
4 DISTURBANCES AND TRACKING SYSTEMS

The best way to start with the introduction of the reference input is via our submarine
example:

Example: Once more, consider the submarine equations of motion

θ̇ = q ,

ẇ = a11Uw + a12Uq + a13zGBθ + b1U
2δ ,

q̇ = a21Uw + a22Uq + a23zGBθ + b2U
2δ .

We have a feedback control law which will guarantee stability, of the form

δ = −k1θ − k2w − k3q ,

where the gains k1, k2, k3 correspond, say, to the −0.3 poles. What if we wanted the boat
to stabilize to, say, θ = Θ where Θ �= 0? The first reaction might be to use

δ = −k1(θ − Θ) − k2w − k3q .

To see if this is enough let’s simulate the system with Θ = 20 degrees, and starting with
zero initial conditions. The results are shown in Figure 22, in terms of θ/Θ versus t (solid
curve) where it is clear that the system missed its final value, it stabilized but to the wrong
angle. To see what went wrong, consider the above equations. At steady state all time
derivatives go to zero, which means θ̇ = q = 0, ẇ = 0, and q̇ = 0. From the equations of
motion this means that

a11Uw + a13zGBθ + b1U
2δ = 0 ,

a21Uw + a23zGBθ + b2U
2δ = 0 ,

and if we use the steady state control law

δ = −k1θ + k1Θ − k2w ,

we get

(a11U − b1U
2k2)w + (a13zGB − b1U

2k1)θ = −b1U
2k1Θ ,

(a21U − b2U
2k2)w + (a23zGB − b2U

2k1)θ = −b2U
2k1Θ .

This system of linear equations can be solved for the steady state values of w and θ. Using
the gains that correspond to the −0.3 poles design, we find

θ = 0.6679Θ ,

which agrees with the simulation results exactly. It seems, therefore, that the above control
law can guarantee stability but it needs something extra to ensure steady state accuracy, in
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Figure 1: Submarine response in the absence of feedforward control (solid curve) and includ-
ing feedforward control (dotted curve)
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other words we need to add (or subtract) a little more plane action to bring θ up to Θ. We
might be motivated then to use a control law of the form

δ = −k1(θ − Θ) − k2w − k3q − k0 ,

where the feedback gains k1, k2, k3 remain the same as before, and k0 is an unknown gain
which is computed such that at steady state we get the desired result θ = Θ. Therefore, at
steady state we have

a11Uw + b1U
2δ = −a13zGBΘ ,

a21Uw + b2U
2δ = −a23zGBΘ .

The solution is
w ≈ 0 , and δ = −0.4202Θ .

Substituting into the steady state dive plane angle we get

δ = −k1(θ − Θ) − k2w − k0 ,

or
k0 = 0.4202Θ .

This extra gain 0.4202 which multiplies the desired value Θ is called a feedforward gain. By
incorporating this in the previous control law, we achieve the desired steady state accuracy
as shown in the results of Figure 22 with the dotted curve. It seems then that when a
non–zero set point is commanded we can still use the same control law we developed before
but augmented with an extra term to ensure that the commanded set point is achieved.
The formalism of this result, along with the disturbance rejection, occupies the rest of this
section.

4.1 Feedforward Control

So far we have considered the design of regulators in which the performance objective has
been to achieve a specified closed loop dynamic behavior (i.e., pole locations) of the system
in response to arbitrary initial disturbances. A more general design objective is to control
the system error not only for initial disturbances, but also for persistent disturbances, and
also to track reference inputs.

Say our system is
ẋ = Ax + Bu + Fxd ,

where x is the n× 1 state vector, u is the m× 1 control vector, and xd is a d× 1 disturbance
vector. To make things even more interesting suppose that we want to track a reference input
xr in the presence of the disturbances xd, where the reference input has its own dynamics

ẋr = Arxr .
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We are concerned here with the error

e = x − xr ,

between the actual state x and the reference state xr. What we need then is a differencial
equation in e,

ė = ẋ − ẋr

= A(e + xr) + Bu + Fxd − Arxr

= Ae + (A − Ar)xr + Fxd + Bu

= Ae + Bu + Ex0 ,

where we have denoted

x0 =

[
xr

xd

]
,

a (n + d) × 1 vector containing both the reference inputs and the disturbances, and

E =
[

A − Ar F
]

,

a (n + d) × n augmented matrix.

