
ME 4811 
 
Lab #1: Simulations 
 
The equations of motion used to simulate the dynamic behavior of the NPS Autonomous 
Underwater Vehicle “Phoenix” in the horizontal plane are as follows: 
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All variables in these equations are assumed to be in nondimensional form with respect to 
the vehicle length (7.3 ft) and constant forward speed (approx. 3 ft/sec). The vehicle 
weighs 435 lbs and is neutrally buoyant. This is not needed in the calculations that 
follow, but it gives you an idea of the physical system. Time is become nondimensional 
so that 1 second represents the time that it takes to travel one vehicle length. In the 
equations of motion, the variables are defined as: 
 
v lateral (sway) velocity 
r turning rate (yaw) 
ψ  heading angle 
y lateral deviation (cross track error) 
δs  stern rudder deflection 
δb  bow rudder deflection 
 
The rest are constants, m is the mass, Iz is the mass moment of inertia with respect to a 
vertical axis that passes through the vehicle’s geometric center (amidships), xG is the 
position of the vehicle’s center of gravity (positive forward of amidships), and the 
remaining terms are the so-called hydrodynamic coefficients. Nondimensional values for 
the coefficients are given in the following table: 
 
m = 0.0358 Y bδ  = 0.01241 
Iz = 0.0022 Nr dot = - 0.00047 
xG = 0.0014 Nv dot = - 0.00178 
Yr dot = - 0.00178 Nr = - 0.00390 
Yv dot = - 0.03430  Nv = - 0.00769 
Yr = 0.01187 N sδ  = - 0.0047 
Yv = - 0.10700 N bδ  = 0.0035 
Y sδ  = 0.01241  
 



Figures 1 and 2 show a picture of the vehicle and the definition of the coordinate systems 
used in the equations of motion. 
 
 
 
 
 
 
 
 
 
Figure 1: 
Picture of the “Phoenix” vehicle  
 
 
 
 
 
 
 
Figure 2: 
Geometry and axes definitions 

 

 
 
Do the following: 
 

1. Select as state vector x = [ v, r, ψ , y], control vector , and write the 
state space equations, assuming small angles 
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.

= + u  . 
Give the values for the A and B matrices. 
 

2. Using matrix algebra, compute the transfer functions between lateral position y 
and either stern rudder deflection or bow rudder . What are the open loop 
poles and zeros in each case? What is the physical significance of open loop poles 
that are equal to zero (if any)? 

δs δb

 
3. Draw the block diagram of the system, keeping all sine and cosine terms, and 

simulate: 
• 15 degrees of positive bow rudder, stern rudder at zero. 
• 15 degrees of negative stern rudder, bow rudder at zero. 
• 15 degrees of positive bow rudder, 15 degrees of negative stern rudder. 
See item #5 for the graphs to submit. 
 



4. Simulate the system using Euler’s integration and Matlab. Use the same 
conditions as #3. Do your results agree with #3? For the remaining of these 
assignments, use either the Simulink block diagram or the Matlab code as the 
basis for your simulations. Keep in mind that, based on previous experience, 
Matlab code tends to be easier to debug! Submit your graphs as in item #5. 
 

5. For both questions 3 and 4, plot a geographical (x,y) plot for the ship’s position. 
For this you’ll need the additional equation for the rate of change of x which is, 

x v
.

cos sin= −ψ ψ  . 
Allow enough time to complete a full turning circle. Comment on the 
effectiveness of the various rudder deflections on the turning diameter. 

 


