinates
h = distance between ordinatesLin
L = length of the curve
n = number of sections between ordinates = number of ordinates - 1

Similarly, the area between the third (2) and fifth (4) ordinates would be:
h
A= 3 v, + 4y, *+ )

The area between the fifth (4) and seventh (6) ordinates:

Ag g ¥, + 45 + )
and so on.
The total area is the sum of all the two section areas:
A=A LA A A,

h
= §(y0+4y1+2y2+4y3+2y4+4y5+2y6+"'+yn)

This is the general form of Simpson’s rule. Since the rule consists of a summation of areas over two sections of a curve divided into a number
of equal sections, the curve must be divided intoesannumber of sections (by aodd number of stations) to apply the rule. Themmon

multiplier (CM) is ¥5; the individual multipliers are 1, 4, 2, 4, 2, 4,..., 2, 4, 1. The derivation of the individual multipliers as a tabular summation

of the 3-ordinate rule multipliers for each two adjacent sections is shown in Figure 1-7.
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In regions where the slope of the curve changes rapidly, the accuracy of the rule can be increased by inserting intermediate (half-spaced) stat
When half-spaced stations are used, the individual multipliers are modified. For example, a half-station could be insértedrattBere a

rapid change in form between the third and fourth stations of the curve in Figure 1-7. The area between the first and second stations
calculated as before:

h
AO*Z = § (yo + 4y1 + yz)

With the insertion of the half-station ¥2), the 3-ordinate rule can be applied to the area between the third and fourth ord®a)esvith an
ordinate spacing off/2:

5 B uB
A273 = ?(y2+4y2.5+y3> = §E§2+2y2,5+?3%

The area between the fourth and sixth statiohg,)(is now:

h
Asa= 3 Vs + 4, + Yo

and so on. The total area is:

>
I

Ao Pos Ags™ Ay,

o

h{ y 2y
= §[Dy0+4y1+y2+7z +2y2v5+y+73+y3+4y4+y5+___+yn

h[J 1 1 0
S ) AR VAR B VAR, VAR B VAR VR, VIS YA
30 2 2 0

Note that unless another half-spaced station is inserted, the number of sec}tinsisl{e even, and the rule unworkable. Intermediate stations
can be inserted at any equal division of the station spacing (third-stations, quarter-stations, etc.) and multipliers deduced in a similar mani
Intermediate stations can be inserted anywhere along the length of the curve so long as two rules are followed:

An even number of intermediate stations must be inserted, so that the total number of segments remains even (total number
ordinates is odd).

Intermediate stations must be inserted so there are an even number of segments in each group of consecutive whole or pal
segments (each group of whole or partial segments includes an odd number of ordinates).

Intermediate stations are commonly used
near the ends of waterlines where the hul
form changes rapidly with respect to length
The individual multipliers can be quickly

determined by tabulating and summing the

T | |

appropriate 3-ordinate rule multipliers as 6 512 5 4 8 212 2 ! O STATION

shown in Figure 1-8. 1 4 1 1 4 1 3-ORDINATE
Y2 2 12 2 2 12 MULTIPLIER

1-4.4.2 Simpson’s Second Rule.Rules e 4 vz 2 112 4 b MESONS,

can be deduced, in a similar manner, fo
areas bounded by different numbers of ever
ly spaced ordinates, or by unevenly spacef

Figure 1-8. Simpson’s Multipliers with Half-Spaced Stations.

ordinates. For four evenly spaced ordinates:

3h
A:?(yo+3y1+3y2+y3)

This is Simpson’s secondr three-eighths Rule The general form is:

A:%‘(yo+3y1+3y2+2y3+3y4+3y5+2y6+...+yn)

Simpson’s second rule can be usedhmt+ 3 ordinates, wheré is a positive integer (i.e., 4, 7, 10, 13, etc.).

1-4.5 Applications.

The derivations of Simpson’s rules and the trapezoidal rule were demonstrated with area computations to ai

conceptualization, but the rules can integrate any function that can be plotted on Cartesian coordinates. If, for example, the ordinates repre
sectional areas along a ship’s length for a given waterline, the products of the multipliers and ordinates are functions of W§luane, their
summation (integral of the curve) is the volume of displacement. Calculation of areas, moments, centroids, and second moments of area:
the are described in the following paragraphs.
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1-4.5.1 Moments and Centroids. As

shown in Figure 1-9, the moment of an vy AREA a = ydx

elemental strip of area about some vertical |

axisYYis xydx To determine the moment |
of a larger area about the axis, the integrd|

M = [xy dxmust be evaluated. Instead of 12yn
multiplying the value ofy at each station
by the appropriate multiplier, the value

XX { _»‘ " ‘*

is multiplied, wherex is the distance from FOR SHADED STRIP: a=ydx

the station to the reference axis, adxlis = ay? _y3dx

the width of each strip, or the common 1212

intervalh. The valuey dx= hy, is the area Myy =xa=x(ydx)

of the stripa,; the first moment of this area lyy =x%a= x2(ydx)

about some reference axieris: e = y;aﬂ - y;(ydx) . yic;x

MVV = thyﬂ = Xﬂaﬂ

Figure 1-9. Variables for Moment and Second-Moment Calculations.