Consider a control law of the form

u = −Ke − K0x0 .

Then the error dynamics becomes

ė = Ae + Ex0 − B(Ke − K0x0) .

If it were possible it would be desirable to choose the gains K and K0 to keep the system
error e at zero. As we will see shortly though, this is not always possible. More reasonable
performance objectives would be the following:

1. The closed loop system should be asymptotically stable.

2. A linear combination of the error state variables (rather than the entire state vector)
is to be zero at steady state.

The first objective is met by placing the poles of (A − BK) in the left half s–plane. At
steady state we have

ė = 0 ,

which gives
(A − BK)e = (BK0 − E)x0 ,

and the steady state error is

e = (A − BK)−1(BK0 − E)x0 .
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Now B is n × m, K0 is m × (n + d), and E is (n + d) × n. We see, therefore, that only if
we have as many inputs as there are states n = m we can choose K0 = B−1E to make e
zero at steady state. In practice we have m < n which means that we cannot make e = 0.
Therefore, in general we can only require that some desired output yd is zero at steady state,

yd = Cde = 0 ,

where Cd is a m × n matrix, so the number of inputs m is the same as the dimension of yd.
Then we can require

Cd(A − BK)−1(BK0 − E)x0 = 0 ,

for all x0, or
Cd(A − BK)−1(BK0 − E) = 0 ,

or
Cd(A − BK)−1BK0 = Cd(A − BK)−1E .

Now we see that
Cd︸︷︷︸

m×n

(A − BK)−1︸ ︷︷ ︸
n×n

B︸︷︷︸
n×m

is m × m and can be inverted. Therefore, we can choose

K0 =
[
Cd(A − BK)−1B

]−1
Cd(A − BK)−1E ,

and the steady state requirement yd = 0 has been achieved.

Example: Let’s illustrate the procedure with the submarine example. Suppose our objective
is to keep constant depth z in the presence of two external disturbances f1, f2 (arising, say,
from near surface effects at periscope depth). The linearized equations of motion, including
the disturbance effects, are

θ̇ = q ,

ẇ = a11Uw + a12Uq + a13zGBθ + b1U
2δ + f1 ,

q̇ = a21Uw + a22Uq + a23zGBθ + b2U
2δ + f2 ,

ż = −Uθ + w ,

or, in matrix form,
θ̇
ẇ
q̇
ż


︸ ︷︷ ︸

ẋ

=


0 0 1 0

a13zGB a11U a12U 0
a23zGB a21U a22U 0
−U 1 0 0


︸ ︷︷ ︸

A


θ
w
q
z


︸ ︷︷ ︸

x

+


0

b1U
2

b2U
2

0


︸ ︷︷ ︸

B

δ︸︷︷︸
u

+


0 0
1 0
0 1
0 0


︸ ︷︷ ︸

F

[
f1

f2

]
︸ ︷︷ ︸

xd

.

The objective is to keep depth z = 0 in the presence of f1, f2. The first thing we have to do
is to stabilize the system by placing the poles of (A − BK). We do this by using a control
law of the form

δ = −k1θ − k2w − k3q − k4z .
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Figure 2: Submarine response: (1: in the absence of external disturbances); (2: with exter-
nal disturbances and no feedforward control); (3: with external disturbances and including
feedforward control)
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Selection of poles at −0.3, −0.31, −0.32, −0.33 produces a stable system whose response in
the absence of external disturbances is shown in Figure 23 (curve 1).

Use of the above feedback control law when f1 �= 0, f2 �= 0 produces stable response but
with a nonzero steady state error, as expected; see curve 2 in the figure, with f1 = 0.005 and
f2 = −0.01. In order to achieve the desired depth we introduce a general feedforward term
in the control law

δ = −k1θ − k2w − k3q − k4z − k0 ,

where the feedback gains k1, k2, k3, k4 remain the same as before, and the feedforward gain
k0 will be determined such that z = 0 at steady state. At steady state we get q = 0 from
the θ̇ equation and w = Uθ from ż = 0. The steady state control law becomes

δ = −k1θ − k2Uθ − k0 ,

where we have imposed the requirement z = 0. The ẇ and q̇ equations yield

a11U
2θ + a13zGBθ + b1U

2δ + f1 = 0 ,

a21U
2θ + a23zGBθ + b2U

2δ + f2 = 0 ,

or, if we substitute in the expression for δ,

(a11U
2 + a13zGB − b1U

2k1 − b1U
3k2)θ − b1U

2k0 = −f1 ,

(a21U
2 + a23zGB − b2U

2k1 − b2U
3k2)θ − b2U

2k0 = −f2 .