The total moment is the sum of the
moments of all the strips, that is, the
integral of the incremental moments along
the length:

The integral can be evaluated numerically:

anandx = ¥x CMf(A) = CMXx f(A)

where:
CM = common multiplier for the appropriate integration rule
f(A) = function of area =my,
m, = common multiplier for the appropriate rule and station

If the reference axis is chosen to fall on an ordinate station, then the moment arms have the common liptasvaldommon factor, i.ex,
= s,h, wherex, is the moment arm ang, is the number of stations from the reference axis to statioThe factorh can be brought outside
the summation:

Myy= CMh 3 s.f(A)
The products of the number of stations from the reference axis and the functions of,AfA#,are the functions of moment Wj:
Myy = CMh 3 f(M)
The distance from the centroid of the shape to the reference »xis the moment divided by the area:
/ My _ CMhEf(M) _ Zf(M)

T R CMXf(A) YE(A)
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The centroid of a symmetrical shape lies on the axis of symmetry, and its location can be defined by summing moments about a single 3
perpendicular to the axis of symmetry. To precisely locate the centroid of an asymmetrical shape, moments must be summed about anot
perpendicular, axis. The calculation can be performed by taking ordinates perpendicular to the first set and integrating with yaspleet to
thanx. Moments about an axi¥X can also be determined using y ordinates, but with slightly less accuracy. Referring again to Figure 1-9,
the moment about axiXX of the elemental striplx is:

Oy O O 20
My = BL0R = Biiydx= 24 fx
020 020 020

wherey is the height of the strip, anaits area. The total moment is the integral of the incremental moments along the length, and the integral
can be evaluated numerically:

Xy, CMXy, f(A),

2

L
_ Jo Yo _
M, = > a dx =

CMf(A), =
The product of they ordinate and the function of area for each segment can be defined as the function of momemt Atdu:
f(My,) = yf(A) = y*m,
CM
MXX = T Z f(MXX)

wherem, is the individual multiplier for thenth ordinate. The distance from the centroid of the shape to theXa{s’) is the moment divided
by the area:

cM
~¥fM

y/ - MXX - 2 ( XX) - Zf(MXX)

A CMX{(A) 251 (A)

Moments can be summed about any axis, although it is simplest to sum them about an axis thsautitat the number of stations from the
reference axis is simply the station number. For ship calculations, moments are often summed about the midships section to reduce the
of the products and sums for manual calculation, and because the centers of flotation, buoyancy, and gravity normally lie near midships. Wi
moments are summed about a station other than an end station, a sign convention must be adopted so that distances to one side of the refe
axis (and therefore moments and functions of moments) are negative.

1-4.5.2 Second Moments of AreaThe second moment of area (moment of ineffiaf a plane shape about an axi¥ parallel to the vertical
ordinates is given by:

lyy=J5 Xy dx

where:
I,y = second moment of area about some a¥s
x = distance from axi¥'Yto elemental vertical strip of heiglytand widthdx
L = length of the area whose second moment is desired, measured along an axis perpend¢dlar to

An analysis similar to that taken for the calculation of first moments will show that the second moment of the area under a curve is calculated |

lyy= CMI?* 3 f(l,y)

where:
CM = common multiplier
h = common interval
f(l,y = function of second moment about aX¥ = s’my,
S, = number of stations from axigYto stationn
m, = individual multiplier for statiomn
A = height of the ordinate at statian
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The second moment of an area (moment of inertia) is always smallest about an axis through its centneidiréthexisin bending stress analysis).
If moment of inertia about some axiy, parallel to the neutral axis is known, the moment of inertia about the neutrafl gjiss found by the
parallel axis theorem:

s = lyy - Ad?

NA

whered is the distance from axi¥Y to the neutral axis, and is the total area of the section.

The second moment of area about an akisperpendicular to axi¥'Y can be calculated by taking ordinates perpendicular to the first set and
integrating twice with respect tp rather tharx. To determine the second moment about a horizontal axis of symmetry, such as the moment

of inertia of a waterplane about its centerline, the integration can also be performed using the original set of ordinates. In Figure 1-9 (Page 1-
20),y is the half-ordinate of an incremental strip of a waterplane measured from the centerline. The second moment of area of the incremental
strip about the centerline is:

i, = EXE’a +i, = ydeXEf + Ei%ﬂdx = m%y3dx
20 °o 02 O
where:
i,, = second moment of area of incremental strip about the centerline
a = area of the incremental strip
i, = second moment of area of the incremental strip about a horizontal centroidal axis
= (Yw)y*dx if strip is assumed to be rectangular
dx = width of the incremental strip

The total second moment of half-waterplane area is:
_ (v _ Mg
lix, har = L %Eyadx = %E JO y®dx

The second moment of the total area is twice this amount, and this will be the second moment about the centerline, since the waterplane is
symmetrical about the centerline. The integratfgiix can be performed numerically:

OJCMhQO
I><>< = ZD—DZf(lxx)
ad O
where:
CM = common multiplier
h = common interval
f(k) = function of second
moment about axiXX = | v
My 0 0 0
m, = individual multiplier for
stationn 1
A = height of the half-ordinate | »2
at stationn s
1-45.3 Volumes and Centroids of 4