Substituting in numerical values we can find

k0 = 1.4312f1 − 11.1353f2 ,

and we can write then the complete control law as

δ = 3.0673θ + 1.1668w + 2.7562q − 0.0835z − 1.4312f1 + 11.1353f2 ,

where the feedback gains correspond to the −0.3 pole selection as we mentioned before. If
we simulate the system using this control law we see that the response gets to its desired
value in the presence of nonzero f1 and f2 (curve 3). We should comment here that from
the above two equations which were used to compute k0 we can see that, in general, we
get a nonzero pitch angle θ at steady state. This, similar to the set–and–drift in currents,
demonstrates that in the presence of disturbances it is in general impossible to keep all the
state variables of a system to their desirable values.

We can get the same result by applying the general formula derived in this section. We
have

δ = −Ke − K0x0

= −k1(θ − θr) − k2(w − wr) − k3(q − qr) − k4(z − zr)

−k01θr − k02wr − k03qr − k04zr − k05f1 − k06f2 ,
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where the subscript r indicates the reference input states, which are zero in our case. The
general equation for K0 is

K0 =
[
Cd(A − BK)−1B

]−1
Cd(A − BK)−1E .

The above matrices are (verify the calculations)

A =


0 0 1 0

0.0135 −0.3220 −0.7102 0
−0.0360 0.1260 −0.7395 0

−5 1 0 0

 , B =


0

0.0322
−0.0857

0

 ,

E =


0 0 1 0 0 0

0.0135 −0.3220 −0.7102 0 1 0
−0.0360 0.1260 −0.7395 0 0 1

−5 1 0 0 0 0

 , Cd =
[

0 0 0 1
]

,

K =
[

k1 k2 k3 k4

]
=

[
−3.0673 −1.1668 −2.7562 0.0835

]
.

Using these we find

K0 =
[

k01 k02 k03 k04 k05 k06

]
=

[
−3.0673 −1.1668 −2.7562 0 1.4312 −11.1353

]
,

and substituting into the expression for δ we get

δ = 3.0673θ + 1.1668w + 2.7562q − 0.0835(z − zr) − 1.4312f1 + 11.1353f2 ,

the same control law as before.

4.2 Disturbance Estimation

Recall that the previous procedure was given a system with reference input xr and distur-
bance xd,

ẋ = Ax + Bu + Fxd ,

ẋr = Arxr ,

we form the error
e = x − xr ,

and the equation for the error dynamics

ė = Ae + Bu + Ex0 ,

with

x0 =

[
xr

xd

]
, E =

[
A − Ar F

]
.
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The control law was
u = −Ke − K0x0 ,

where K is computed from stability requirements by pole–placing (A − BK), and K0 is
computed from the steady state accuracy requirement

yd = Cde = 0 at steady state ,

by computing

K0 =
[
Cd(A − BK)−1B

]−1
Cd(A − BK)−1E .

The above process requires knowledge of x0, which contains both the reference input xr and
the disturbances xd. If direct measurement of x0 is not possible (usually we know what the
reference input xr is but we cannot measure the disturbance xd), estimation of x0 is necessary.
In order to estimate x0 we need to assume a “model” for the disturbance, ẋd = Adxd; i.e.,
whether the disturbances are fairly constant, oscillatory, and so on. The complete system is
then

ẋ = Ax + Bu + Fxd ,

ẋd = Adxd ,

ẋr = Arxr .

Define a new augmented state vector

x =

[
e
x0

]
.

The new system is then written as

ẋ = A · x + Bu ,

where

A =

[
A E
0 A0

]
, A0 =

[
Ar 0
0 Ad

]
, B =

[
B
0

]
.

We assume that the observation (measurement) vector y depends on both the error e and
the vector x0,

y = Ce + Dx0 = C · x , C =
[

C D
]

.