Y4=0

Volume. Volumes are calculated by inte- X3
grating a curve of sectional areas. To cal ORDINATES 1 X2
culate the volume of the tank shown in INTESE,@TRIgQ
Figure 1-10, the shape is firstit at several /
stations to form section outlines. The area
of each section is calculated, and the areds Fgg%'ﬂﬁﬁ
taken as ordinates along the length of the INTEGRATION
tank. Integrating the area ordinates by the (AREAS) ag ag ap ag
trapezoidal rule:
V=Jadx=h3f(V) Figure 1-10. Determination of Volume by Numerical Integration.

where:

fv) = function of volume =ma,

m, = individual multiplier for statiom

a, = area of section at statiam
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The moment of volume about some aX¥'is:

Myy=H 3 f(M)

where:
f(M) = function of moment of volume about ax¥Y = sm.a,
S, = number of stations from axigYto stationn

The distance of the centroid from axysr:
- h2X¥f(M) - Y (M) h
hXf(V) )

These forms are exactly the same as those used to calculate areas and moments and centroids of areas; the only difference is that ordinate
represent areas rather than linear distances. Integrations can be performed along additional axes to precisely locate the centroid of the sh

1-4.5.4 General Forms for Area and Moment Calculations. Calculation of areas, moments, centroids, and second moments of area by
Simpson'’s first and second rules can be expressed in general forms:

A = (CM)hXf(A)
M,, = (CM)hZf(M)
MXX = EC_M§:f (MXX)

02 0

o = CWhTivM) _ Tivm)
CWXf(A) iR

where:
A = area under a curve between selected stations
Myy = first moment of area about axiY
Myx = first moment of area about axk¥X
X = distance from centroid of area to ay&
y = distance from centroid of area to aXx
lyy = second moment of area about aXi¥
lyx = second moment of area about centerline &s
CM = common multiplier for the appropriate rule (1, 1/3, 3/8, etc)
h = common interval
f(A) = function of area = my,
f(M) = function of moment about'Y = smy, = sf(A
f(My) = function of moment abouXX = my,’ = v.f(A
fly) = function of second moment abodlY = s2my, = sfM) = s A
fl = function of second moment abodiX = my?
S = number of stations from axigY (or integration start point) to statiom
m = individual multiplier for stationn for the appropriate rule
A = height of the ordinate at station(half-ordinate forly,)

Examples 1-1 and 1-2 demonstrate the use of the trapezoidal rule and Simpson’s rule to calculate waterplane functions for an FFG-7 Class ¢
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EXAMPLE 1-1

CALCULATION OF WATERPLANE PROPERTIES BY TRAPEZOIDAL RULE

Using 11- and 21-ordinate trapezoidal rules, calculate the waterplane area (A,,), location of the center of flotation (LCF), moment of inertia of the waterplane
about the centerline (/) and a transverse axis through the LCF (/), tons per inch immersion in saltwater (TP/), and waterplane coefficient (C,,) for the 16-foot
waterline of an FFG-7 Class ship. Compare these values with actual data.

Actual Properties:

L = 408 ft Ier = 135,888,480 ft*
B, = 45.6 ft Iy = 1,664,145 ft*
Aue = 13,860 ft? TPl = 33 tons/in
LCF = 24.1 ft aft of midships = 228.1 ft from forward perpendicular Cypr = 0.745

Since the waterplane is symmetrical about its centerline, areas and moments can be found by integrating one side of the waterplane along the centerline with
half-ordinates (halfbreadths) measured from the centerline, and doubling the results. Halfbreadths for the 16-foot waterline, in feet, inches, and eighths, are
taken from Figure FO-1. The integrations are best performed in a tabular format. To integrate on 11 ordinates, halfbreadths for stations 0, 2, 4, 6, 8, 10, 12,
14, 16, 18, and 20 are used.

Integration on 11 ordinates: Integration on 21 ordinates:
Station Ordinate, Multiplier — f(A)  Lever f(M) f(lyy) flld Station Ordinate, Multiplier ~ f(A)  Lever  f(M) flyy) f(ly)
y m mxy s  Sxf(A) sxfM) mx y m s
ft-in-1/8 ft i’ ft ft ftt ftt ft-in-1/8  ft ft ft ft i ft'
0 0-4-5 039 Y 0.19 0 0.0 0.0 0.03 0 0-4-5 039 12 019 0 0.0 0.0 0.03
1 3-7-6 365 1 3.65 1 3.65 3.65 48.6
10- 2 6-10-5 6.89 1 6.89 2 1378 2156 3271
2 610-5 689 ! 6.89 ! 689 689 8211 3 10-0-2 1002 1 1002 3 3006 9018  1006.0
4 1211-0 1292 1 1292 2 2584 5168  2156.7 4 1211-0 1292 1 1292 4 5168 20672 2156.7
5 15-6-1 1551 1 1551 5 7755 38775 373L1
6 17-9-2 1777 1 1777 3 5331 15993 56113 6 17-9-2 17.77 1 1777 6 10662 639.72 56113
7 19-6-7 1957 1 1957 7 13699 95893 74950
8 2011-5 2097 1 2097 4 83.88 33552 92214 8  20-11-5 2097 1 2097 8 16776 134208 92214
9  2111-5 2197 1 2197 9 19773 177957 10604.5
10 22-7-1 2259 1 2259 5 11295 56475 115279 10 2-7-1 2259 1 2259 10 22590 2259.00 115279
11 22-9-4 2279 1 2279 11 25069 275759 11836.8
12 28-3 2270 12270 6 13620 81720 116971 12 2-8-3 2270 1 2270 12 27240 326880 116971
8- 13 22-3-7 2232 1 2232 13 29016 377208 11119.4
W84 2an ! 2177 15197 106337 102324 14 21-8-4 2171 1 2171 14 30394 425516 102324
16 19-7-1 1959 1 1959 8 15672 125376 7518.0 15 20-9-5 20.80 1 2080 15 31200 4680.00 8998.9
16 19-7-1 1959 1 1959 16 31344 501504 7518.0
18 16-8-6 1673 1 1673 9 15057 135513  4682.6 17 18-2-1 1818 1 1818 17  309.06 5254.02 6008.7
L 18 16-8-6 16.73 1 1673 18 30114 542052 4682.6
20 12-7-0 1258 72 629 10 6290 62900 9954 19 151-0 1501 1 1501 19 28519 541861 33818
20 12-7-0 1258 12 629 20 12580 251600 9954
168.34 94123 6237.65 63969.9 338.18 377554 50052.98 128200.7
h = 408/20 =204 1t
h = 408/10 = 4081t _ _ _ 2
Ap = 20 3f(A) = 2(40.8)(168.34) =13,7365 ft :;,W” - 2222{ (f/gw) ;;ggj;ﬁfgfgg " - ;31'471274:7“]‘13
M = 2R3 f(M) = 2(40.8)%(941.23) =3,133,618 ft* F ’ ’ o
Y f(M) 3775.54
S f(M) 941.23 _ _ _ B
v - b= @03) < 2981 1t from FP = LCF X = _— h = o (20.4) = 227.8 ftfrom FP= LCF
S f(A) 168.34 :
- 3 - 3 - 4
b W) = 209 R k" - e GG - 14155886
e = - Ad? = 847,288,842-13,736.5(228.1)° = 132,516,043 ft‘ o > e Ve R
= - - 4
L = 2W3)T fy) = 2(4083)639699) - 1730981 It = 2(h13) 3 f(l) :2(20.4/3)(128,200.7) - 1,743,529 ft
i i i TPl = A,l420 = 13,797.6/420 = 329tons
TPl = A,420 = 13,736.5/420 = 32.7 tons Cp = AILE) - 13.797.6/(408 x 45.6) - 0742
Cwp = Aul(LB) = 13,736.5/(408 x 45.6) =0.738 e e e : '
Comparison:
Actual 11 Ordinate 21 Ordinate
Value Error, % Value Error, %
Ayer T 13,860.0 13,737.8 0.88 13,797.500 0.45
LCF, ft fm FP 228.1 228.1 0.00 227.800 0.13
Ieg ft 135,888,480 132,502,924 2.49 134,155,856.000 1.28
Iy, ft 1,664,145 1,739,981 456 1,743,529.000 4.77
TPI, tons/in 33 32.7 0.91 32.900 0.30
Cup 0.745 0.738 0.94 0.742 0.40
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EXAMPLE 1-2

CALCULATION OF WATERPLANE PROPERTIES BY SIMPSON’S RULE

Use Simpson'’s first rule with 11 ordinates to calculate the waterplane properties that were calculated in Example 1-1. Compare the results with actual data
and the results by trapezoidal rule.

Ship dimensions and actual waterplane properties are the same as for Example 1-1. Halfbreadths for stations 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 from
Figure FO-1 are used to integrate on 11 stations. Integration:

Station Ordinate, Multiplier f(A7) Lever f(m) flyy) f(l)
y m mxy s s x f(A) s x f(M) m xy?
ft-in-1/8 ft ft? ft ft ft* ft*
0 0-4-5 0.39 1 0.39 0 0.0 0.0 0.06
2 6-10-5 6.89 4 27.56 1 27.56 27.56 1308.3
4 12-11 -0 12.92 2 25.84 2 51.68 103.36 4313.4
6 17-9-2 17.77 4 71.08 3 213.24 639.72 224451
8 20-11-5 20.97 2 41.94 4 167.76 671.04 18442.7
10 22-7-1 22.59 4 90.36 5 451.80 2259.00 46111.4
12 22-8-3 22.70 2 45.40 6 272.40 1634.40 23394.2
14 21-8-4 21.71 4 86.84 7 607.88 4255.16 40929.8
16 19-7-1 19.59 2 39.18 8 313.44 2507.52 15036.0
18 16-8-6 16.73 4 66.92 9 602.28 5420.52 18730.4
20 12-7-0 12.58 1 12.58 10 125.80 1258.00 1990.9
508.09 2,833.84 18,776.28 192,702.4
h = 408/10 = 40.8 ft
Ay = 73 h Sf(A) = %3 (40.8)(508.09) = 13,820.1 ft?
Mep = Y3 P S f(M) = %3 (40.8)%(2833.84) = 3,144,882 ft®
S f(M) 2833.84
X = —nh = —— (40.8) = 227.6 ft from FP = LCF
S (A 508.09
Iep = Y3 h® f(l,y) = %3 (40.8)°(18,776.28) = 850,156,311 ft*
Ier = lep - = 850,156,311 - 13,820.1(227.6)° = 134,508,685 ft*
Io = 73 (h3) Y f(ly) = 3 (40.8/3)(192,702.4) = 1,747,168 ft*
TPI = Ay/420 = 13,820.1/420 = 32.9 tons
Cyp = Aydl(LB) = 13,820.1/(408 x 45.6) = 0.743
Comparison:
Actual Value 11 Ordinate Simpson’s Rule Trapezoidal Rule Error, %
Value Error, % 11 Ordinate 21 Ordinate
Ayer T 13,860 13,820.1 0.29 0.88 0.45
LCF, ft fm FP 228.1 227.6 0.22 0.00 0.13
Igp Tt 135,888,480 134,508,685 1.02 2.49 1.28
Iy, ft* 1,664,145 1,747,168 4.99 4.56 4.77
TPI, tons/in 33 32.9 0.30 0.91 0.30
Cup 0.745 0.743 0.27 0.92 0.40