We can apply now the general observer equation to the new augmented system x,

˙̂x = A · x + Bu + L(y − C · x) ,

where L is computed by pole–placement of (A−L·C) as before. This procedure will produce a
full order estimator for the augmented system, assuming of course that the augmented system
is observable. In the same way we can design a reduced order estimator for the augmented
system to estimate those states and disturbances that are not directly measurable. The key
for the above procedure is to treat the disturbances as extra states; although we cannot
control a disturbance we can estimate it by observing its effects on the system.
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Figure 3: Block diagram for disturbance estimation

Separating the above full order observer equation into equations for the system error
estimate ê and the error in estimating x0, we get

˙̂e = Aê + Bu + Ex̂0 + Le(y − Cê − Dx̂0) ,
˙̂x0 = A0x̂0 + L0(y − Cê − Dx̂0) .

The block diagram is presented in Figure 24. We can see from this block diagram that if x0

is constant (A0 = 0) and D = 0, then there are integrators in parallel to the path through
Le. This means that in the detrmination of ê there exists a path proportional to the integral
of the residual r = y − Cê in addition to the path through Le which is proportional to the
residual itself. Because of this integral path it is possible for r to become zero without x̂0

going to zero. Therefore, we can produce a nonzero control signal u, even when the system
error is zero. In classical control system design this is achieved by means of control action;
here it is achieved automatically by using an observer to estimate the unmeasurable x0.

With the above estimates ê and x̂0, the control law for the compensator is

u = −Kê − K0x̂0 .

We refer to this technique as the disturbance estimation and compensation method.

Example: Consider the control law of the previous example. In general, the disturbance
forces f1, f2 are unknown, so we have to use

δ = 3.0673θ̂ + 1.1668ŵ + 2.7562q̂ − 0.0835ẑ − 1.4312f̂1 + 11.1353f̂2 .
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In order to estimate f1 and f2 we first have to assume their dynamics. This is based on fairly
general physical considerations. In our case, since both f1 and f2 are assumed to model free
surface suction effects we can assume them to be relatively constant; i.e., ḟ1 = ḟ2 = 0. The
equations of motion then are

θ̇ = q ,

ẇ = a11Uw + a12Uq + a13zGBθ + b1U
2δ + f1 ,

q̇ = a21Uw + a22Uq + a23zGBθ + b2U
2δ + f2 ,

ż = −Uθ + w ,

together with

ḟ1 = 0 ,

ḟ2 = 0 .

In matrix form the augmented system becomes

θ̇
ẇ
q̇
ż

ḟ1

ḟ2


︸ ︷︷ ︸

ẋ

=



0 0 1 0 0 0
a13zGB a11U a12U 0 1 0
a23zGB a21U a22U 0 0 1
−U 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

A



θ
w
q
z
f1

f2


︸ ︷︷ ︸

x

+



0
b1U

2

b2U
2

0
0
0


δ .

Let’s assume that z, θ, q are measurable (remember from Section 1.7 that we have to measure
z); can we estimate w, f1, and f2? The measurement equation is

 θ
q
z


︸ ︷︷ ︸

y

=

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


︸ ︷︷ ︸

C



θ
w
q
z
f1

f2


︸ ︷︷ ︸

x

.

Using MATLAB we can see that the system is observable (the rank of the (A, C) observability
matrix is 6), so we should be able to estimate all states. Selecting observer poles at −0.6,
−0.61, −0.62, −0.63, −0.64, and −0.65, we can get the (full) observer matrix

L = [�ij ] =



0.6234 1.0000 0.0000
13.3973 −0.6743 0.6681
1.6255 0.5153 0.0378
9.4327 0.0377 1.5498
5.6251 0.0153 0.2424
−0.0990 0.3905 −0.0492


.
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Figure 4: Depth response with disturbance estimation and compensation

The observer equations are then

˙̂x = Ax̂ + Bu + L(y − Cx̂) ,

or

˙̂
θ = q̂ + �11(θ − θ̂) + �12(q − q̂) + �13(z − ẑ) ,
˙̂w = a11Uŵ + a12Uq̂ + a13zGB θ̂ + f̂1 + b1U

2δ + �21(θ − θ̂) + �22(q − q̂) + �23(z − ẑ) ,
˙̂q = a21Uŵ + a22Uq̂ + a23zGB θ̂ + f̂2 + b2U

2δ + �31(θ − θ̂) + �32(q − q̂) + �33(z − ẑ) ,
˙̂z = −Uθ̂ + ŵ + �41(θ − θ̂) + �42(q − q̂) + �43(z − ẑ) ,

˙̂
f1 = �51(θ − θ̂) + �52(q − q̂) + �53(z − ẑ) ,
˙̂
f2 = �61(θ − θ̂) + �62(q − q̂) + �63(z − ẑ) .