The accuracy of an 11-ordinate Simpson’s rule compares favorably with that of a 21-ordinate trapezoidal rule. Simpson’s rule with 21 ordinat
is only marginally more accurate than with 11 ordinates for this waterplane shape. Note that Simpson’s rule calculates the moment of inel
about the centerline with slightly less accuracy than the trapezoidal rule. The derivation of théfertCM)(h/3) > f(l4,) assumes a constant
ordinate over the entire section (see Paragraph 1-4.3.3). The Simpson’s multipliers do not correct for this assumption. The constant-ordir
assumption is essentially correct for very full ships and barges with extensive parallel midbody, and will yield very accurate vlyes for
Accuracy of I calculations for fine-lined ships can be increased only by using very close station spacing or integrating along an axi
perpendicular to the centerline. &k 5 percent accuracy shown here should be sufficiently accurate for most salvage work.
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1-4.6 Other Simpson’s Rule Forms.Simpson’s rules can be derived for numbers of ordinates for which the first two rules do not apply, and
to determine areas of "left over" segments at the ends of curves.

1-4.6.1 5, 8, Minus One and 3, 10, Minus One RulesAn additional Simpson'’s rule, known as the8, minus one rulds used to determine

the area between two ordinates when three consecutive ordinates are known. For oygigataady,, the area between the first and second
ordinates is given by:

1
Ao.1 = E h(syg + 8y1 - yz)
The area between the second and third ordinates can be found by applying the rule backwards:
1
A1-z = E h(_yo + 8y1 + 5y2)

The validity of the 5, 8, minus one rule can be verified by observing that the sum of the expressions for the two sectional areas is the 3-ordinate
rule:

A

A071+A172 = 1—12h[(5y0+8y1_y2) +(_yo+8y1+5y2)]

1
= gh(yo+4y1+y2>

The 5, 8, minus one rule cannot be used for moments. The first moment of the area between the first and second Aygiadiest the first
ordinate is given by th&, 10, minus one rule

1
M, = —h?@y, + 10y, - y,)
1 24 0 1 2
These two Simpson’s rules are at times convenient, but are less accurate than the first and second rules.

1-4.6.2 Simpson’s Rules for Any Number of Ordinates.Simpson’s rules can be combined one with another to derive rules for numbers of
ordinates for which the first two rules do not apply. For example, the first rule can be used for 3, 5, 7, 9, ... ordinates, and the second rule for
4,7, 10, .... ordinates. A rule can be deduced for six ordinates as shown below:

3
A0,3 = gh(yo+3y1+3y2+y3)
_1
A375 - gh(y3+4y4+y5)

A

_ w83 9 9 3 1 4 1.0
A0—3+A3—5 - h%yo+§y1+§y2+§y3+§y3+§y4+§ysg

1
ﬂh(9y0+27y1+27y2+17y3+32y4+8y5)

This is not the only rule suitable for six ordinates. By skillful use of the 5, 8, minus one rule, a rule with less awkward multipliers can be
deduced:

1
Aofg = Eh(5y0+8y1_yz)

3
A174 = gh(y1+3y2+3y3+y4)

1
A= Eh( _y3+8y4+5y5)

A = A071+A174+A475

- hD5y+25y+25y+25y+2 v+ SyD
Bz’ 22t 287 2t 15
25

= g MO Y1 Y, Y5 1Y, +0.4y;)

Substituting the same values for ordinaygshroughys in each rule will verify that they are equivalent. Rules deduced in this manner can be
used in the general forms described in Paragraph 1-4.4.4.