Simulation results in terms of z, f̂1/f1, and f̂2/f2 versus t are presented in Figures 25 and
26.

We can see that the response goes to zero, as it should. The initial condition for ẑ was
the same as for z, this is fair since z is measurable. The initial conditions for f̂1 and f̂2 were
both zero, we have no knowledge of free surface effect forces and moments, and we can see
that they converge to the actual values of f1, f2 quickly.
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Figure 5: Estimation of unknown disturbances
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4.3 Integral Control

The disturbance estimation and compensation technique will work well if we can have a fairly
good idea of what kind of disturbances will affect the system. In our submarine example it
may not be very hard to guess some kind of external forces and moments, but this is not
always so easy. In order to produce good performance with a nonzero set point (reference
input) and steady disturbances we need to introduce some sort of integral control behavior.
It should be pointed out that integral control is an alternative to the disturbance estimation
and compensation technique of the previous section, in fact the two methods are very closely
related. Both techniques achieve the same thing, zero steady state error, and both have their
advantages and disadvantages.

A typical state variable feedback control law feeds back the coordinates and their deriv-
atives. From Newton’s law we obtain second order ordinary differential equations for our
systems and we often use the positions and velocities as the states. The state variable feed-
back thus produces a proportional–plus–derivative (PD) type of feedback. Suppose that we
are primarily interested in some desired output

z = Dx ,

where z is m × 1. It is for this output z that we want to maintain a desirable value in the
presence of disturbances. If the desired value of z is zd one way to introduce integral control
characteristics is to introduce new state variables; i.e., augment the state vector,

v̇ = Dx − zd .

Feedback of v then will produce an integral of the error z − zd.

More specifically in the zd = 0 case,

ẋ = Ax + Bu .

The new state variable is
v̇ = z = Dx ,

or
v =

∫
z dt .

The augmented system is [
ẋ
v̇

]
=

[
A 0
D 0

] [
x
v

]
+

[
B
0

]
u .

The control law is obtained by pole–placement of this system

u = −
[

K0 KI

] [
x
v

]
,
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Figure 6: Response of integral control

or

u = −K0x − KIv

= −K0x︸ ︷︷ ︸
PD action

−KI

∫
z dt︸ ︷︷ ︸

Integral action

,

so this is a generalized PID–control.

Example: Consider the submarine equations of motion

θ̇ = q ,

ẇ = a11Uw + a12Uq + a13zGBθ + b1U
2δ + f1 ,

q̇ = a21Uw + a22Uq + a23zGBθ + b2U
2δ + f2 ,

ż = −Uθ + w .

If we want to maintain depth z at its desired value z = 0 we introduce a new state equation

żI = z ,

15



where zI denotes the integral of z. We can see that steady state accuracy (z = 0) is
automatically ensured. The augmented system is now

θ̇
ẇ
q̇
ż
żI


︸ ︷︷ ︸

ẋ

=


0 0 1 0 0

a13zGB a11U a12U 0 0
a23zGB a21U a22U 0 0
−U 1 0 0 0
0 0 0 1 0


︸ ︷︷ ︸

A


θ
w
q
z
zI


︸ ︷︷ ︸

x

+


0

b1U
2

b2U
2

0
0


︸ ︷︷ ︸

B

δ︸︷︷︸
u

.

We select the closed loop controller poles at −0.30, −0.31, −0.32, −0.33 — same as before
— with the fifth pole corresponding to zI at −0.10. The reason for this is that we want the
integrator to correct the error only at steady state, while we would like to maintain the same
transient response. As a result, the integrator must be relatively slow compared to the other
poles of the system. The control law is

δ = 4.0647θ + 1.0237w + 3.8698q − 0.1533z − 0.0084zI .

Results are shown in Figure 27 for the same values of the disturbances f1, f2 as before. We can
see that z approaches zero, as it should. The main advantage of the integral control technique
is that the desired response will approach its commanded value regardless of the exact type
of disturbances. Also, no disturbance estimation is necessary. The main disadvantage is that
the integral control response tends to be oscillatory especially if no disturbances are acting.
In contrast, the response using the disturbance estimation and compensation technique is,
in general, much smoother.
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