1-4.7 Other Integration Rules. Simpson’s rules and the trapezoidal rule are satisfactory for most manual calculationd\eWtun-Cotes’

Tchebycheff'sandGauss’rules are more accurate, but require more tedious manual calculations. These rules are described in most general naval
architecture texts, such &asic Ship Theorpy K.J. Rawson and E.C. Tupper, Buckle’s Naval Architecturéy W. Muckle and D.A. Taylor.
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1-4.8 General Notes For Numerical Integration. The numerical integration rules presented have relative advantages and disadvantages. Whe
time and/or access to high-speed computers permits, the salvage engineer may select the optimum integration rule for a well-defined cu
For curves where ordinates are tabulated for only certain stations, a rule appropriate to that number and spacing of stations must be adoj
Some generalizations about the applicability of integration rules are listed below:

* The trapezoidal rule uses constant ordinate spacing and simpler multipliers than the other rules. Any number of ordinates can
used. The rule can accommodate half-stations at any point, and the multipliers for half-stations are easily derived. For a sing
integration (area calculation) of a gentle curve, the trapezoidal rule is nearly as accurate as the Simpson’s rules, but progressiv
greater errors are introduced on successive integrations (for moments and moments of inertia).

® Simpson’s rules and the trapezoidal rule include the common interval as part of the common multiplier and can therefore calcula
areas or volumes, moments, centroids, and second moments of area (single, double, and triple integrations) directly.

® Simpson'’s rules are the most commonly used integration rules because they are more accurate than the trapezoidal rule, but sim
to use than the more accurate Newton-Cotes’, Tchebycheff's, and Gauss’ rules.

® Simpson’s rules exactly integrate first-, second-, and third-order curves. Successive integrations produce progressively higher or:
curves: the curve of area under a second-order curve is a third order curve, and the curve of the moment of areas is then a foul
order curve. Simpson’s rules will therefore exactly calculate the first moment of a second-order curve, or the second moment «
a first-order curve. Calculating the second moment of a second-order or higher curve involves integrating a fourth-order equatio
so some error is introduced even for a parabolic curve. Additional error may arise for an arbitrary curve. Experience has show
that Simpson’s rule calculates moments and second moments of relatively smooth, continuous curves—such as those descrik
ship forms—accurately if a sufficiently close station spacing is used.

* An even-ordinate Simpson rule is only marginally more accurate than the next lower odd-ordinate rule; odd-ordinate Simpson rul
are therefore preferred, and almost universally used in salvage.

1-4.9 Integration of Discontinuous Curves. The integration rules discussed are applicable to continuous curves. The area under a
discontinuous curve can be obtained by applying appropriate rules to the portions of the curve between discontinuities and summing the ar
For curves with large numbers of closely spaced discontinuities, it is simpler to divide the curve into segments at the discontinuities, approxim.
each segment by a rectangle, triangle, or trapezoid, calculate the area of each segment, and sum the areas to find the total area. The ce
of each segment can be calculated or estimated. Moments, second moments, and the centroid of the entire area can be calculated by sun
the products of each area and the lever arm from its centroid to a selected axis in a tabular format. Replacing a segment of the curve betw
discontinuities (stations) with a horizontal line at a value equal to the average ordinate creates a rectangle with area equal to the area unde
curve between the two stations. If the curve between stations can be reasonably approximated by a straight line, a horizontal line intersec
the curve midway between stations hag @alue equal to the average ordinate. Repeating this process along the length of the curve create
a stepped curve If the discontinuities, and subsequent stations, are evenly spaced, the curve can be integrated by a modification of tl
trapezoidal rule:

A

[yex=h¥iy,

M

YY n

ny dz= h?Xi(s, -1/2)y,

I, = szy dx = h3¥l(s, -1/2%y,

YY

where:
A = area under a curve between stations 0 and
Myy = first moment of area about axi¥Y
I,y = second moment of area about aXi¥
h = common interval
s, = number of stations from axigY (or integration start point) to statiam
Yy, = height of the mid-ordinate between statianandn-1

Weight distribution curves for ships are usually drawn assuming a constant weight distribution between stations as stepped curves. The addi
of the continuous buoyancy curve and stepped weight curve creates a discontinuous load curve. The load curvesiteppadily described

above to facilitate integration along its length to define the shear curve. Alternatively, the buoyancy curve can be stepped before summing w
the weight curve. A stepped 10-segment (11-ordinate) buoyancy curve can be constructed from standard Navy 21-station Bonjean’s Curve:
taking unit buoyancy calculated from section areas for odd station as the average unit buoyancy for segments bounded by even stations—
buoyancy for segment 0-2 is based on section area for station 1, that for segment 2—4 on the area for station 3, etc. Example 1-4 include
integration of this type.
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1-4.10 Calculation of Hull Properties. Various integrations of a ship’s hull form are used to determine properties such as displacement,
locations of centers, tons per inch immersion, etc., known collectiveiyrations of formhydrostatic functionsor hydrostatic data Waterlines,

buttocks, and stations of lines drawings are spaced to support numerical integration, usually by Simpson’s or the trapezoidal rules. Halfbreadths
(offsets) taken along the length of a waterline provide ordinate values to define the waterplane shape; halfbreadths taken at different waterlines
at the same station provide ordinate values to define the station shape. Because ships are symmetrical about the centerline, integrations are
customarily performed for one side of the section or waterplane onlydantled to give the total area or moment.

When working from offsets, sectional areas are usually calculated by vertical integration on horizontal ordinates from the centerline. An
integration up to a waterline gives section area corresponding to that waterline. Integrating the curve of areas along the ship’s length gives
volume of displacement; the centroid of the volume is the center of buoyancy.

Waterlines are integrated along the ship’s length to determine area of the waterplane, location of the centroid of the waterplane (center of
flotation), and moment of inertia of the waterplane about the centerline and about a transverse axis through the center of flotation. From these
properties, tons per inch immersion, location of the metacenter, etc., can be calculated. Displacement volume can be calculated by taking
waterplane areas as ordinates and integrating vertically.

Longitudinal position of the center of buoyandydB) is obtained by longitudinal integration of the sectional areas. Height of the center of
buoyancy KB) can be obtained by vertical integration of waterplane areas, or by calculating a vertical moment of area for each section. The sum
of all the vertical area moments divided by the sum of the sectional areaskfBretntegrations of this form are included in Example 1-4 and
Appendix F.

1-4.10.1 Functions of Form. Functions of hull form are
usually calculated for each waterline so they can be plotted Table 1-3. Appendage Allowances.
as a function of draft as the shipBurves of Form also
called Hydrostatic Curves or Displacement and Other -
Curves(D & O Curvey. Figure FO-2 is a reproduction of Ship Type Appe”daAge /Z"‘Jwance'
the curves of form for an FFG-7 Class ship. Hydrostatic data ki
is also recorded in the Functions of Form Diagram (Figure

. . . Single-screw, small combatant with keel sonar dome® . ........ 0.0167
B-1) for Navy ships and Hydrostatic Tables (Figure B-2) for Twi%—screw, small combatant with keel sonar dome® . ......... 0.0200
commercial vessels. The salvage engineer may be required single-screw, small combatant with bow sonar dome® . .. ... ... 0.0049
to calculate hydrostatic data when curves of form or other | Twin-screw, small combatant with bow sonar dome® .......... 0.0060
documents are not available or for a casualty in an unusual| Twin-screw amphibious warfare ships with well decks* ... ...... 0.0106
condition. Whether functions of form are calculated for a shell platingonly ......... ... ... .. ... .. .. .. ... 0.0057
Comp|ete range of drafts or for 0n|y a few selected drafts de- all other appendages . . .. ............ ... 0.0049

. . . Ta 1
pends on the form of the ship and the nature of information | Twn-screwLST 0.0024
required by salvors. Manual calculations are best performed WINOUT DOW TNFUSTET . . .« v o ov e e e :

. . with tunnel bow thruster (negative appendage) .......... 0.0014

on Orgamzed tabular forms called dlsplacement sheets. Single-screw merchant ships aE]d guxiliarigg of o?di?]ary form,
less than 5,000 tons full load displacement . ................ 0.0075
1-4.10.2 Appendage Displacement.Volumes and dis- shellplatingonly ................................ 0.0060
placements (buoyancies) based on section areas taken fron all other appendages . . .................... ..., 0.0015

Bonjean's Curves do not include appendage volume/ dis- | Single-screw merchant ships an_d auxiliaries of ordinary form,
placement, although sectional areas from some Bonjean’s 5,000 to 15,00(_) tons full load displacement ................ 0.0050
Curves include shell plating. If known, appendage dis- Z:egiﬁ;?tg‘spggg’aéés' """"""""""""""""" 8'88‘1‘8

placements can be added _tO the |ntegrated dlsplacement; ef Single-screw merchant ships and auxiliaries of ordinary form,
fect onLCB can be determined by moment balance. When greater than 15,000 tons full load displacement . ............. 0.0025
appendage buoyancy is unknown, appendage displacement Twin-screw merchant ships and auxiliaries of ordinary form . . . . . 0.0081
can be estimated as a fraction of full load displacement, shell plating only . ...........o oo, 0.0035
called anappendage allowance Appendage allowances all other appendages . . ..............oooeeiuunn. .. 0.0046
vary with Sh|p size, type, and Configuration_ Warships VLCC, ULCC, very large bulk carriers . .................... 0.0015

generally have more and larger appendages than auxiliarie
or .Conp]mercllal vessels. Ve%selsd(:lNIth ?]Igh lpower-t0-3|zed Source: *Jamestown Marine Services, 1990, unpublished; based on data from 22
ratios have larger screws an rudaers t an lower powere hull types entered into ship data files for the NAVSEA POSSE Program
vessels; appendage allowance increases with the number o
screws. Large bow sonar domes on combatants are faired
into the hull, and are included in Bonjean’s Curves and offsets; keel-mounted domes are appendages. For a given ship type and configuration,

appendage allowance generally increases as size decreases. Approximate appendage allowances for different ship types are given in Table 1-3.

Appendage displacement is essentially constant with draft, as most appendages (except shell plating) are low on the hull and will be emerged
only by extremely low drafts. Once determined, appendage displacement can be added to the integrated displacement for any draft that covers
the appendages to determine total displacement. Shell plating displacement can be adjusted for drafts less than full load by assuming that one-
half of the shell plating volume is concentrated in the bottom third of the draft range, and the remaining volume is evenly distributed over the
upper two-thirds of the draft range. It is usually safe to assumelLi@Btfor the displacement with appendages is virtually the same as that

for the integrated (without appendages) displacement.

1-4.10.3 Station Spacing.n full-bodied ships (low-speed general cargo, large tankers, bulk carriers, etc.) the lengths of the waterlines between
stations in the midbody are nearly straight lines. In many modern full-bodied ships, the waterlines over the midbody are, in fact, straight lines,
forming a parallel midbody. Integration on 10 equal divisions of length (11 stations, 0-10) is sufficiently accurate for most purposes. If the
curvature of the waterlines increases sharply near the ends of the ship, half-spaced stations can be inserted to increase accuracy, for example,
at stationsyz, 1%, 8%2 and 9-.
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Accuracy can be increased by reducing the station spacing throughout the length of the curve. This increases the number of calculations t
performed, but avoids determining additional multipliers and may be simpler to program for computer calculation. For ship calculations, offse
are usually tabulated for either 11 or 21 basic stations (10 or 20 equal divisions), with half-stations as necessary. Offsets for Navy ships
normally tabulated for 21 basic stations, although additional tables may be prepared for very close station spacing. Offset tables for 2-foot stat
spacing are available for the FFG-7, for example. Even when 21-station offset tables or Bonjean's Curves are available, integration on
stations is sufficiently accurate for most hull volume calculations on any smooth hull form, including fine-lined warships.

1-4.10.4 Full Sections.In full, relatively
flat-bottomed sections, special care must bge ¢
taken in calculating the area from the base
to the lowest waterline to avoid error.
Figure 1-11 shows a section near midships
where the turn of the bilge fairs into a
straight line (the rise of floor line) at point
A. If the entire area belowCD is
calculated using horizontal ordinates from
the centerline, very close ordinate spacing
must be used to avoid error because of th
rapid change of form in the shell line. The
area belowCD can be calculated accurately
using vertical ordinates froi@D, with half-
spaced ordinates inserted near the outboal

B
C
end, or by dividing the area into two
segments, as shown. The ai€ABCis a
trapezoid whose area can be calculate A K

accurately when the position & and rise
of floor can be determined. The ar&®B
can be obtained by using Simpson’s rule i ] ) )
either with horizontal ordinates measured Figure 1-11. Calculating Sectional Area Below the Lowest Waterline.
from AB, or with vertical ordinates
measured fronBD.

14

o
w)

&N

1-4.10.5 Lowest Waterlines.When displacement volume is calculated by vertical integration of waterplane areas, the volume under the lowes
one or two waterlines is calculated separately. Since the form of the ship changes so rapidly near the keel, the volume under the lowest
or two waterlines is calculated by integrating sectional areas along the ship’s length. This volume is added to the volume determined
integrating waterplane areas from the lower waterlines upward to obtain the total volume of displacement.

1-4.10.6 Ends of Full Hull Forms. On
very full hulls, such asspoon-bowed SIMPSON’S RULE
barges, large tankers (VLCC, ULCC), and \ égﬁl,fﬂMED PARABOLIC
bulk carriers, the parallel midbody extends
nearly to the ends of the ship, where it WATERPLANE
joins to a short forebody or afterbody with OUTLINE
steep or sharply curving lines. The aft end
of the lower waterlines of many fine-lined

ships also curve sharply. If the ordinate] /

adjacent to the end ordinate is some \

distance away from the end of the paralle 2 1 / FP STATIONS
midbody, the curve from this ordinate to TRAPEZOIDAL RULE

the end ordinate (which is 0 or very small) ASSUMED STRAIGHT LINE

assumed by Simpson’'s rules or th
trapezoidal rule will fall well inside the
actual waterline as shown in Figure 1-12]
This will cause a serious underestimation o
area for the end sections that will lead to even greater errors in calculations of moments and second moments about axes near midships be
of the long lever arms. Intermediate stations should be inserted so that there are ordinates near the ends of the parallel midbody and at
one or two ordinates in the forebody and afterbody. Alternatively, waterplane areas for the midbody, forebody, and afterbody can be calcula
separately and summed. The midbody area can be treated as a rectangle or integrated by a 3-ordinate Simpson or trapezoidal rule; the mid
and forebody areas can be calculated by any convenient rule with appropriate ordinates.

Figure 1-12. Inherent Integration Error in Full Waterlines.

1-4.10.7 Tank and Compartment Volumes.A compartment’s molded volume is greater than its floodable volume (the volume of liquid that
can be contained), because of the volume occupied by fittings and structure. Floodable volumes of filled holds, machinery spaces, living spa
etc., are estimated from molded volumes by use of permeability factors, as explained in Paragraph 1-9.1.1. Framing, sounding tubes, sea cl
and similar structures in ordinaskin tanks typically occupy about’2 to 2%2 percent of the molded volume in double-bottom tanks, about 1
percent in cargo tanks (i.e., permeabilityeshpty tanks is 9%2 to 9%/ percent, and 99 percent, respectively). Heating coils, if fitted, usually
occupy an additionds percent of the molded volume. Flush tanks lie entirely within the ship’s framing and are externally stiffened, so flood-
able volume, or capacity, is essentially equal to molded volume. To calculate volumes and centroids of flush tanks, offsets are taken to the in
surface of the tank, rather than the hull molded surface. Bale capacity of holds is calculated from offsets taken from sections showing the |
of cargo battens, line of the bottoms of deck beams, and the top of the hold ceiling (above the inner bottom) including any gratings, with dedt
tions for stanchions and other obstructions. Grain capacity is the molded volume, less the volume of structure, hold ceiling, and shifting boar
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